Artículo

Marino, M.; Olaiz, N.; Signori, E.; Maglietti, F.; Suárez, C.; Michinski, S.; Marshall, G. "pH fronts and tissue natural buffer interaction in gene electrotransfer protocols" (2017) Electrochimica Acta. 255:463-471
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Gene electrotransfer (GET) protocols, based on the introduction into the cells of genes encoding immunomodulatory molecules, constitute a safe and powerful strategy for inducing an immune response against cancer. But GET efficiency can be significantly affected by damage due to the products of electrolysis, in particular, pH fronts. To elucidate the role of pH fronts and damage in GET efficiency we present an analysis of the pH fronts-tissue natural buffer interaction through a theoretical model using the Nernst-Planck equations for ion transport assuming a tissue with a bicarbonate buffering system and its validation with experimental measurements. pH front-buffer interaction measurements unveil a remarkable behavior tuned by pulse length and frequency: during the ON pulse critical pH front trajectories (pH=8.5 or 5.5) jump forward, during the OFF pulse, they recede due to tissue natural buffer attenuation. Theory shows that they are intimately related to ion transport mode: during the ON pulse, ion transport is mainly governed by migration and trajectories jump forward in time; during the OFF pulse, migration ceases, ion transport is governed solely by diffusion and trajectories recede due to buffer attenuation. Experiments and theory show that regardless of the presence of buffer attenuation, pH fronts remain during several minutes in a non-physiological state after the treatment. These results suggest that regions enclosed by pH fronts trajectories (thus subjected to non-physiological pH values during a sufficiently long time) may be subjected to plasmid damage during a GET treatment. Ways to minimize this effect, thus optimizing GET efficiency are suggested. © 2017

Registro:

Documento: Artículo
Título:pH fronts and tissue natural buffer interaction in gene electrotransfer protocols
Autor:Marino, M.; Olaiz, N.; Signori, E.; Maglietti, F.; Suárez, C.; Michinski, S.; Marshall, G.
Filiación:Laboratorio de Sistemas Complejos, Departamento de Computación,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Instituto de Física del Plasma, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Laboratory of Molecular Pathology and Experimental Oncology, CNR-IFT, Rome, Italy
Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
Palabras clave:Electrochemotherapy; electrolytic ablation; Gene electrotransfer; irreversible electroporation; pH front tracking; Efficiency; Gene encoding; Genes; Ions; pH; Physiology; Trajectories; Electrochemotherapy; Electroporation; Electrotransfer; Front tracking; Nernst-Planck equations; Physiological pH; Physiological state; Theoretical modeling; Tissue
Año:2017
Volumen:255
Página de inicio:463
Página de fin:471
DOI: http://dx.doi.org/10.1016/j.electacta.2017.09.021
Título revista:Electrochimica Acta
Título revista abreviado:Electrochim Acta
ISSN:00134686
CODEN:ELCAA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00134686_v255_n_p463_Marino

Referencias:

  • Miklavčič, D., Network for Development of Electroporation-Based Technologies and Treatments: COST TD1104 (2012) The Journal of Membrane Biology, 245 (10), pp. 591-598
  • Cadossi, R., Ronchetti, M., Cadossi, M., Locally enhanced chemotherapy by electroporation: clinical experiences and perspective of use of electrochemotherapy (2014) Future Oncology, 10 (5), pp. 877-890
  • Jiang, C., Davalos, R.V., Bischof, J.C., A review of basic to clinical studies of irreversible electroporation therapy (2015) IEEE Transactions on Biomedical Engineering, 62 (1), pp. 4-20
  • Mir, L.M., Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): Past current and future (2009) Molecular Biotechnology, 43 (2), pp. 167-176
  • Kos, B., Voigt, P., Miklavcic, D., Moche, M., Careful treatment planning enables safe ablation of liver tumors adjacent to major blood vessels by percutaneous irreversible electroporation (IRE) (2015) Radiology and Oncology, 49 (3), pp. 234-241
  • Tschon, M., Salamanna, F., Ronchetti, M., Cavani, F., Gasbarrini, A., Boriani, S., Fini, M., Feasibility of Electroporation in Bone and in the Surrounding Clinically Relevant Structures: A Preclinical Investigation, Technol Cancer Res Treat (1533-0338 (Electronic)). doi; Neumann, E., Schaefer-Ridder, M., Wang, Y., Hofschneider, P.H., Gene transfer into mouse glioma cells by electroporation in high electric fields (1982) EMBO J., 1 (7), pp. 841-845
  • Marino, M., Olaiz, N., Signori, E., Maglietti, F., Suarez, C., Colombo, L., Turjanski, P., Marshall, G., (2014), https://www.researchgate.net/profile/Nahuel_Olaiz/publication/266317861., Tissue damage in vaccination protocols based on electroporation: pH fronts and tissue natural buffering. Book of Proceedings from 14th International Conference on Progress In Vaccination against Cancer PIVAC-14, 24-26-September 2014, Rome, Italy, abstract 22, page 43. Poster available from; Wong, T.K., Neumann, E., Electric field mediated gene transfer (1982) Biochemical and biophysical research communications, 107 (2), pp. 584-587
  • Chiarella, P., Fazio, V.M., Signori, E., Electroporation in DNA vaccination protocols against cancer (2013) Current drug metabolism, 14 (3), pp. 291-299
  • Escoffre, J.-M., Portet, T., Wasungu, L., Teissie, J., Dean, D., Rols, M.-P., What is (Still not) Known of the Mechanism by Which Electroporation Mediates Gene Transfer and Expression in Cells and Tissues (2009) Molecular Biotechnology, 41 (3), pp. 286-295
  • Rosazza, C., Meglic, S.H., Zumbusch, A., Rols, M.-P., Miklavcic, D., Gene Electrotransfer: A Mechanistic Perspective (2016) Current gene therapy, 16 (2), pp. 98-129
  • Nilsson, E., von Euler, H., Berendson, J., Thörne, A., Wersäll, P., Näslund, I., Lagerstedt, A., Olsson, J., Electrochemical treatment of tumours (2000) Bioelectrochemistry, 51, pp. 1-11
  • Phillips, M., Raju, N., Rubinsky, L., Rubinsky, B., Modulating electrolytic tissue ablation with reversible electroporation pulses (2015) TECHNOLOGY, 3 (1), pp. 1-9
  • Lando, D., Haroutiunian, S., Kul'ba, A., Dalian, E., Orioli, P., Mangani, S., Akhrem, A., Theoretical and experimental study of DNA helix-coil transition in acidic and alkaline medium (1994) J Biomol Struct Dyn, 12 (2), pp. 355-366
  • Dubey, R., Tripathi, D., A study of thermal denaturation/renaturation in DNA using laser light scattering: a new approach (2005) Indian Journal of Biochemistry & Biophysics, 42, pp. 301-307
  • von Euler, H., Nilsson, E., Olsson, J., Lagerstedt, A., Electrochemical treatment (EChT) effects in rat mammary and liver tissue. In vivo optimizing of a dose-planning model for EChT of tumours (2001) Bioelectrochemistry, 54, pp. 117-124
  • Maglietti, F., Michinski, S., Olaiz, N., Castro, M., Suárez, C., Marshall, G., The role of Ph fronts in tissue electroporation based treatments (2013) PLoS ONE, 8 (11), pp. 1-8
  • Olaiz, N., Signori, E., Maglietti, F., Soba, A., Suárez, C., Turjanski, P., Michinski, S., Marshall, G., Tissue damage modeling in gene electrotransfer: The role of pH (2014) Bioelectrochemistry 100 (October 2015), pp. 105-111
  • Nilsson, E., Berendson, J., Fontes, E., Electrochemical treatment of tumours: a simplified mathematical model (1999) J Electroanal Chem, 460 (1-2), pp. 88-99
  • Nilsson, E., Berendson, J., Fontes, E., Development of a dosage method for electrochemical treatment of tumours: a simplified mathematical model (1998) Bioelectrochem Bioenerg, 47, pp. 11-18
  • Nilsson, E., Fontes, E., Mathematical modelling of physicochemical reactions and transport processes occurring around a platinum cathode during the electrochemical treatment of tumours (2001) Bioelectrochemisty, 53 (2), pp. 213-224
  • Turjanski, P., Olaiz, N., Abou-Adal, P., Suárez, C., Risk, M., Marshall, G., pH front tracking in the electrochemical treatment (EChT) of tumors: Experiments and simulations (2009) Electrochimica Acta, 54 (26), pp. 6199-6206
  • Luján, E., Schinca, H., Olaiz, N., Urquiza, S., Molina, F.V., Turjanski, P., Marshall, G., Optimal dose-response relationship in electrolytic ablation of tumors with a one-probe-two-electrode device (2015) Electrochimica Acta 186 (October), pp. 494-503
  • Newman, J., Thomas-Alyea, K., Electrochemical Systems (2004), 3rd Edition John Wiley & Sons, Inc Hoboken, New Jersey; Grime, J.M., Edwards, M.A., Rudd, N.C., Unwin, P.R., Quantitative visualization of passive transport across bilayer lipid membranes (2008) PNAS, 105 (38), pp. 14277-14282
  • Siggaard-Andersen, O., The Acid-Base Status of the Blood (1974), 4th Edition Munksgaard; Arieff, A., Fluid, electrolyte, and acid-base disorders (1995), 2nd Edition Churchill Livingstone New York; Marshall, G., (1986), Solución Numérica de Ecuaciones Diferenciales. Tomo II: Ecuaciones en Derivadas Parciales, Editorial Reverté S.A., Buenos Aires; Turjanski, P., Olaiz, N., Maglietti, F., Michinski, S., Marshall, G., Suárez, C., Molina, F.V., Marshall, G., The role of pH fronts in reversible electroporation (2011) PLoS ONE, 6 (4), p. e17303
  • Marshall, G., Mass Transfer of Electrolytic Species During Electric Field-Based Tumor Treatments (2016), pp. 1-18. , Springer International Publishing, Cham; Olaiz, N., Maglietti, F., Suárez, C., Molina, F.V., Miklavcic, D., Mir, L., Marshall, G., Marshall, G., Electrochemical treatment of tumors using a one-probe two-electrode device (2010) Electrochimica Acta, 55 (20), pp. 6010-6014
  • Heller, R., Lundberg, C.M., Burcus, N., Edelblute, C., Guo, S., Gene electrotransfer of plasmids encoding cytokines as an effective immunotherapy approach for melanoma (2016) The Journal of Immunology, 196 (1 Supplement), pp. 213-216
  • Lide, D.R., CRC Handbook of chemistry and physics (1999), 80th Edition CRC Press; Tamimi, A., Rinker, E.B., Sandall, O.C., Diffusion coefficients for hydrogen sulfide carbon dioxide and nitrous oxide in water over the temperature range 293-368 K (1994) Journal of chemical and engineering data, 39 (2), pp. 330-332
  • West, J.B., Physiological Basis of Medical Practice (1985), 11th Edition Lippincott William & Wilkins Baltimore, USA; Moore, W.J., Basic Physical Chemistry (1983), Prentice-Hall Int Ed London

Citas:

---------- APA ----------
Marino, M., Olaiz, N., Signori, E., Maglietti, F., Suárez, C., Michinski, S. & Marshall, G. (2017) . pH fronts and tissue natural buffer interaction in gene electrotransfer protocols. Electrochimica Acta, 255, 463-471.
http://dx.doi.org/10.1016/j.electacta.2017.09.021
---------- CHICAGO ----------
Marino, M., Olaiz, N., Signori, E., Maglietti, F., Suárez, C., Michinski, S., et al. "pH fronts and tissue natural buffer interaction in gene electrotransfer protocols" . Electrochimica Acta 255 (2017) : 463-471.
http://dx.doi.org/10.1016/j.electacta.2017.09.021
---------- MLA ----------
Marino, M., Olaiz, N., Signori, E., Maglietti, F., Suárez, C., Michinski, S., et al. "pH fronts and tissue natural buffer interaction in gene electrotransfer protocols" . Electrochimica Acta, vol. 255, 2017, pp. 463-471.
http://dx.doi.org/10.1016/j.electacta.2017.09.021
---------- VANCOUVER ----------
Marino, M., Olaiz, N., Signori, E., Maglietti, F., Suárez, C., Michinski, S., et al. pH fronts and tissue natural buffer interaction in gene electrotransfer protocols. Electrochim Acta. 2017;255:463-471.
http://dx.doi.org/10.1016/j.electacta.2017.09.021