Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We apply the interacting parametrized post-Friedmann (IPPF) method to coupled dark energy models where the interaction is proportional to dark matter density at background level. In the first case, the dark components are treated as fluids and the growth of dark matter perturbations only feel the interaction via the modification of background quantities provided dark matter follows geodesic. We also perform a Markov Chain Monte-Carlo analysis which combines several cosmological probes including the cosmic microwave background (WMAP9 (Formula presented.) Planck) data, baryon acoustic oscillation (BAO) measurements, JLA sample of supernovae, Hubble constant (HST), and redshift-space distortion (RSD) measurements through the (Formula presented.) data points. The joint observational analysis of (Formula presented.) data leads to a coupling parameter, (Formula presented.) at (Formula presented.) level for vanishing momentum transfer potential. On the other hand, we deal with a coupled quintessence model which exhibits a violation of the equivalence principle coming form a coupling term in the modified Euler equation; as a result of that the local Hubble expansion rate and the effective gravitational coupling are both enhanced. Provided that the interaction is parallel to scalar field velocity the momentum transfer potential is switched on, leading to a lower interaction coupling (Formula presented.) at (Formula presented.) level when (Formula presented.) data are combined. Besides, the CMB power spectrum shows up a correlation between the coupling parameter (Formula presented.) and the position of acoustic peaks or their amplitudes. The first peak’s height increases when (Formula presented.) takes larger values and its position is shifted. We also obtain the matter power spectrum may be affected by the strength of interaction coupling over scales bigger than (Formula presented.) , reducing its amplitude in relation to the vanilla model. © 2016, Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:Interacting parametrized post-Friedmann method
Autor:Richarte, M.G.; Xu, L.
Filiación:Departamento de Física, Universidade Federal do Paraná (UFPR), Caixa Postal 19044, Curitiba, 81531-990, Brazil
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria 1428, Pabellón I, Buenos Aires, Argentina
Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116024, China
State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China
Palabras clave:Interacting dark energy model; mcmc cosmic constraint; Perturbation theory
Año:2016
Volumen:48
Número:4
DOI: http://dx.doi.org/10.1007/s10714-016-2035-4
Título revista:General Relativity and Gravitation
Título revista abreviado:Gen. Relativ. Gravit.
ISSN:00017701
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00017701_v48_n4_p_Richarte

Referencias:

  • Hinshaw, G., Astrophys. J.Suppl 208, 19 (2013). arXiv, p. 5226
  • Overview of products and scientific results—Planck Collaboration (Ade, P.A.R.) arXiv, p. 5062
  • CMB power spectra and likelihood—Planck Collaboration (Ade, P.A.R) arXiv, p. 5075
  • Cosmological parameters—Planck Collaboration (Ade, P.A.R) arXiv, p. 5076
  • Percival, W.J., 2dFGRS collaboration (2004) Mon. Not. Roy. Astron. Soc., 353, pp. 1201-1218
  • Reid, B.A., et al.: [astro-ph.CO]; Manera, M., Mon Not. R. Astron. Soc. 428(2), 1036–1054 (2012). arXiv, p. 6609
  • Beutler, F., Mon Not. Roy. Astron. Soc. 423, 3430–3444 (2012). arXiv, p. 4725
  • Beutler, F., et al.: Mon. Not. Roy. Astron. Soc. 416, 3017–3032 (2011). [astro-ph.CO]; Padmanabhan, N., Xu, X., Eisenstein, D.J., Scalzo, R., Cuesta, A.J., Mehta, K.T., Kazin, E; Anderson, L., et al.: (2012); Blake, C., (2011) MNRAS, 418, p. 1725
  • Blake, C., (2012) MNRAS, 425, p. 405
  • de la Torre, S., et al; Blake, C., Mon Not. Roy. Astron. Soc. 415, 2876 (2011). arXiv, p. 1104
  • Samushia, L., Mon Not. Roy. Astron. Soc. 420, 2102–2119 (2012). arXiv, p. 1102
  • Samushia, L., Mon Not. Roy. Astron. Soc. 429, 1514–1528 (2013). arXiv, p. 5309
  • Macaulay, E., Wehus, I.K., Eriksen, H.K., (2013) Phys. Rev. Lett., 111, p. 161301
  • Song, Y.-S., et al.: JCAP 0910, 004 (2009); Xu, L., (2013) Phys. Rev. D, 87, p. 043525. , arXiv:1302.2291
  • Xu, L., (2014) JCAP, 1402, p. 048. , arXiv:1312.4679
  • Xu, L; Yang, Weiqiang, et al; Yang, W., Phys. Rev. D 89, 043511 (2014). arXiv, p. 1312
  • Basilakos, S.: []; Basilakos, S., Pouri, A.: []; Pouri, A., Basilakos, S., Plionis, M.: []; Eisenstein, D.J., et al.: Astrophys. J. 633, 560–574 (2005) astro-ph/0501171; Percival, W.J., Mon. Not. Roy. Astron Soc. 381, 1053–1066 (2007). arXiv, 705, p. 3323
  • Percival, W.J., White, M., (2009) Mon. Not. Roy. Astron. Soc., 393, p. 297
  • Padmanabhan, N., et al.: Mon. Not. Roy. Astron. Soc. 427(3), 2132–2145 (2012). [astro-ph.CO]; Guy, J., Astron. Astrophys. 523 A7 (2010). arXiv, p. 4743. , arXiv:1010.4743
  • Conley, A., Astrophys. J. Suppl. 192, 1 (2011). arXiv, p. 1104
  • Amanullah, R., (2010) Astrophys. J., 716, p. 712
  • Suzuki, N., Rubin, D., Lidman, C., (2012) Astrophys. J., 746, p. 85
  • Riess, A.G., (1998) Supernova Search Team, Astron. J., 116, p. 100938
  • Riess, A.G., (2004) Astrophys. J., 607, p. 665
  • Perlmutter, S., (1999) The Supernova Cosmol. Proj., Astrophys. J., 517, p. 56586
  • Perlmutter, S., (1998) Nature, 391, p. 51
  • Astrophys. J. 737, 102 (2011). arXiv, p. 1104
  • Kessler, R., Astrophys. J Suppl. 185, 32–84 (2009). arXiv, 908, p. 4274
  • Betoule, M., et al. (2014); Zlatev, I., Wang, L., Steinhardt, P.J., (1999) Phys. Rev. Lett., 82, p. 896
  • Peebles, P.J.E., AIP Conf Proc. 1241, 175–182 (2010). arXiv, 910, p. 5142. , arXiv:0910.5142
  • Zimdahl, W., (2001) Phys. Lett. B, 521, pp. 133-138
  • Chimento, L.P., (2003) Phys. Rev. D, 67, p. 083513
  • Huey, G., et al.: Phys. Rev. D 74, 023519 (2006) astro-ph/0407196; Sadjadi, H.M., (2006) Phys. Rev. D, 74, p. 103007
  • Barrow, J.D., (2006) Phys. Rev. D, 73, p. 103520
  • Lip, S.Z.W., (2011) Phys. Rev. D, 83, p. 023528
  • del Campo, S., Herrera, R., Olivares, G., Pavón, D., (2006) Phys. Rev. D, 74, p. 023501
  • del Campo, S., Herrera, R., Pavón, D., (2009) JCAP, 901, p. 020
  • del Campo, S., Herrera, R., Pavón, D., (2008) Phys. Rev. D, 78, p. 021302
  • Guo, Z.-K., et al.: Phys. Rev. D 76, 023508 (2007). astro-ph/0702015; Wu, Q., Gong, Y., Wang, A., Alcaniz, J.S., (2008) Phys. Lett. B, 659, pp. 34-39
  • Abdalla, E., Phys. Rev D 82, 023508 (2010). arXiv, 910, p. 5236
  • Fu, T.-F., Eur. Phys. J. C 72, 1932 (2012). arXiv, p. 1112
  • Li, Y.-H., Eur. Phys. J. C 71, 1700 (2011). arXiv, p. 3185
  • Chen, X.-M., JCAP 0904, 001 (2009) ArXiv:0812
  • Bolotin, Y.L., et al; Tong, M.L., Class. Quant. Grav. 28, 055006 (2011). arXiv, p. 5199
  • Aviles, A., Phys Rev. D 84, 083515, (2011) Erratum-ibid. D 84, 089905 (2011). arXiv, p. 1108
  • De Bernardis, F., Phys. Rev. D 84, 023504 (2011). arXiv, p. 0652
  • Kremer, G., (2007) Gen. Rel. Grav., 39, pp. 965-972
  • Chimento, L.P., (2009) Gen. Rel. Grav., 41, pp. 1125-1137
  • Li, Y.-H., et al; Chimento, L.P., (2010) Phys. Rev. D, 81, p. 043525
  • Yang, W., et al; Wang, Y., Wands, D., Zhao, G.B., Xu, L; Chimento, L.P., (2013) Phys. Rev. D, 88, p. 087301
  • Chimento, L.P., (2012) Phys. Rev. D, 85, p. 127301
  • Chimento, L.P., et al.: [astro-ph.CO]; Chimento, L.P., (2011) Phys. Rev. D, 84, p. 123507
  • Calabrese, E., Huterer, D., Linder, E.V., Melchiorri, A., Pagano, L., (2011) Phys. Rev. D, 83, p. 123504
  • Calabrese, E., de Putter, R., Huterer, D., Linder, E.V., Melchiorri, A., (2011) Phys. Rev. D, 83, p. 023011
  • Hu, W., Sawicki, I., (2007) Phys. Rev. D, 76, p. 104043
  • Hu, W., (2008) Phys. Rev. D, 77, p. 103524
  • Fang, W., Hu, W., Lewis, A., (2008) Phys. Rev. D, 78, p. 087303
  • Li, Y.-H., Zhang, J.-F., Zhang, X; Kodama, H., Sasaki, M., (1984) Prog. Theor. Phys., 78, p. 1
  • Ma, C.-P., et al.: Astrophys. J. 455, 7–25 (1995). astro-ph/9506072; http://camb.info/, Lewis, A., et al.: Astrophys. J. 538, 473–476 (2000). astro-ph/9911177; http://cosmologist.info/cosmomc/, Lewis, A., et al.: Phys. Rev. D 66, 103511 (2002). astro-ph/0205436; Riess, A.G., (2011) ApJ, 730, p. 119
  • Amendola, L., (2004) Phys. Rev. D, 69, p. 103524
  • Amendola, L., (2001) Phys. Rev. Lett., 86, p. 196
  • Amendola, L., Quercellini, C., (2003) Phys. Rev. D, 68, p. 023514
  • Brookfield, A.W., van de Bruck, C., Hall, L.M.H., (2008) Phys. Rev. D, 70, p. 043006
  • Valiviita, J., Majerotto, E., Maartens, R., (2008) JCAP, 807, p. 020. , 0804.0232
  • Clemson, T., Phys. Rev. D 85, 043007 (2012). arXiv, p. 6234. , arXiv:1109.6234
  • Ziaeepour, H., (2012) Phys. Rev. D, 86, p. 043503
  • Koivisto, T., (2005) Phys. Rev. D, 72, p. 043516
  • Amendola, L., (2000) Phys. Rev. D, 62, p. 0043511
  • Pourtsidou, A., skordis, C., Copeland, E.J., (2013) Phys. Rev. D, 88, p. 083505
  • Majerotto, E., Sapone, D., Amendola, L.: astro-ph/0410543 (unpublished); Koyama, K., Maartens, R., Song, Y.-S., (2009) JCAP, 910, p. 017
  • Yang, W., Xu, L., (2014) JCAP, 8, p. 34
  • Caldera-Cabral, G., Maartens, R., Shaefer, B.M., (2009) JCAP, 907, p. 27
  • Marulli, F., Baldi, M., Moscardini, L., Mon (2012) Not. R. Astron. Soc, 420, p. 2377
  • Lee, J., Baldi, M., (2012) Astrophys. J, 747, p. 45
  • Motta, M., Sawicki, I., Saltas, I.D., Amendola, L., Kunz, M., (2013) Phys. Rev. D, 88
  • Li, Y.-H., Zhang, J.-F., Zhang, X., (2014) Phys. Rev. D, 90, p. 123007

Citas:

---------- APA ----------
Richarte, M.G. & Xu, L. (2016) . Interacting parametrized post-Friedmann method. General Relativity and Gravitation, 48(4).
http://dx.doi.org/10.1007/s10714-016-2035-4
---------- CHICAGO ----------
Richarte, M.G., Xu, L. "Interacting parametrized post-Friedmann method" . General Relativity and Gravitation 48, no. 4 (2016).
http://dx.doi.org/10.1007/s10714-016-2035-4
---------- MLA ----------
Richarte, M.G., Xu, L. "Interacting parametrized post-Friedmann method" . General Relativity and Gravitation, vol. 48, no. 4, 2016.
http://dx.doi.org/10.1007/s10714-016-2035-4
---------- VANCOUVER ----------
Richarte, M.G., Xu, L. Interacting parametrized post-Friedmann method. Gen. Relativ. Gravit. 2016;48(4).
http://dx.doi.org/10.1007/s10714-016-2035-4