Artículo

Recouvreux, M.V.; Lapyckyj, L.; Camilletti, M.A.; Guida, M.C.; Ornstein, A.; Rifkin, D.B.; Becu-Villalobos, D.; Díaz-Torga, G. "Sex differences in the pituitary transforming growth factor-β1 system: Studies in a model of resistant prolactinomas" (2013) Endocrinology. 154(11):4192-4205
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Dopamine and estradiol interact in the regulation of lactotroph cell proliferation and prolactin secretion. Ablation of the dopamine D2 receptor gene (Drd2-/-) in mice leads to a sexually dimorphic phenotype of hyperprolactinemia and pituitary hyperplasia, which is stronger in females. TGF-β1 is a known inhibitor of lactotroph proliferation. TGF-β1 is regulated by dopamine and estradiol, and it is usually down-regulated in prolactinoma experimental models. To understand the role of TGF-β1 in the gender-specific development of prolactinomas in Drd2-/- mice, we compared the expression of different components of the pituitary TGF-β1 system, including active cytokine content, latent TGF-β-binding protein isoforms, and possible local TGF-β1 activators, in males and females in this model. Furthermore,weevaluated the effects of dopamine and estradiol administration to elucidate their role in TGF-β1 system regulation. The expression of active TGF-β1, latent TGF-β-binding protein isoforms, and several putative TGF-β1 activators evaluated was higher in male than in female mouse pituitary glands. However, Drd2-/- female mice were more sensitive to the decrease in active TGF-β1 content, as reflected by the down-regulation of TGF-β1 target genes. Estrogen and dopamine caused differential regulation of several components of the TGF-β1 system. In particular, we found sex- and genotype- dependent regulation of active TGF-β1 content and a similar expression pattern for 2 of the putative TGF-β1 activators, thrombospondin-1 and kallikrein-1, suggesting that these proteins could mediate TGF-β1 activation elicited by dopamine and estradiol. Our results indicate that (1) the loss of dopaminergic tone affects the pituitary TGF-β1 system more strongly in females than in males, (2) males express higher levels of pituitary TGF-β1 system components including active cytokine, and (3) estradiol negatively controls most of the components of the system. Because TGF-β1 inhibits lactotroph proliferation, we propose that the higher levels of the TGF-β1 system in males could protect or delay the development of prolactinomas in Drd2-/- male mice. Copyright © 2013 by The Endocrine Society.

Registro:

Documento: Artículo
Título:Sex differences in the pituitary transforming growth factor-β1 system: Studies in a model of resistant prolactinomas
Autor:Recouvreux, M.V.; Lapyckyj, L.; Camilletti, M.A.; Guida, M.C.; Ornstein, A.; Rifkin, D.B.; Becu-Villalobos, D.; Díaz-Torga, G.
Filiación:Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
Department of Cell Biology, New York University Medical Center, New York, NY 10016, United States
Palabras clave:binding protein; dopamine; estrogen; furin; kallikrein; kallikrein 1; matrix metalloproteinase; thrombospondin 1; transforming growth factor beta binding protein; transforming growth factor beta1; unclassified drug; animal experiment; animal model; article; controlled study; down regulation; female; gene expression; genotype; hypophysis; male; mouse; nonhuman; priority journal; prolactinoma; sex difference; Animals; Female; Gene Expression Regulation; Genotype; Integrins; Male; Mice; Mice, Knockout; Pituitary Gland; Pituitary Neoplasms; Prolactinoma; Receptors, Dopamine D2; Sex Factors; Thrombospondin 1; Tissue Kallikreins; Transforming Growth Factor beta1
Año:2013
Volumen:154
Número:11
Página de inicio:4192
Página de fin:4205
DOI: http://dx.doi.org/10.1210/en.2013-1433
Título revista:Endocrinology
Título revista abreviado:Endocrinology
ISSN:00137227
CODEN:ENDOA
CAS:dopamine, 51-61-6, 62-31-7; kallikrein, 8006-48-2, 9001-01-8; thrombospondin 1, 343987-56-4; Integrins; Receptors, Dopamine D2; Thrombospondin 1; Tissue Kallikreins, 3.4.21.35; Transforming Growth Factor beta1; thrombospondin-1, mouse
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00137227_v154_n11_p4192_Recouvreux

Referencias:

  • Soldin, O.P., Chung, S.H., Mattison, D.R., Sex differences in drug disposition (2011) J Biomed Biotechnol, 2011, p. 187103
  • Soldin, O.P., Mattison, D.R., Sex differences in pharmacokinetics and pharmacodynamics (2009) Clin Pharmacokinet, 48, pp. 143-157
  • Arafah, B.M., Nasrallah, M.P., Pituitary tumors: Pathophysiology, clinical manifestations and management (2001) Endocr Relat Cancer, 8, pp. 287-305
  • Ben-Jonathan, N., Hnasko, R., Dopamine as a prolactin (PRL) inhibitor (2001) Endocr Rev, 22, pp. 724-763
  • Ben-Jonathan, N., Dopamine: A prolactin-inhibiting hormone (1985) Endocr Rev, 6, pp. 564-589
  • Missale, C., Nash, S.R., Robinson, S.W., Jaber, M., Caron, M.G., Dopamine receptors: From structure to function (1998) Physiol Rev, 78, pp. 189-225
  • Freeman, M.E., Kanyicska, B., Lerant, A., Nagy, G., Prolactin: Structure, function, and regulation of secretion (2000) Physiol Rev, 80, pp. 1523-1631
  • Díaz-Torga, G., Feierstein, C., Libertun, C., Disruption of the D2 dopamine receptor altersGHand IGF-I secretion and causes dwarfism in male mice (2002) Endocrinology, 143, pp. 1270-1279
  • Kelly, M.A., Rubinstein, M., Asa, S.L., Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptordeficient mice (1997) Neuron, 19, pp. 103-113
  • Saiardi, A., Bozzi, Y., Baik, J.H., Borrelli, E., Antiproliferative role of dopamine: Loss of D2 receptors causes hormonal dysfunction and pituitary hyperplasia (1997) Neuron, 19, pp. 115-126
  • Asa, S.L., Kelly, M.A., Grandy, D.K., Low, M.J., Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia in dopamine D2 receptor-deficient mice (1999) Endocrinology, 140, pp. 5348-5355
  • Sarkar, D.K., Kim, K.H., Minami, S., Transforming growth factor-β1 messenger RNA and protein expression in the pituitary gland: Its action on prolactin secretion and lactotropic growth (1992) Mol Endocrinol, 6, pp. 1825-1833
  • Sarkar, D.K., Pastorcic, M., De A Engel, M., Moses, H., Ghasemzadeh, M.B., Role of transforming growth factor-β type i and TGF-β type II receptors in the TGF-β1-regulated gene expression in pituitary prolactin- secreting lactotropes (1998) Endocrinology, 139, pp. 3620-3628
  • Recouvreux, M.V., Guida, M.C., Rifkin, D.B., Becu-Villalobos, D., Díaz-Torga, G., Active and total transforming growth factor-β1 are differentially regulated by dopamine and estradiol in the pituitary (2011) Endocrinology, 152, pp. 2722-2730
  • Pastorcic, M., De A Boyadjieva, N., Vale, W., Sarkar, D.K., Reduction in the expression and action of transforming growth factor-β1 on lactotropes during estrogen-induced tumorigenesis (1995) Cancer Res, 55, pp. 4892-4898
  • Sarkar, D.K., Chaturvedi, K., Oomizu, S., Boyadjieva, N.I., Chen, C.P., Dopamine, dopamine D2 receptor short isoform, transforming growth factor (TGF)-β1, and TGF-β type II receptor interact to inhibit the growth of pituitary lactotropes (2005) Endocrinology, 146, pp. 4179-4188
  • De A Morgan, T.E., Speth, R.C., Boyadjieva, N., Pastorcic, M., Sarkar, D.K., Pituitary lactotrope expresses transforming growth factor β (TGF-β) type II receptormRNAand protein and contains I-TGF-β1 binding sites (1995) J Endocrinol, 149, pp. 19-27
  • Annes, J.P., Munger, J.S., Rifkin, D.B., Making sense of latent TGFβ activation (2003) J Cell Sci, 116, pp. 217-224
  • Rifkin, D.B., Latent transforming growth factor-β (TGF-β) binding proteins: Orchestrators of TGF-β availability (2005) J Biol Chem, 280, pp. 7409-7412
  • Annes, J.P., Chen, Y., Munger, J.S., Rifkin, D.B., Integrin αvβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1 (2004) J Cell Biol, 165, pp. 723-734
  • Yoshinaga, K., Obata, H., Jurukovski, V., Perturbation of transforming growth factor (TGF)-β1 association with latent TGF-β binding protein yields inflammation and tumors (2008) Proc Natl Acad Sci USA, 105, pp. 18758-18763
  • Recouvreux, M.V., Camilletti, M.A., Rifkin, D.B., Becu-Villalobos, D., Díaz-Torga, G., Thrombospondin-1 (TSP-1) analogs ABT-510 and ABT-898 inhibit prolactinoma growth and recover active pituitary transforming growth factor-β1 (TGF-β1) (2012) Endocrinology, 153, pp. 3861-3871
  • Gudelsky, G.A., Porter, J.C., Sex-related difference in the release of dopamine into hypophysial portal blood (1981) Endocrinology, 109, pp. 1394-1398
  • Brunschwig, E.B., Wilson, K., Mack, D., PMEPA1, a transforming growth factor-β-induced marker of terminal colonocyte differentiation whose expression is maintained in primary and metastatic colon cancer (2003) Cancer Res, 63, pp. 1568-1575
  • Levy, L., Hill, C.S., Smad4 dependency defines 2 classes of transforming growth factor β (TGF-β) target genes and distinguishes TGF-β-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses (2005) Mol Cell Biol, 25, pp. 8108-8125
  • Dennler, S., Itoh, S., Vivien, D., Ten Dijke, P., Huet, S., Gauthier, J.M., Direct binding of Smad3 and Smad4 to critical TGF β-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene (1998) EMBO J, 17, pp. 3091-3100
  • Day, R., Schafer, M.K., Watson, S.J., Chrétien, M., Seidah, N.G., Distribution and regulation of the prohormone convertases PC1 and PC2 in the rat pituitary (1992) Mol Endocrinol, 6, pp. 485-497
  • Strongin, A.Y., Collier, I., Bannikov, G., Marmer, B.L., Grant, G.A., Goldberg, G.I., Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease (1995) J Biol Chem, 270, pp. 5331-5338
  • Butler, G.S., Butler, M.J., Atkinson, S.J., The TIMP2 membrane type 1 metalloproteinase "receptor" regulates the concentration and efficient activation of progelatinase A. A kinetic study (1998) J Biol Chem, 273, pp. 871-880
  • Mu, D., Cambier, S., Fjellbirkeland, L., The integrin αvβ8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-β1 (2002) J Cell Biol, 157, pp. 493-507
  • Munger, J.S., Huang, X., Kawakatsu, H., The integrin αvβ6 binds and activates latentTGFβ 1: A mechanism for regulating pulmonary inflammation and fibrosis (1999) Cell, 96, pp. 319-328
  • Annes, J.P., Rifkin, D.B., Munger, J.S., The integrin αvβ6 binds and activates latent TGFβ3 (2002) FEBS Lett, 511, pp. 65-68
  • Hatala, M.A., Powers, C.A., Development of the sex difference in glandular kallikrein and prolactin levels in the anterior pituitary of the rat (1988) Biol Reprod, 38, pp. 846-852
  • Kizuki, K., Kitagawa, A., Takahashi, M., Moriya, H., Kudo, M., Noguchi, T., Immunohistochemical localization of kallikrein within the prolactin- producing cells of the rat anterior pituitary gland (1990) J Endocrinol, 127, pp. 317-323
  • Kitagawa, A., Kizuki, K., Moriya, H., Kudo, M., Noguchi, T., Kallikreinand prolactin-producing cells in the rat anterior pituitary are the same (1990) J Biochem, 108, pp. 971-975
  • Pritchett, D.B., Roberts, J.L., Dopamine regulates expression of the glandular-type kallikrein gene at the transcriptional level in the pituitary (1987) Proc Natl Acad Sci USA, 84, pp. 5545-5549
  • Mohankumar, S.M., Kasturi, B.S., Shin, A.C., Chronic estradiol exposure induces oxidative stress in the hypothalamus to decrease hypothalamic dopamine and cause hyperprolactinemia (2011) Am J Physiol Regul Integr Comp Physiol, 300, pp. R693-R699
  • Csakvari, E., Kurunczi, A., Hoyk, Z., Gyenes, A., Naftolin, F., Parducz, A., Estradiol-induced synaptic remodeling of tyrosine hydroxylase immunopositive neurons in the rat arcuate nucleus (2008) Endocrinology, 149, pp. 4137-4141
  • Weikkolainen, K., Keski-Oja, J., Koli, K., Expression of latent TGF-β binding protein LTBP-1 is hormonally regulated in normal and transformed human lung fibroblasts (2003) Growth Factors, 21, pp. 51-60
  • Taipale, J., Saharinen, J., Hedman, K., Keski-Oja, J., Latent transforming growth factor-β1 and its binding protein are components of extracellular matrix microfibrils (1996) J Histochem Cytochem, 44, pp. 875-889
  • Koski, C., Saharinen, J., Keski-Oja, J., Independent promoters regulate the expression of two amino terminally distinct forms of latent transforming growth factor-beta binding protein-1 (LTBP-1) in a cell type-specific manner (1999) J Biol Chem, 274, pp. 32619-32630
  • Sarkar, A.J., Chaturvedi, K., Chen, C.P., Sarkar, D.K., Changes in thrombospondin- 1 levels in the endothelial cells of the anterior pituitary during estrogen-induced prolactin-secreting pituitary tumors (2007) J Endocrinol, 192, pp. 395-403
  • Turner, H.E., Nagy, Z., Esiri, M.M., Harris, A.L., Wass, J.A., Role of matrix metalloproteinase 9 in pituitary tumor behavior (2000) J Clin Endocrinol Metab, 85, pp. 2931-2935
  • Liu, W., Matsumoto, Y., Okada, M., Matrix metalloproteinase 2 and 9 expression correlated with cavernous sinus invasion of pituitary adenomas (2005) J Med Invest, 52, pp. 151-158
  • Gong, J., Zhao, Y., Abdel-Fattah, R., Matrix metalloproteinase-9, a potential biological marker in invasive pituitary adenomas (2008) Pituitary, 11, pp. 37-48
  • Murphy-Ullrich, J.E., Poczatek, M., Activation of latent TGF-β by thrombospondin-1: Mechanisms and physiology (2000) Cytokine Growth Factor Rev, 11, pp. 59-69
  • Emami, N., Diamandis, E.P., Potential role of multiple members of the kallikrein-related peptidase family of serine proteases in activating latent TGFβ1 in semen (2010) Biol Chem, 391, pp. 85-95
  • Akita, K., Okuno, M., Enya, M., Impaired liver regeneration in mice by lipopolysaccharide via TNF-α/kallikrein-mediated activation of latent TGF-β (2002) Gastroenterology, 123, pp. 352-364

Citas:

---------- APA ----------
Recouvreux, M.V., Lapyckyj, L., Camilletti, M.A., Guida, M.C., Ornstein, A., Rifkin, D.B., Becu-Villalobos, D.,..., Díaz-Torga, G. (2013) . Sex differences in the pituitary transforming growth factor-β1 system: Studies in a model of resistant prolactinomas. Endocrinology, 154(11), 4192-4205.
http://dx.doi.org/10.1210/en.2013-1433
---------- CHICAGO ----------
Recouvreux, M.V., Lapyckyj, L., Camilletti, M.A., Guida, M.C., Ornstein, A., Rifkin, D.B., et al. "Sex differences in the pituitary transforming growth factor-β1 system: Studies in a model of resistant prolactinomas" . Endocrinology 154, no. 11 (2013) : 4192-4205.
http://dx.doi.org/10.1210/en.2013-1433
---------- MLA ----------
Recouvreux, M.V., Lapyckyj, L., Camilletti, M.A., Guida, M.C., Ornstein, A., Rifkin, D.B., et al. "Sex differences in the pituitary transforming growth factor-β1 system: Studies in a model of resistant prolactinomas" . Endocrinology, vol. 154, no. 11, 2013, pp. 4192-4205.
http://dx.doi.org/10.1210/en.2013-1433
---------- VANCOUVER ----------
Recouvreux, M.V., Lapyckyj, L., Camilletti, M.A., Guida, M.C., Ornstein, A., Rifkin, D.B., et al. Sex differences in the pituitary transforming growth factor-β1 system: Studies in a model of resistant prolactinomas. Endocrinology. 2013;154(11):4192-4205.
http://dx.doi.org/10.1210/en.2013-1433