Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Context. Shocks are frequently detected by spacecraft in the interplanetary space. However, the in situ data of a shock do not provide direct information on its overall properties even when a following interplanetary coronal mass ejection (ICME) is detected. Aims. The main aim of this study is to constrain the general shape of ICME shocks with a statistical study of shock orientations. Methods. We first associated a set of shocks detected near Earth over 10 years with a sample of ICMEs over the same period. We then analyzed the correlations between shock and ICME parameters and studied the statistical distributions of the local shock normal orientation. Supposing that shocks are uniformly detected all over their surface projected on the 1 AU sphere, we compared the shock normal distribution with synthetic distributions derived from an analytical shock shape model. Inversely, we derived a direct method to compute the typical general shape of ICME shocks by integrating observed distributions of the shock normal. Results. We found very similar properties between shocks with and without an in situ detected ICME, so that most of the shocks detected at 1 AU are ICME-driven even when no ICME is detected. The statistical orientation of shock normals is compatible with a mean shape having a rotation symmetry around the Sun-apex line. The analytically modeled shape captures the main characteristics of the observed shock normal distribution. Next, by directly integrating the observed distribution, we derived the mean shock shape, which is found to be comparable for shocks with and without a detected ICME and weakly affected by the limited statistics of the observed distribution. We finally found a close correspondence between this statistical result and the leading edge of the ICME sheath that is observed with STEREO imagers. Conclusions. We have derived a mean shock shape that only depends on one free parameter. This mean shape can be used in various contexts, such as studies for high-energy particles or space weather forecasts. © 2014 ESO.

Registro:

Documento: Artículo
Título:Mean shape of interplanetary shocks deduced from in situ observations and its relation with interplanetary CMEs
Autor:Janvier, M.; Démoulin, P.; Dasso, S.
Filiación:Department of Mathematics, University of Dundee, Dundee DD1 4HN, United Kingdom
Observatoire de Paris, LESIA, UMR 8109, CNRS, 92195 Meudon Principal Cedex, France
Instituto de Astronomía y Física Del Espacio, UBA, CONICET, CC. 67, 1428 Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Departamento de Ciencias de la Atmósfera y Los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:Magnetic fields; Solar-terrestrial relations; Sun: coronal mass ejections (CMEs); Sun: heliosphere; Magnetic fields; Normal distribution; Solar system; Stereo image processing; Weather forecasting; High-energy particles; Interplanetary coronal mass ejections; Interplanetary shocks; Solar-terrestrial relations; Space weather forecast; Statistical distribution; Sun: coronal mass ejection; Sun: heliosphere; Interplanetary spacecraft
Año:2014
Volumen:565
DOI: http://dx.doi.org/10.1051/0004-6361/201423450
Título revista:Astronomy and Astrophysics
Título revista abreviado:Astron. Astrophys.
ISSN:00046361
CODEN:AAEJA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00046361_v565_n_p_Janvier

Referencias:

  • Balogh, A., Jokipii, J.R., (2009) Space Sci. Rev., 143, p. 85
  • Balogh, A., Bothmer, V., Crooker, N.U., (1999) Space Sci. Rev., 89, p. 141
  • Barnden, L.R., (1973) Proc. International Cosmic Ray Conf., 2, p. 1271
  • Barnden, L.R., (1973) Proc. International Cosmic Ray Conf., 2, p. 1277
  • Berdichevsky, D.B., Szabo, A., Lepping, R.P., Viñas, A.F., Mariani, F., (2000) J. Geophys. Res., 105, p. 27289
  • Berdichevsky, D.B., Reames, D.V., Wu, C.-C., (2009) Adv. Spa. Res., 43, p. 113
  • Boursier, Y., Lamy, P., Llebaria, A., Goudail, F., Robelus, S., (2009) Sol. Phys., 257, p. 125
  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R., (1981) J. Geophys. Res., 86, p. 6673
  • Cane, H.V., (2000) Space Sci. Rev., 93, p. 55
  • Cane, H.V., Richardson, I.G., Von Rosenvinge, T.T., Wibberenz, G., (1994) J. Geophys. Res., 99, p. 21429
  • Cargill, P.J., Schmidt, J.M., (2002) Ann. Geophys., 20, p. 879
  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., Gulisano, A.M., (2005) Adv. Spa. Res., 35, p. 711
  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., (2006) A&A, 455, p. 349
  • Dasso, S., Asorey, H., (2012) Adv. Spa. Res., 49, p. 1563. , Pierre Auger Collaboration
  • De Lucas, A., Schwenn, R., Dal Lago, A., Marsch, E., Clúa De Gonzalez, A.L., (2011) J. Atmos. Sol. Terr. Phys., 73, p. 1281
  • Farrugia, C.J., Berdichevsky, D.B., Möstl, C., (2011) J. Atmos. Sol. Terr. Phys., 73, p. 1254
  • Gosling, J.T., Pizzo, V.J., (1999) Space Sci. Rev., 89, p. 21
  • Gosling, J.T., Bame, S.J., McComas, D.J., (1995) Space Sci. Rev., 72, p. 133
  • Gulisano, A.M., Démoulin, P., Dasso, S., Rodriguez, L., (2012) A&A, 543, pp. A107
  • Janvier, M., Démoulin, P., Dasso, S., (2013) A&A, 556, pp. A50
  • Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M., (2006) Sol. Phys., 239, p. 337
  • Jian, L.K., Russell, C.T., Luhmann, J.G., Galvin, A.B., MacNeice, P.J., (2009) Sol. Phys., 259, p. 345
  • Jordan, A.P., Spence, H.E., Blake, J.B., Shaul, D.N.A., (2011) J. Geophys. Res., 116, pp. A11103
  • Kilpua, E.K.J., Jian, L.K., Li, Y., Luhmann, J.G., Russell, C.T., (2011) J. Atmos. Sol. Terr. Phys., 73, p. 1228
  • Lai, H.R., Russell, C.T., Jian, L.K., (2012) Sol. Phys., 278, p. 421
  • Lavraud, B., Rouillard, A., (2014) IAU Symp., 300, p. 273
  • Lee, C.O., Arge, C.N., Odstrcil, D., (2013) Sol. Phys., 285, p. 349
  • Lin, C.C., Chao, J.K., Lee, L.C., Lyu, L.H., Wu, D.J., (2006) J. Geophys. Res., 111, pp. A09104
  • Lindsay, G.M., Russell, C.T., Luhmann, J.G., Gazis, P., (1994) J. Geophys. Res., 99, p. 11
  • Lugaz, N., Roussev, I., (2011) J. Atmos. Sol. Terr. Phys., 73, p. 1187
  • Manchester, W.B.I., Gombosi, T.I., Roussev, I., (2004) J. Geophys. Res., 109, pp. A02107
  • Manchester, I.V.W.B., Vourlidas, A., Tóth, G., (2008) ApJ, 684, p. 1448
  • Masson, S., Démoulin, P., Dasso, S., Klein, K.-L., (2012) A&A, 538, pp. A32
  • Möstl, C., Davies, J.A., (2013) Sol. Phys., 285, p. 411
  • Möstl, C., Farrugia, C.J., Temmer, M., (2009) ApJ, 705, pp. L180
  • Möstl, C., Farrugia, C.J., Kilpua, E.K.J., (2012) ApJ, 758, p. 10
  • Neugebauer, M., (2013) Space Sci. Rev., 176, p. 125
  • Oh, S.Y., Yi, Y., Kim, Y.H., (2007) Sol. Phys., 245, p. 391
  • Richardson, I.G., Cane, H.V., (2010) Sol. Phys., 264, p. 189
  • Robbrecht, E., Patsourakos, S., Vourlidas, A., (2009) ApJ, 701, p. 283
  • Rouillard, A.P., (2011) J. Atmos. Sol. Terr. Phys., 73, p. 1201
  • Ruenach, A., Lavraud, B., Owens, M.J., (2012) J. Geophys. Res., 117, pp. A09101
  • Sheeley Jr., N.R., Howard, R.A., Michels, D.J., (1985) J. Geophys. Res., 90, p. 163
  • Simpson, J.A., (1954) Phys. Rev., 94, p. 426
  • Siscoe, G., Odstrcil, D., (2008) J. Geophys. Res., 113, pp. A00B07
  • Smith, E.J., (2008) The Global Heliospheric Magnetic Field, p. 79. , eds. A. Balogh L. J. Lanzerotti, & S. T. Suess (Chichester: Springer, Praxis Publishing)
  • Taubenschuss, U., Erkaev, N.V., Biernat, H.K., (2010) Ann. Geophys., 28, p. 1075
  • Vainio, R., (2009) IAU Symp., 257, p. 413. , eds. N. Gopalswamy, & D. F. Webb
  • Volkmer, P.M., Neubauer, F.M., (1985) Ann. Geophys., 3, p. 1
  • Wang, C., Liu, J.B., Li, H., (2009) J. Geophys. Res., 114, p. 5211
  • Wang, C., Li, H., Richardson, J.D., Kan, J.R., (2010) J. Geophys. Res., 115, p. 9215
  • Xie, H., St. Cyr, O.C., Gopalswamy, N., Odstrcil, D., Cremades, H., (2013) J. Geophys. Res., 118, p. 4711
  • Xiong, M., Zheng, H., Wang, Y., Wang, S., (2006) J. Geophys. Res., 111, p. 8105

Citas:

---------- APA ----------
Janvier, M., Démoulin, P. & Dasso, S. (2014) . Mean shape of interplanetary shocks deduced from in situ observations and its relation with interplanetary CMEs. Astronomy and Astrophysics, 565.
http://dx.doi.org/10.1051/0004-6361/201423450
---------- CHICAGO ----------
Janvier, M., Démoulin, P., Dasso, S. "Mean shape of interplanetary shocks deduced from in situ observations and its relation with interplanetary CMEs" . Astronomy and Astrophysics 565 (2014).
http://dx.doi.org/10.1051/0004-6361/201423450
---------- MLA ----------
Janvier, M., Démoulin, P., Dasso, S. "Mean shape of interplanetary shocks deduced from in situ observations and its relation with interplanetary CMEs" . Astronomy and Astrophysics, vol. 565, 2014.
http://dx.doi.org/10.1051/0004-6361/201423450
---------- VANCOUVER ----------
Janvier, M., Démoulin, P., Dasso, S. Mean shape of interplanetary shocks deduced from in situ observations and its relation with interplanetary CMEs. Astron. Astrophys. 2014;565.
http://dx.doi.org/10.1051/0004-6361/201423450