Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

To elucidate the influence of bi-substitution on the structural and hyperfine properties of goetites, two series of (Al,Co)- and (Mn,Co)-substituted goethites were synthesized in alkaline media by aging several ferrihydrites with different Al/Co and Mn/Co ratios. The samples were fully characterized by chemical analyses, X-ray diffraction (XRD) and Mössbauer spectroscopy; scanning electron microscopy (SEM), zeta potential and BET surface area measurements were also performed. All the solids presented only an α-FeOOH-like structure, with the exception of two preparations with high Co concentrations that developed two phases, goethite and small amounts of the Co-ferrite (CoFe2O4). The cell parameters in the Co-substituted goethites were markedly smaller than that of the pure sample indicating a oxidation of Co(II) to Co(III) before the incorporation step. In the Co+Mn series the metal substitution followed the trend Co~Mn, and in the Co+Al series the trend was Al>Co, and in both cases the incorporation of Co decreased the crystallite size of the samples. The metal-for-Fe incorporation changed the specific surface areas and the morphology of the acicular formed particles. Cobalt containing samples had the highest SSA, while Mn-containing samples had the lowest SSA. The IEP values of the bi-substituted samples were similar to that of pure α-FeOOH, but mono-substitution by Mn and Al diminished the isoelectric points. The low IEP values detected in Mn-goethite (5.8) and Al-goethite (5.2) could be respectively ascribed to an inhomogeneous distribution of Mn(III), and to the different basicity properties of the surface Fe-OH and Al-OH groups. The hyperfine magnetic field Bhf, increased quasi linearly with the incorporation of Co in both series. In the Co-Mn series the effect was attributed to variations in particle size distribution, in contrast the marked increase observed in the Co-Al series can be attributed to the decrease in the content of diamagnetic ion Al(III). The results indicate that simultaneous substitutions produce substantial changes in the structural, surface and hyperfine properties of goethites. As the characteristics of the dissolution and adsorption processes of the goethites greatly depend on particle size, BET areas and surface charge of the solids, the reported results will allow us to predict changes in the chemical reactivity and adsorption of the multi-substituted goethites. Also the data on hyperfine properties will help to elucidate the probable substitution in natural samples. The fact that Co-incorporation in bi-substituted samples greatly decreased the particle size increasing the specific surface area is an important parameter for technological applications in adsorption removal processes. © 2015 Elsevier B.V.

Registro:

Documento: Artículo
Título:Chemical, structural and hyperfine characterization of goethites with simultaneous incorporation of manganese, cobalt and aluminum ions
Autor:Alvarez, M.; Tufo, A.E.; Zenobi, C.; Ramos, C.P.; Sileo, E.E.
Filiación:INQUISUR, Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, Bahía Blanca, B8000CPB, Argentina
INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Gerencia Investigación y Aplicaciones, Centro Atómico Constituyentes - Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, San Martín (1650), Buenos Aires, Argentina
Palabras clave:Al-; Co-; Co-ferrite; Hyperfine properties; Mn-goethites; Multi-substitution; Rietveld refinement; Adsorption; Alkalinity; Aluminum; Chemical analysis; Cobalt; Crystallite size; Ferrite; Particle size; Particle size analysis; Rietveld refinement; Scanning electron microscopy; Specific surface area; Structural properties; X ray diffraction; BET surface area measurement; Co ferrites; Hyperfine characterization; Hyperfine magnetic fields; Hyperfines; Inhomogeneous distribution; Ssbauer spectroscopies; Technological applications; Manganese; adsorption; aluminum; cobalt; dissolution; ferrite; goethite; ion; isotopic ratio; manganese; particle size; Rietveld analysis; size distribution
Año:2015
Volumen:414
Página de inicio:16
Página de fin:27
DOI: http://dx.doi.org/10.1016/j.chemgeo.2015.08.022
Título revista:Chemical Geology
Título revista abreviado:Chem. Geol.
ISSN:00092541
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00092541_v414_n_p16_Alvarez

Referencias:

  • Alvarez, M., Sileo, E.E., Rueda, E.H., Effect of Mn(II) incorporation on the transformation of ferrihydrite to goethite (2005) Chem. Geol., 216, pp. 89-97
  • Alvarez, M., Rueda, E.H., Sileo, E.E., Simultaneous incorporation of Mn and Al in the goethite structure (2007) Geochim. Cosmochim. Acta, 71 (4), pp. 1009-1020
  • Alvarez, M., Sileo, E.E., Rueda, E.H., Structure and reactivity of synthetic Co-substituted goethites (2008) Am. Mineral., 93, pp. 584-590
  • Aquino, A.J., Tunega, D., Haberhauer, G., Gerzabek, M.H., Lischka, H., Quantum chemical adsorption studies on the (110) surface of the mineral goethite (2007) J. Phys. Chem. C, 111 (2), p. 877
  • Brand, R.A., (1991) Normos Programs (SITE-DIST), , Duisburg University
  • Cornell, R.M., Simultaneous incorporation of Mn, Ni and Co in the goethite (α-FeOOH) structure (1991) Clay Miner., 26, pp. 427-430
  • Cornell, R.M., Schwertmann, U., (2000) The Iron Oxides, Structure, Reactions, Occurrence and Uses, , VCH, Weinheim, Germany
  • De Grave, E., Barrero, C.A., Da Costa, G.M., Vandenberghe, R.E., Van San, E., Mössbauer spectra of α-and γ-polymorphs of FeOOH and Fe2O3: effects of poor crystallinity and of Al-for-Fe substitution (2002) Clay Miner., 37, pp. 591-606
  • Dos Santos, A.C., Horbe, A.M.C., Barcellos, C.M.O., Marimon da Cunha, J.B., Some structure and magnetic effects of Ga incorporation on α-FeOOH (2001) Solid State Commun., 118, pp. 449-452
  • Ferreira, T.A.S., Waerenborgh, J.C., Mendonça, M.H.R.M., Nunes, M.R., Costa, F.M., Structural and morphological characterization of FeCo2O4 and CoFe2O4 spinels prepared by a coprecipitation method (2003) Solid State Sci., 5, pp. 383-392
  • González, E., Ballesteros, M.C., Rueda, E.H., Reductive dissolution kinetics of Al-substituted goethites (2002) Clays Clay Miner., 50 (4), pp. 470-477
  • Guimaraes, I.R., Giroto, A., Oliveira, L.C.A., Guerreiro, M.C., Lima, D.Q., Fabris, J.D., Synthesis and thermal treatment of Cu-doped goethite: oxidation of quinoline through heterogeneous Fenton process (2009) Appl. Catal. B Environ., 91, pp. 581-586
  • Kaur, N., Gräfe, M., Singh, B., Kennedy, B.J., Simultaneous incorporation of Cr, Zn, Cd, and Pb in the goethite structure (2009) Clays Clay Miner., 57 (2), pp. 234-250
  • Kaur, N., Singh, B., Kennedy, B.J., Copper substitution alone and in the presence of chromium, zinc, cadmium and lead in goethite (α-FeOOH) (2009) Clay Miner., 44 (3), pp. 293-310
  • Kosmulski, M., Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature (2009) Adv. Colloid Interface Sci., 152, pp. 14-25
  • Krehula, S., Musić, S., Influence of Mn-dopant on the properties of α-FeOOH particles precipitated in highly alkaline media (2006) J. Alloys Compd., 426, pp. 327-334
  • Krehula, S., Musić, S., Influence of cobalt ions on the precipitation of goethite in highly alkaline media (2008) Clay Miner., 43 (1), pp. 95-105
  • Krehula, S., Musić, S., The influence of a Cr-dopant on the properties of α-FeOOH particles precipitated in highly alkaline media (2009) J. Alloys Compd., 469, pp. 336-342
  • Krehula, S., Musić, S., Popović, S., Influence of Ni-dopant on the properties of synthetic goethite (2005) J. Alloys Compd., 403, pp. 368-375
  • Larson, A.C., Von Dreele, R.B., General structure analysis system (GSAS) (1996) Los Alamos National Laboratory Report LAUR, pp. 86-748
  • Long, G.J., Cranshaw, T.E., Longworth, G., The ideal Mössbauer effect absorber thickness (1983) Mössbauer Effect Ref. Data J., 6, pp. 42-49
  • Manceau, A., Schlegel, M.L., Musso, M., Sole, V.A., Gauthier, C., Petit, P.E., Trolard, F., Crystal chemistry of trace elements in natural and synthetic goethite (2000) Geochim. Cosmochim. Acta, 64, pp. 3643-3661
  • Murad, E., The characterization of goethite by Mössbauer spectroscopy (1982) Am. Mineral., 67, pp. 1007-1011
  • Murad, E., Bowen, L.H., Magnetic ordering in Al-rich goethites; influence of crystallinity (1987) Am. Mineral., 72, pp. 194-200
  • Murad, E., Johnston, J.H., (1987) Mössbauer Spectroscopy Applied to Inorganic Chemistry, pp. 507-582. , Plenum Publishing Corporation, New York
  • Schwertmann, U., Taylor, R.M., (1989) Minerals in Soil Environments, pp. 380-438. , Soil Sci. Soc. Am, Madison, WI, J.B. Dixon, S.B. Weed (Eds.)
  • Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides (1976) Acta Crystallogr. Sect. A: Found. Crystallogr., 32, pp. 751-767
  • Sileo, E.E., Alvarez, M., Rueda, E.H., Structural studies on the manganese for iron substitution in the synthetic goethite-jacobsite system (2001) Int. J. Inorg. Mater., 3, pp. 271-279
  • Sileo, E.E., García, R.L., Paiva-Santos, C.O., Stephens, P.W., Morando, P.J., Blesa, M.A., Correlation of reactivity with structural factors in a series of Fe(II) substituted cobalt ferrites (2006) J. Solid State Chem., 179 (7), pp. 2237-2244
  • Singh, B., Gräfe, M., Kaur, N., Liese, A., Applications of synchrotron-based x-ray diffraction and x-ray absorption spectroscopy to the understanding of poorly crystalline and metal-substituted iron oxides (2010) Dev. Soil. Sci., 34, pp. 199-254
  • Szytula, A., Burewicz, A., Dimitrijevic, Z., Krasnicki, S., Rzany, H., Todorovic, J., Wanic, A., Wolski, W., Neutron diffraction studies of α-FeOOH (1968) Phys. Status Solidi B, 26 (2), pp. 429-434
  • Thompson, P., Cox, D.E., Hastings, J.B., Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 (1987) J. Appl. Crystallogr., 20, pp. 79-83
  • Toby, B.H., EXPGUI, a graphical user interface for GSAS (2002) J. Appl. Crystallogr., 34, pp. 210-213
  • Van Olphen, H., (1977) An Introduction to Clay Colloid Chemistry, , Wiley, NewYork, NY
  • Vandenberghe, R.E., (1991) Mössbauer Spectroscopy and Applications in Geology, , Apostilha International Training Centre for Post-Graduate Soil Scientists
  • Vega, F.A., Covelo, E.F., Andrade, M.L., Marcet, P., Relationships between heavy metals content and soil properties in mine soils (2004) Anal. Chim. Acta, 524, pp. 141-150

Citas:

---------- APA ----------
Alvarez, M., Tufo, A.E., Zenobi, C., Ramos, C.P. & Sileo, E.E. (2015) . Chemical, structural and hyperfine characterization of goethites with simultaneous incorporation of manganese, cobalt and aluminum ions. Chemical Geology, 414, 16-27.
http://dx.doi.org/10.1016/j.chemgeo.2015.08.022
---------- CHICAGO ----------
Alvarez, M., Tufo, A.E., Zenobi, C., Ramos, C.P., Sileo, E.E. "Chemical, structural and hyperfine characterization of goethites with simultaneous incorporation of manganese, cobalt and aluminum ions" . Chemical Geology 414 (2015) : 16-27.
http://dx.doi.org/10.1016/j.chemgeo.2015.08.022
---------- MLA ----------
Alvarez, M., Tufo, A.E., Zenobi, C., Ramos, C.P., Sileo, E.E. "Chemical, structural and hyperfine characterization of goethites with simultaneous incorporation of manganese, cobalt and aluminum ions" . Chemical Geology, vol. 414, 2015, pp. 16-27.
http://dx.doi.org/10.1016/j.chemgeo.2015.08.022
---------- VANCOUVER ----------
Alvarez, M., Tufo, A.E., Zenobi, C., Ramos, C.P., Sileo, E.E. Chemical, structural and hyperfine characterization of goethites with simultaneous incorporation of manganese, cobalt and aluminum ions. Chem. Geol. 2015;414:16-27.
http://dx.doi.org/10.1016/j.chemgeo.2015.08.022