Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Proteins undergo dynamic structural changes to function within the range of physical and chemical conditions of their microenvironments. Changes in these environments affect their activity unless the respective mutations preserve their proper function. Here, we examine the influenza A virus spike protein hemagglutinin (HA), which undergoes a dynamic conformational change that is essential to the viral life cycle and is dependent on endosomal pH. Since the cells of different potential hosts exhibit different levels of pH, the virus can only cross species barriers if HA undergoes mutations that still permit the structural change to occur. This key event occurs after influenza A enters the host cell via the endocytic route, during its intracellular transport inside endosomes. The acidic pH inside these vesicles triggers a major structural transition of HA that induces fusion of the viral envelope and the endosomal membrane, and permits the release of the viral genome. HA experiences specific mutations that alter its pH stability and allow the conformational changes required for fusion in different hosts, despite the differences in the degree of acidification of their endosomes. Experimental and theoretical studies over the past few years have provided detailed insights into the structural aspects of the mutational changes that alter its susceptibility to different pH thresholds. We will illustrate how such mutations modify the protein's structure and consequently its pH stability. These changes make HA an excellent model of the way subtle structural modifications affect a protein's stability and enable it to function in diverse environments. © 2016 Biophysical Society.

Registro:

Documento: Artículo
Título:Modulation of the pH Stability of Influenza Virus Hemagglutinin: A Host Cell Adaptation Strategy
Autor:Di Lella, S.; Herrmann, A.; Mair, C.M.
Filiación:Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
Palabras clave:Influenza virus hemagglutinin; adaptation; animal; genetics; human; Influenza A virus; metabolism; pH; physiology; protein stability; virus entry; Adaptation, Biological; Animals; Hemagglutinin Glycoproteins, Influenza Virus; Humans; Hydrogen-Ion Concentration; Influenza A virus; Protein Stability; Virus Internalization
Año:2016
Volumen:110
Número:11
Página de inicio:2293
Página de fin:2301
DOI: http://dx.doi.org/10.1016/j.bpj.2016.04.035
Título revista:Biophysical Journal
Título revista abreviado:Biophys. J.
ISSN:00063495
CODEN:BIOJA
CAS:Hemagglutinin Glycoproteins, Influenza Virus
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00063495_v110_n11_p2293_DiLella

Referencias:

  • Tong, S., Li, Y., Donis, R.O., A distinct lineage of influenza A virus from bats (2012) Proc. Natl. Acad. Sci. USA, 109, pp. 4269-4274
  • Tong, S., Zhu, X., Donis, R.O., New world bats harbor diverse influenza A viruses (2013) PLoS Pathog., 9, p. e1003657
  • Neumann, G., Noda, T., Kawaoka, Y., Emergence and pandemic potential of swine-origin H1N1 influenza virus (2009) Nature, 459, pp. 931-939
  • Taubenberger, J.K., Morens, D.M., Influenza: The once and future pandemic (2010) Public Health Rep., 125, pp. 16-26
  • Skehel, J.J., Wiley, D.C., Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin (2000) Annu. Rev. Biochem., 69, pp. 531-569
  • Wiley, D.C., Skehel, J.J., The structure and function of the hemagglutinin membrane glycoprotein of influenza virus (1987) Annu. Rev. Biochem., 56, pp. 365-394
  • Rogers, G.N., Pritchett, T.J., Paulson, J.C., Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: Selection of receptor specific variants (1983) Virology, 131, pp. 394-408
  • Matrosovich, M., Tuzikov, A., Kawaoka, Y., Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals (2000) J. Virol., 74, pp. 8502-8512
  • Vines, A., Wells, K., Kawaoka, Y., The role of influenza A virus hemagglutinin residues 226 and 228 in receptor specificity and host range restriction (1998) J. Virol., 72, pp. 7626-7631
  • Neumann, G., Kawaoka, Y., Transmission of influenza A viruses (2015) Virology, 479-480, pp. 234-246
  • Watanabe, T., Kiso, M., Kawaoka, Y., Characterization of H7N9 influenza A viruses isolated from humans (2013) Nature, 501, pp. 551-555
  • Maines, T.R., Chen, L.-M., Donis, R.O., Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses (2011) Virology, 413, pp. 139-147
  • Skehel, J.J., Bayley, P.M., Wiley, D.C., Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion (1982) Proc. Natl. Acad. Sci. USA, 79, pp. 968-972
  • Carr, C.M., Chaudhry, C., Kim, P.S., Influenza hemagglutinin is spring-loaded by a metastable native conformation (1997) Proc. Natl. Acad. Sci. USA, 94, pp. 14306-14313
  • Russell, C., Acid-induced membrane fusion by the hemagglutinin protein and its role in influenza virus biology (2014) Influenza Pathogenesis and Control - Volume i, pp. 93-116. , R.W. Compans, M.B.A. Oldstone, Springer New York
  • Wilson, I.A., Skehel, J.J., Wiley, D.C., Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution (1981) Nature, 289, pp. 366-373
  • Bullough, P.A., Hughson, F.M., Wiley, D.C., Structure of influenza haemagglutinin at the pH of membrane fusion (1994) Nature, 371, pp. 37-43
  • Ha, Y., Stevens, D.J., Wiley, D.C., H5 avian and H9 swine influenza virus haemagglutinin structures: Possible origin of influenza subtypes (2002) EMBO J., 21, pp. 865-875
  • Stevens, J., Corper, A.L., Wilson, I.A., Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus (2004) Science, 303, pp. 1866-1870
  • Xu, R., Wilson, I.A., Structural characterization of an early fusion intermediate of influenza virus hemagglutinin (2011) J. Virol., 85, pp. 5172-5182
  • Chen, J., Wharton, S.A., Wiley, D.C., A soluble domain of the membrane-anchoring chain of influenza virus hemagglutinin (HA2) folds in Escherichia coli into the low-pH-induced conformation (1995) Proc. Natl. Acad. Sci. USA, 92, pp. 12205-12209
  • Böttcher, C., Ludwig, K., Stark, H., Structure of influenza haemagglutinin at neutral and at fusogenic pH by electron cryo-microscopy (1999) FEBS Lett., 463, pp. 255-259
  • Kemble, G.W., Bodian, D.L., White, J.M., Intermonomer disulfide bonds impair the fusion activity of influenza virus hemagglutinin (1992) J. Virol., 66, pp. 4940-4950
  • Lin, X., Eddy, N.R., Onuchic, J.N., Order and disorder control the functional rearrangement of influenza hemagglutinin (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 12049-12054
  • Huang, Q., Opitz, R., Herrmann, A., Protonation and stability of the globular domain of influenza virus hemagglutinin (2002) Biophys. J., 82, pp. 1050-1058
  • Zhou, Y., Wu, C., Huang, N., Exploring the early stages of the pH-induced conformational change of influenza hemagglutinin (2014) Proteins, 82, pp. 2412-2428
  • Godley, L., Pfeifer, J., Wharton, S., Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza hemagglutinin abolishes membrane fusion activity (1992) Cell, 68, pp. 635-645
  • Bizebard, T., Gigant, B., Knossow, M., Structure of influenza virus haemagglutinin complexed with a neutralizing antibody (1995) Nature, 376, pp. 92-94
  • Fontana, J., Cardone, G., Steven, A.C., Structural changes in influenza virus at low pH characterized by cryo-electron tomography (2012) J. Virol., 86, pp. 2919-2929
  • Huang, Q., Sivaramakrishna, R.P., Herrmann, A., Early steps of the conformational change of influenza virus hemagglutinin to a fusion active state: Stability and energetics of the hemagglutinin (2003) Biochim. Biophys. Acta., 1614, pp. 3-13
  • Huang, Q., Korte, T., Herrmann, A., Energetics of the loop-to-helix transition leading to the coiled-coil structure of influenza virus hemagglutinin HA2 subunits (2009) Proteins, 74, pp. 291-303
  • Carr, C.M., Kim, P.S., A spring-loaded mechanism for the conformational change of influenza hemagglutinin (1993) Cell, 73, pp. 823-832
  • Gruenke, J.A., Armstrong, R.T., White, J.M., New insights into the spring-loaded conformational change of influenza virus hemagglutinin (2002) J. Virol., 76, pp. 4456-4466
  • Garcia, N.K., Guttman, M., Lee, K.K., Dynamic changes during acid-induced activation of influenza hemagglutinin (2015) Structure, 23, pp. 665-676
  • Stegmann, T., White, J.M., Helenius, A., Intermediates in influenza induced membrane fusion (1990) EMBO J., 9, pp. 4231-4241
  • Shangguan, T., Siegel, D.P., Bentz, J., Morphological changes and fusogenic activity of influenza virus hemagglutinin (1998) Biophys. J., 74, pp. 54-62
  • Leikina, E., Ramos, C., Chernomordik, L.V., Reversible stages of the low-pH-triggered conformational change in influenza virus hemagglutinin (2002) EMBO J., 21, pp. 5701-5710
  • Scholtissek, C., Stability of infectious influenza A viruses at low pH and at elevated temperature (1985) Vaccine, 3 (3), pp. 215-218
  • Puri, A., Booy, F.P., Blumenthal, R., Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 subtypes: Effects of acid pretreatment (1990) J. Virol., 64, pp. 3824-3832
  • Korte, T., Ludwig, K., Herrmann, A., Conformational change of influenza virus hemagglutinin is sensitive to ionic concentration (2007) Eur. Biophys. J., 36, pp. 327-335
  • Brown, J.D., Swayne, D.E., Stallknecht, D.E., Persistence of H5 and H7 avian influenza viruses in water (2007) Avian Dis., 51 (1), pp. 285-289
  • Galloway, S.E., Reed, M.L., Steinhauer, D.A., Influenza HA subtypes demonstrate divergent phenotypes for cleavage activation and pH of fusion: Implications for host range and adaptation (2013) PLoS Pathog., 9, p. e1003151
  • DuBois, R.M., Zaraket, H., Russell, C.J., Acid stability of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity (2011) PLoS Pathog., 7, p. e1002398
  • Wu, Y., Wu, Y., Gao, G.F., Bat-derived influenza-like viruses H17N10 and H18N11 (2014) Trends Microbiol., 22, pp. 183-191
  • Russell, R.J., Gamblin, S.J., Skehel, J.J., H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes (2004) Virology, 325, pp. 287-296
  • Kampmann, T., Mueller, D.S., Kobe, B., The role of histidine residues in low-pH-mediated viral membrane fusion (2006) Structure, 14, pp. 1481-1487
  • Thoennes, S., Li, Z.-N., Steinhauer, D.A., Analysis of residues near the fusion peptide in the influenza hemagglutinin structure for roles in triggering membrane fusion (2008) Virology, 370, pp. 403-414
  • Gamblin, S.J., Haire, L.F., Skehel, J.J., The structure and receptor binding properties of the 1918 influenza hemagglutinin (2004) Science, 303, pp. 1838-1842
  • Mair, C.M., Ludwig, K., Sieben, C., Receptor binding and pH stability - How influenza A virus hemagglutinin affects host-specific virus infection (2014) Biochim. Biophys. Acta, 1838, pp. 1153-1168
  • Byrd-Leotis, L., Galloway, S.E., Agbogu, E., Steinhauer, D.A., Influenza HA stem region mutations that stabilize or destabilize the structure of multiple HA subtypes (2015) J. Virol., 89, pp. 4504-4516
  • Mair, C.M., Meyer, T., Herrmann, A., A histidine residue of the influenza virus hemagglutinin controls the pH dependence of the conformational change mediating membrane fusion (2014) J. Virol., 88, pp. 13189-13200
  • Harrison, J.S., Higgins, C.D., Lai, J.R., Role of electrostatic repulsion in controlling pH-dependent conformational changes of viral fusion proteins (2013) Structure, 21, pp. 1085-1096
  • Ferlin, A., Raux, H., Gaudin, Y., Characterization of pH-sensitive molecular switches that trigger the structural transition of vesicular stomatitis virus glycoprotein from the postfusion state toward the prefusion state (2014) J. Virol., 88, pp. 13396-13409
  • Baquero, E., Albertini, A.A., Gaudin, Y., Intermediate conformations during viral fusion glycoprotein structural transition (2013) Curr. Opin. Virol., 3, pp. 143-150
  • Daniels, R.S., Downie, J.C., Wiley, D.C., Fusion mutants of the influenza virus hemagglutinin glycoprotein (1985) Cell, 40, pp. 431-439
  • Steinhauer, D.A., Wharton, S.A., Hay, A.J., Amantadine selection of a mutant influenza virus containing an acid-stable hemagglutinin glycoprotein: Evidence for virus-specific regulation of the pH of glycoprotein transport vesicles (1991) Proc. Natl. Acad. Sci. USA, 88, pp. 11525-11529
  • Tumpey, T.M., Maines, T.R., García-Sastre, A., A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission (2007) Science, 315, pp. 655-659
  • Keleta, L., Ibricevic, A., Brown, E.G., Experimental evolution of human influenza virus H3 hemagglutinin in the mouse lung identifies adaptive regions in HA1 and HA2 (2008) J. Virol., 82, pp. 11599-11608
  • Koerner, I., Matrosovich, M.N., Kochs, G., Altered receptor specificity and fusion activity of the haemagglutinin contribute to high virulence of a mouse-adapted influenza A virus (2012) J. Gen. Virol., 93, pp. 970-979
  • Herfst, S., Schrauwen, E.J.A., Fouchier, R.A.M., Airborne transmission of influenza A/H5N1 virus between ferrets (2012) Science, 336, pp. 1534-1541
  • Imai, M., Watanabe, T., Kawaoka, Y., Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets (2012) Nature, 486, pp. 420-428
  • Hulse, D.J., Webster, R.G., Perez, D.R., Molecular determinants within the surface proteins involved in the pathogenicity of H5N1 influenza viruses in chickens (2004) J. Virol., 78, pp. 9954-9964
  • Reed, M.L., Bridges, O.A., Russell, C.J., The pH of activation of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity and transmissibility in ducks (2010) J. Virol., 84, pp. 1527-1535
  • Zaraket, H., Bridges, O.A., Russell, C.J., The pH of activation of the hemagglutinin protein regulates H5N1 influenza virus replication and pathogenesis in mice (2013) J. Virol., 87, pp. 4826-4834
  • Murakami, S., Horimoto, T., Kawaoka, Y., Enhanced growth of influenza vaccine seed viruses in vero cells mediated by broadening the optimal pH range for virus membrane fusion (2012) J. Virol., 86, pp. 1405-1410
  • Doms, R.W., Gething, M.J., Helenius, A., Variant influenza virus hemagglutinin that induces fusion at elevated pH (1986) J. Virol., 57, pp. 603-613
  • Krenn, B.M., Egorov, A., Romanova, J., Single HA2 mutation increases the infectivity and immunogenicity of a live attenuated H5N1 intranasal influenza vaccine candidate lacking NS1 (2011) PLoS One, 6, p. e18577
  • Nakowitsch, S., Wolschek, M., Romanova, J., Mutations affecting the stability of the haemagglutinin molecule impair the immunogenicity of live attenuated H3N2 intranasal influenza vaccine candidates lacking NS1 (2011) Vaccine, 29, pp. 3517-3524
  • Zaraket, H., Bridges, O.A., Russell, C.J., Increased acid stability of the hemagglutinin protein enhances H5N1 influenza virus growth in the upper respiratory tract but is insufficient for transmission in ferrets (2013) J. Virol., 87, pp. 9911-9922
  • Daidoji, T., Watanabe, Y., Nakaya, T., Avian influenza virus infection of immortalized human respiratory epithelial cells depends upon a delicate balance between hemagglutinin acid stability and endosomal pH (2015) J. Biol. Chem., 290, pp. 10627-10642
  • Xiong, X., Coombs, P.J., Gamblin, S.J., Receptor binding by a ferret-transmissible H5 avian influenza virus (2013) Nature, 497, pp. 392-396
  • Cotter, C.R., Jin, H., Chen, Z., A single amino acid in the stalk region of the H1N1pdm influenza virus HA protein affects viral fusion, stability and infectivity (2014) PLoS Pathog., 10, p. e1003831
  • Castelán-Vega, J.A., Magaña-Hernández, A., Jiménez-Alberto, A., Ribas-Aparicio, R.M., The hemagglutinin of the influenza A (H1N1) pdm09 is mutating towards stability (2014) Adv. Appl. Bioinform. Chem., 7, pp. 37-44
  • Zhang, W., Shi, Y., Lu, X., Shu, Y., An airborne transmissible avian influenza H5 hemagglutinin seen at the atomic level (2013) Science, 9, pp. 590-603
  • Watanabe, Y., Arai, Y., Daidoji, T., Ikuta, K., Characterization of H5N1 influenza virus variants with hemagglutinin mutations isolated from patients (2015) MBio., 6. , e00081-15

Citas:

---------- APA ----------
Di Lella, S., Herrmann, A. & Mair, C.M. (2016) . Modulation of the pH Stability of Influenza Virus Hemagglutinin: A Host Cell Adaptation Strategy. Biophysical Journal, 110(11), 2293-2301.
http://dx.doi.org/10.1016/j.bpj.2016.04.035
---------- CHICAGO ----------
Di Lella, S., Herrmann, A., Mair, C.M. "Modulation of the pH Stability of Influenza Virus Hemagglutinin: A Host Cell Adaptation Strategy" . Biophysical Journal 110, no. 11 (2016) : 2293-2301.
http://dx.doi.org/10.1016/j.bpj.2016.04.035
---------- MLA ----------
Di Lella, S., Herrmann, A., Mair, C.M. "Modulation of the pH Stability of Influenza Virus Hemagglutinin: A Host Cell Adaptation Strategy" . Biophysical Journal, vol. 110, no. 11, 2016, pp. 2293-2301.
http://dx.doi.org/10.1016/j.bpj.2016.04.035
---------- VANCOUVER ----------
Di Lella, S., Herrmann, A., Mair, C.M. Modulation of the pH Stability of Influenza Virus Hemagglutinin: A Host Cell Adaptation Strategy. Biophys. J. 2016;110(11):2293-2301.
http://dx.doi.org/10.1016/j.bpj.2016.04.035