Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

It has been suggested that the crystallization of a sugar hydrate can provide additional desiccation by removing water from the amorphous phase, thereby increasing the glass transition temperature (Tg). However, present experiments demonstrated that in single sugar systems, if relative humidity is enough for sugar crystallization, the amorphous phase will have a short life. In the conditions of the present experiments, more than 75% of amorphous phase crystallized in less than one month. The good performance of sugars that form hydrated crystals (trehalose and raffinose) as bioprotectants in dehydrated systems is related to the high amount of water needed to form crystals, but not to the decreased water content or increased Tg of the amorphous phase. The latter effect is only temporary, and presumably shorter than the expected shelf life of pharmaceuticals or food ingredients, and is related to thermodynamic reasons: if there is enough water for the crystal to form, it will readily form. © 2009 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Glass transition and time-dependent crystallization behavior of dehydration bioprotectant sugars
Autor:Schebor, C.; Mazzobre, M.F.; Buera, M.d.P.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Ciudad de Buenos Aires, Argentina
Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Ciudad de Buenos Aires, Argentina
Members of CONICET, Argentina
Palabras clave:Crystallization; Hydrated crystals; Raffinose; Stabilizing agents; Trehalose; Amorphous phase; Bioprotectant; Crystallization behavior; Food ingredients; Glass transition temperature; Raffinose; Relative humidities; Shelf life; Stabilizing agents; Time-dependent; Atmospheric humidity; Crystallization; Glass; Hydrates; Hydration; Sugar (sucrose); Sugars; Water content; Glass transition; raffinose; trehalose; water; article; crystallization; differential scanning calorimetry; glass transition temperature; humidifier; humidity; phase transition; priority journal; storage; Crystallization; Freeze Drying; Glass; Humidity; Kinetics; Phase Transition; Raffinose; Transition Temperature; Trehalose; Water
Año:2010
Volumen:345
Número:2
Página de inicio:303
Página de fin:308
DOI: http://dx.doi.org/10.1016/j.carres.2009.10.014
Título revista:Carbohydrate Research
Título revista abreviado:Carbohydr. Res.
ISSN:00086215
CODEN:CRBRA
CAS:raffinose, 512-69-6; trehalose, 99-20-7; water, 7732-18-5; Raffinose, 512-69-6; Trehalose, 99-20-7; Water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00086215_v345_n2_p303_Schebor

Referencias:

  • Leopold, A.C., Sun, W.Q., Bernal-Lugo, I., (1994) Seed Sci. Res., 4, pp. 267-274
  • Crowe, J.H., Carpenter, J.F., Crowe, L.M., (1998) Annu. Rev. Physiol., 60, pp. 73-103
  • Carpenter, J.F., Crowe, J.H., Arakawa, T., (1986) J. Dairy Sci., 73, pp. 3627-3636
  • Levine, H., Slade, L., (1992) BioPharm, 5, pp. 36-40
  • Crowe, L., Reid, D., Crowe, J., (1996) Biophys. J., 71, pp. 2087-2093
  • Schebor, C., Burin, L., Buera, M.P., Chirife, J., (1996) Lebensm-Wiss. Technol., 32, pp. 481-485
  • Sussich, F., Cesaro, A., (2008) Carbohydr. Res., 343, pp. 2667-2674
  • Rossi, S., Buera, M.P., Moreno, S., Chirife, J., (1997) Biotechnol. Progr., 13, pp. 609-616
  • Saleki-Gerhardt, A., Stowell, J.G., Byrn, S.R., Zografi, G., (1995) J. Pharm. Sci., 84, pp. 318-323
  • Kajiwara, K., Franks, F., Echlin, P., Lindsay Greer, A., (1999) Pharm. Res., 16, pp. 1441-1448
  • Roos, Y., (1995) Phase Transitions in Foods, pp. 109-156. , Taylor S.L. (Ed), Academic Press, San Diego
  • Leopold, A.C., (1990) Stress Responses in Plants: Adaptation and Acclimation Mechanisms, pp. 37-56. , Alscher G.J., and Cumming J.R. (Eds), Wiley-Liss, New York
  • Mazzobre, M.F., Buera, M.P., Chirife, J., (1997) Lebensm-Wiss. Technol., 30, pp. 324-329
  • Terebiznik, M.R., Buera, M.P., Pilosof, A.M.R., (1997) Lebensm-Wiss. Technol., 30, pp. 513-518
  • Kajiwara, K., Franks, F., (1997) J. Chem. Soc., Faraday Trans., 93, pp. 1779-1783
  • Izutsu, K., Yoshioka, S., Kojima, S., (1994) Pharm. Res., 11, pp. 995-999
  • Kreilgaard, L., Frokjaer, S., Flink, J.M., Randolph, T.W., Carpenter, J.F., (1999) J. Pharm. Sci., 88, pp. 281-290
  • McGarvey, O.S., Kett, V.L., Craig, D.Q.M., (2003) J. Phys. Chem. B, 107, pp. 6614-6620
  • Surana, R., Pyne, A., Surynarayanan, R., (2004) Pharm. Res., 21, pp. 1167-1176
  • Randolph, T.W., (1997) J. Pharm. Sci., 86, pp. 1198-1203
  • Carpenter, F., Pikal, M.J., Chang, B.S., Randolph, T.W., (1997) Pharm. Res., 14, pp. 969-975
  • Aldous, B., Auffret, A., Franks, F., (1995) Cryo-Lett., 16, pp. 181-186
  • Kilburn, D., Townrow, S., Meunier, V., Richardson, R., Alam, A., Ubbink, J., (2006) Nat. Mater., 5, pp. 632-635
  • Sussich, F., Skopec, C., Brady, J., Cesaro, A., (2001) Carbohydr. Res., 334, pp. 165-176
  • Iglesias, H.A., Chirife, J., Buera, M.P., (1997) J. Sci. Food Agric., 75, pp. 183-186
  • Iglesias, H.A., Schebor, C., Buera, M.P., Chirife, J., (2000) J. Food Sci., 65, pp. 646-650
  • Mazzobre, M.F., Buera, M.P., (1999) Biochim. Biophys. Acta, 1473, pp. 337-344
  • Moran, A., Buckton, G., (2007) Int. J. Pharm., 343, pp. 12-17
  • Patist, A., Zoerb, H., (2005) Colloid Surf., B: Biointerfaces, 40, pp. 107-113
  • Hancock, B., Shamblin, S., (1998) Pharm. Sci. Technol. Today, 1, pp. 345-351
  • Cesaro, A., De Giacomo, O., Sussich, F., (2008) Food Chem., 106, pp. 1318-1328
  • Sun, W.Q., Davidson, P., (1998) Biochim. Biophys. Acta, 1425, pp. 235-244
  • Koster, K.L., Leopold, A.C., (1988) Plant Physiol., 88, pp. 829-832
  • Sun, W.Q., Davidson, P., Chan, H.S.O., (1998) Biochim. Biophys. Acta, 1425, pp. 245-254
  • Schebor, C., Galvagno, M., Buera, M.P., Chirife, J., (2000) Biotechnol. Progr., 16, pp. 163-168
  • Sun, W.Q., Irving, T.C., Leopold, A.C., (1994) Physiol. Plant., 90, pp. 621-628
  • Espinosa, L., Schebor, C., Buera, M.P., Moreno, S., Chirife, J., (2006) Cryobiology, 52, pp. 157-160
  • Sun, W.Q., Leopold, A.C., (1993) Physiol. Plant., 89, pp. 767-774
  • Mazzobre, M.F., Soto, G., Aguilera, J.M., Buera, M.P., (2001) Food Res. Int., 34, pp. 903-911
  • Longinotti, M.P., Mazzobre, M.F., Buera, M.P., Corti, H.R., (2002) Phys. Chem. Chem. Phys., 4, pp. 533-540
  • Karmas, R., Buera, M.P., Karel, M., (1992) J. Agric. Food Chem., 40, pp. 873-879
  • Saleki-Gerhardt, A., Zografi, G., (1994) Pharm. Res., 11, pp. 1166-1173
  • Greenspan, L., (1977) J. Res., 81 A, pp. 89-96

Citas:

---------- APA ----------
Schebor, C., Mazzobre, M.F. & Buera, M.d.P. (2010) . Glass transition and time-dependent crystallization behavior of dehydration bioprotectant sugars. Carbohydrate Research, 345(2), 303-308.
http://dx.doi.org/10.1016/j.carres.2009.10.014
---------- CHICAGO ----------
Schebor, C., Mazzobre, M.F., Buera, M.d.P. "Glass transition and time-dependent crystallization behavior of dehydration bioprotectant sugars" . Carbohydrate Research 345, no. 2 (2010) : 303-308.
http://dx.doi.org/10.1016/j.carres.2009.10.014
---------- MLA ----------
Schebor, C., Mazzobre, M.F., Buera, M.d.P. "Glass transition and time-dependent crystallization behavior of dehydration bioprotectant sugars" . Carbohydrate Research, vol. 345, no. 2, 2010, pp. 303-308.
http://dx.doi.org/10.1016/j.carres.2009.10.014
---------- VANCOUVER ----------
Schebor, C., Mazzobre, M.F., Buera, M.d.P. Glass transition and time-dependent crystallization behavior of dehydration bioprotectant sugars. Carbohydr. Res. 2010;345(2):303-308.
http://dx.doi.org/10.1016/j.carres.2009.10.014