Artículo

El editor permite incluir el artículo en su versión final en nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Addition of nonsuperconducting phases, such as carbon nanotubes, can modify the superconducting properties of MgB 2 samples, improving the critical current density and upper critical field. A full understanding of the flux creep mechanism involved is crucial to the development of superconducting magnets in persistent mode, one of the main thrusts for the development of MgB 2 wires. In this paper we present a creep study in bulk MgB 2 samples, pure and with different amounts of carbon nanotubes additions. We conclude that the most consistent picture at low temperatures is a single vortex pinning regime, where the correlation length is limited by the grain size. We introduce a novel analysis that allows us to identify the region where the Anderson-Kim model is valid. © 2013 AIP Publishing LLC.

Registro:

Documento: Artículo
Título:Carbon nanotubes effects on the relaxation properties and critical current densities of MgB 2 superconductor
Autor:Pasquini, G.; Serquis, A.; Moreno, A.J.; Serrano, G.; Civale, L.
Filiación:Departamento de Física, FCEN, Universidad de Buenos Aires, Conicet, Argentina
Instituo Balseiro-Centro Atómico Bariloche, Conicet, S. C. de Bariloche 8400, Río Negro, Argentina
Los Alamos National Laboratory, MS K764, Los Alamos, NM 87545, United States
Palabras clave:Correlation lengths; Flux creep mechanism; Low temperatures; Persistent mode; Relaxation property; Single vortices; Superconducting properties; Upper critical fields; Creep; Superconducting magnets; Superconducting wire; Superconductivity; Carbon nanotubes
Año:2013
Volumen:114
Número:2
DOI: http://dx.doi.org/10.1063/1.4813132
Título revista:Journal of Applied Physics
Título revista abreviado:J Appl Phys
ISSN:00218979
CODEN:JAPIA
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00218979_v114_n2_p_Pasquini.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218979_v114_n2_p_Pasquini

Referencias:

  • Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J., (2001) Nature (London), 410, p. 63. , 10.1038/35065039
  • Buzea, C., Yamashita, T., (2001) Supercond. Sci. Technol., 14, p. 115. , 10.1088/0953-2048/14/11/201
  • Larbalestier, D.C., (2001) Nature (London), 410, p. 186. , 10.1038/35065559
  • Kumakura, H., Kitaguchi, H., Matsumoto, A., Hatakeyama, H., (2004) Appl. Phys. Lett., 84, p. 3669. , 10.1063/1.1738947
  • Dou, S.X., Soltanian, S., Horvat, J., Wang, X.L., Munroe, P., Zhou, S.H., Ionescu, M., Tomsic, M., (2002) Appl. Phys. Lett., 81, p. 3419. , 10.1063/1.1517398
  • Dou, S.X., Braccini, V., Soltanian, S., Klie, R., Zhu, Y., Li, S., Wang, X.L., Larbalestier, D., (2004) J. Appl. Phys., 96, p. 7549. , 10.1063/1.1814415
  • Yeoh, W.K., Kim, J.H., Horvat, J., Dou, S.X., Munroe, P., (2006) Supercond. Sci. Technol., 19, pp. 5-L8. , 10.1088/0953-2048/19/2/L01
  • Vajpayee, A., Awana, V.P.S., Yuc, S., Bhalla, G.L., Kishan, H., (2010) Physica C, 470, p. 653. , 10.1016/j.physc.2009.10.100
  • Serquis, A., Liao, X.Z., Zhu, Y.T., Coulter, J.Y., Huang, J.Y., Willis, J.O., Peterson, D.E., Indrakanti, S.S., (2002) J. Appl. Phys., 92, p. 351. , 10.1063/1.1479470
  • Serquis, A., Serrano, G., Moreno, M.S., Civale, L., Maiorov, B., Balakirev, F., Jaime, M., (2007) Supercond. Sci. Technol., 20, p. 12. , 10.1088/0953-2048/20/4/L02
  • Serrano, G., Serquis, A., Dou, S.X., Soltanian, S., Civale, L., Maiorov, B., Balakirev, F., Jaime, M., (2008) J. Appl. Phys., 103, p. 023907. , 10.1063/1.2832463
  • Serrano, G., Serquis, A., Civale, L., Maiorov, B., Holesinger, T., Balakirev, F., Jaime, M., (2009) Int. J. Mod. Phys. B, 23, p. 3465. , 10.1142/S0217979209062803
  • Golubov, A.A., Kortus, J., Dolgov, O.V., Jepsen, O., Kong, Y., Andersen, O.K., Gibson, B.J., Kremer, R.K., (2002) J. Phys.: Condens. Matter, 14, p. 1353. , 10.1088/0953-8984/14/6/320
  • Gurevich, A., Patnaik, S., Braccini, V., Kim, K.H., Mielke, C., Song, X., Cooley, L.D., Larbalestier, D.C., (2004) Supercond. Sci. Technol., 17, p. 278. , 10.1088/0953-2048/17/2/008
  • Ansari, I.A., Shahabuddin, M., Alzayed, N.S., Vajpayee, A., Awana, V.P.S., Kishan, H., (2010) Physica C, 470, p. 369. , 10.1016/j.physc.2010.02.017
  • Taylan, K.E., Surdu, A., Sidorenko, A., Yanmaz, E., (2012) J. Supercond. Novel Magn., 25, p. 1761. , 10.1007/s10948-012-1533-1
  • Maiorov, B., Baily, S.A., Zhou, H., Ugurlu, O., Kennison, J.A., Dowden, P.C., Holesinger, T.G., Civale, L., (2009) Nat. Mater., 8, p. 398. , 10.1038/nmat2408
  • Haberkorn, N., Miura, M., Maiorov, B., Chen, G.F., Yu, W., Civale, L., (2011) Phys. Rev. B, 84, p. 094522. , 10.1103/PhysRevB.84.094522
  • Blatter, G., Feigel'Man, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M., (1994) Rev. Mod. Phys., 66, p. 1125. , 10.1103/RevModPhys.66.1125
  • Yeshurun, Y., Malozemoff, A.P., Shaulov, A., (1996) Rev. Mod. Phys., 68, p. 911. , 10.1103/RevModPhys.68.911
  • Thompson, J.R., Sun, Y., Christen, D., Civale, L., Marwick, A., Holtzberg, F., (1994) Phys. Rev. B, 49, p. 13287. , 10.1103/PhysRevB.49.13287
  • Thompson, J.R., Krusin, E.L., Civale, L., Blatter, G., Field, C., (1997) Phys. Rev. Lett., 78, p. 3181. , 10.1103/PhysRevLett.78.3181
  • Prozorov, R., Ni, N., Tanatar, M.A., Kogan, V.G., Gordon, R.T., Martin, C., Blomberg, E.C., Canfield, P.C., (2008) Phys. Rev. B, 78, p. 224506. , 10.1103/PhysRevB.78.224506
  • Anderson, P.W., Kim, Y.B., (1964) Rev. Mod. Phys., 36, p. 39. , 10.1103/RevModPhys.36.39
  • Civale, L., Pasquini, G., Levy, P., Nieva, G., Casa, D., Lanza, H., (1996) Physica C, 263, p. 389. , 10.1016/0921-4534(95)00782-2
  • Brandt, E.H., (1995) Phys. Rev. B, 52, p. 15442. , 10.1103/PhysRevB.52.15442
  • Kim, Y.B., Hempstead, C.F., Strnad, A.R., (1963) Phys. Rev., 129, p. 528. , 10.1103/PhysRev.129.528
  • Dou, S.X., Yeoh, W.K., Horvat, J., Ionescu, M., (2003) Appl. Phys. Lett., 83, p. 4996. , 10.1063/1.1634378
  • Yeoh, W.K., Horvat, J., Dou, S.X., Keast, V., (2004) Supercond. Sci. Technol., 17, p. 572. , 10.1088/0953-2048/17/9/022
  • Brandt, E.H., (1986) J. Low Temp. Phys., 64, p. 375. , 10.1007/BF00681708
  • Braccini, V., Gurevich, A., Giencke, J.E., Jewell, M.C., Eom, C.B., Larbalestier, D.C., Pogrebnyakov, A., Haanappel, E., (2005) Phys. Rev. B, 71, p. 012504. , 10.1103/PhysRevB.71.012504
  • Serquis, A., Serrano, G., (2008) Doping Effects on the Superconducting Properties of Bulk and PIT MgB 2, 221. , Superconductor Research Nova Science Publishers
  • Nakajima, Y., Tsuchiya, Y., Taen, T., Tamegai, T., Okayasu, S., Sasase, M., (2009) Phys. Rev. B, 80, p. 12510. , 10.1103/PhysRevB.80.012510
  • Tamegai, (2012) Supercond. Sci. Technol., 25, p. 084008. , references therein. 10.1088/0953-2048/25/8/084008
  • Haberkorn, N., Maiorov, B., Usov, I.O., Weigand, M., Hirata, W., Miyasaka, S., Tajima, S., Civale, L., (2012) Phys. Rev. B, 85, p. 014522. , 10.1103/PhysRevB.85.014522
  • Maley, M.P., Willis, J.O., Lessure, H., McHenry, M.E., (1990) Phys. Rev. B, 42, p. 2639. , 10.1103/PhysRevB.42.2639

Citas:

---------- APA ----------
Pasquini, G., Serquis, A., Moreno, A.J., Serrano, G. & Civale, L. (2013) . Carbon nanotubes effects on the relaxation properties and critical current densities of MgB 2 superconductor. Journal of Applied Physics, 114(2).
http://dx.doi.org/10.1063/1.4813132
---------- CHICAGO ----------
Pasquini, G., Serquis, A., Moreno, A.J., Serrano, G., Civale, L. "Carbon nanotubes effects on the relaxation properties and critical current densities of MgB 2 superconductor" . Journal of Applied Physics 114, no. 2 (2013).
http://dx.doi.org/10.1063/1.4813132
---------- MLA ----------
Pasquini, G., Serquis, A., Moreno, A.J., Serrano, G., Civale, L. "Carbon nanotubes effects on the relaxation properties and critical current densities of MgB 2 superconductor" . Journal of Applied Physics, vol. 114, no. 2, 2013.
http://dx.doi.org/10.1063/1.4813132
---------- VANCOUVER ----------
Pasquini, G., Serquis, A., Moreno, A.J., Serrano, G., Civale, L. Carbon nanotubes effects on the relaxation properties and critical current densities of MgB 2 superconductor. J Appl Phys. 2013;114(2).
http://dx.doi.org/10.1063/1.4813132