Artículo

Estamos trabajando para conseguir la versión final de este artículo
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The adsorption and vibrational frequency of CO on defective and undefective titanium dioxide surfaces is examined applying first-principles molecular dynamics simulations. In particular, the vibrational frequencies are obtained beyond the harmonic approximation, through the time correlation functions of the atomic trajectories. In agreement with experiments, at low CO coverages we find an upshift in the vibration frequency with respect to the free CO molecule, of 45 and 35 cm-1 on the stoichiometric rutile (110) and anatase (101) faces, respectively. A band falling 8 cm-1 below the frequency corresponding to the perfect face is observed for the reduced rutile (110) surface in the low vacancy concentration limit, where the adsorption is favored on Ti4 sites. At a higher density of defects, adsorption on Ti 3 sites becomes more stable, accompanied by a downshift in the stretching band. In the case of anatase (101), we analyze the effect of subsurface oxygen vacancies, which have been shown to be predominant in this material. Interestingly, we find that the adsorption of CO on five coordinate Ti atoms placed over subsurface vacancies is favored with respect to other Ti 4 sites (7.25 against 6.95 kcal/mol), exhibiting a vibrational redshift of 20 cm-1. These results provide the basis to quantitatively assess the degree of reduction of rutile and anatase surfaces via IR spectroscopy, and at the same time allow for the assignment of characteristic bands in the CO spectra on TiO2 whose origin has remained ambiguous. © 2013 American Institute of Physics.

Registro:

Documento: Artículo
Título:Monoxide carbon frequency shift as a tool for the characterization of TiO2 surfaces: Insights from first principles spectroscopy
Autor:Lustemberg, P.G.; Scherlis, D.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
Instituto de Física Rosario (CONICET-UNR), Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Av. Pellegrini 250, Rosario S2000BTP, Argentina
Palabras clave:Atomic trajectories; Characteristic bands; Degree of reduction; First-principles molecular dynamics; Harmonic approximation; Time correlation functions; Titanium dioxide surfaces; Vacancy concentration; Adsorption; Molecular dynamics; Oxide minerals; Surfaces; Vacancies; Titanium dioxide; carbon monoxide; titanium; titanium dioxide; article; chemistry; infrared spectrophotometry; molecular dynamics; surface property; Carbon Monoxide; Molecular Dynamics Simulation; Spectrophotometry, Infrared; Surface Properties; Titanium
Año:2013
Volumen:138
Número:12
DOI: http://dx.doi.org/10.1063/1.4796199
Título revista:Journal of Chemical Physics
Título revista abreviado:J Chem Phys
ISSN:00219606
CODEN:JCPSA
CAS:carbon monoxide, 630-08-0; titanium, 7440-32-6; titanium dioxide, 1317-70-0, 1317-80-2, 13463-67-7, 51745-87-0; Carbon Monoxide, 630-08-0; Titanium, 7440-32-6; titanium dioxide, 15FIX9V2JP
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219606_v138_n12_p_Lustemberg

Referencias:

  • Diebold, U., (2003) Surf. Sci. Rep, 48, p. 53. , 10.1016/S0167-5729(02)00100-0
  • Chen, X., Mao, S.S., (2007) Chem. Rev, 107, p. 2891. , 10.1021/cr0500535
  • Henderson, M.A., (2011) Surf. Sci. Rep, 66, p. 185. , 10.1016/j.surfre2011.01.001
  • Bajt, S., Edwards, N., Madey, T.E., (2008) Surf. Sci. Rep, 63, p. 73. , 10.1016/j.surfre2007.09.001
  • O'Regan, B., Grätzel, M., (1991) Nature (London), 353, p. 737. , 10.1038/353737a0
  • Yanagida, S., Yu, Y., Manseki, K., (2009) Acc. Chem. Res, 42, p. 1827. , 10.1021/ar900069p
  • Lin, Y., Li, Y., Zhan, X., (2012) Chem. Soc. Rev, 41, p. 4245. , 10.1039/c2cs15313k
  • Sanchez, C., Belleville, P., Popall, M., Nicole, L., (2011) Chem. Soc. Rev, 40, p. 696. , 10.1039/c0cs00136h
  • Lamberti, C., Zecchina, A., Groppo, E., Bordiga, S., (2010) Chem. Soc. Rev, 39, p. 4951. , 10.1039/c0cs00117a
  • Hadjiivanov, K.I., Vayssilov, G.N., (2002) Adv. Catal, 47, p. 307. , 10.1016/S0360-0564(02)47008-3
  • Raupp, G.B., Dumesic, J.A., (1985) J. Phys. Chem, 89, p. 5240. , 10.1021/j100270a024
  • Linsebigler, A., Lu, G., Yates, J.T., (1995) J. Chem. Phys, 103, p. 9438. , 10.1063/1.470005
  • Dohnálek, Z., Kim, J., Bondarchuk, O., White, J.M., Kay, B.D., (2006) J. Phys. Chem. B, 110, p. 6229. , 10.1021/jp0564905
  • Yates, D.J.C., (1961) J. Phys. Chem, 65, p. 746. , 10.1021/j100823a011
  • Tanaka, K., White, J.M., (1982) J. Phys. Chem, 86, p. 4708. , 10.1021/j100221a014
  • Busca, G., Saussey, H., Saur, O., Lavalley, J.C., Lorenzelli, V., (1985) Appl. Catal, 14, p. 245. , 10.1016/S0166-9834(00)84358-4
  • Hadjiivanov, K.I., Klissurski, D.G., (1996) Chem. Soc. Rev, 25, p. 61. , 10.1039/cs9962500061
  • Hadjiivanov, K., Lamotte, J., Lavalley, J.-C., (1997) Langmuir, 13, p. 3374. , 10.1021/la962104m
  • Hadjiivanov, K., (1998) Appl. Surf. Sci, 135, p. 331. , 10.1016/S0169-4332(98)00298-0
  • Busca, G., (1998) Catal. Today, 41, p. 191. , 10.1016/S0920-5861(98)00049-2
  • Liao, L.F., Lien, C.F., Shieh, D.L., Chen, M.T., Lin, J.L., (2002) J. Phys. Chem. B, 106, p. 11240. , 10.1021/jp0211988
  • Rohmann, C., Wang, Y., Muhler, M., Metson, J.B., Idriss, H., Wöll, C., (2008) Chem. Phys. Lett, 460, p. 10. , 10.1016/j.cplett.2008.05.056
  • Xu, M., Noei, H., Fink, K., Muhler, M., Wang, Y., Wöll, C., (2012) Angew. Chem., Int. Ed, 51, p. 4731. , 10.1002/anie.201200585
  • Xu, M., Gao, Y., Moreno, E.M., Kunst, M., Muhler, M., Wang, Y., Idriss, H., Wöll, C., (2011) Phys. Rev. Lett, 106, p. 138302. , 10.1103/PhysRevLett.106.138302
  • Petrik, N.G., Kimmel, G.A., (2012) J. Phys. Chem. Lett, 3, p. 3425. , 10.1021/jz301413v
  • Pacchioni, G., Ferrari, A.M., Bagus, P.S., (1996) Surf. Sci, 350, p. 159. , 10.1016/0039-6028(95)01057-2
  • Casarin, M., Maccato, C., Vittadini, A., (1998) J. Phys. Chem. B, 102, p. 10745. , 10.1021/jp981377i
  • Sorescu, D.C., Yates Jr., J.T., (1998) J. Phys. Chem. B, 102, p. 4556. , 10.1021/jp9801626
  • Sorescu, D.C., Yates Jr., J.T., (2002) J. Phys. Chem. B, 106, p. 6184. , 10.1021/jp0143140
  • Yang, Z., Wu, R., Zhang, Q., Goodman, D.W., (2001) Phys. Rev. B, 63, p. 045419. , 10.1103/PhysRevB.63.045419
  • Menetrey, M., Markovits, A., Minot, C., (2003) Surf. Sci, 524, p. 49. , 10.1016/S0039-6028(02)02464-0
  • Wu, X., Selloni, A., Nayak, S.K., (2004) J. Chem. Phys, 120, p. 4512. , 10.1063/1.1636725
  • Pillay, D., Hwanga, G.S., (2006) J. Chem. Phys, 125, p. 144706. , 10.1063/1.2354083
  • Scaranto, J., Giorgianni, S., (2008) J. Mol. Struct.: THEOCHEM, 858, p. 72. , 10.1016/j.theochem.2008.02.027
  • Scaranto, J., Giorgianni, S., (2009) Chem. Phys. Lett, 473, p. 179. , 10.1016/j.cplett.2009.03.036
  • Kunat, M., Traeger, F., Silber, D., Qiu, H., Wang, Y., Van Veen, A.C., Wöll, C., Hätting, C., (2009) J. Chem. Phys, 130, p. 144703. , 10.1063/1.3098318
  • Zhao, Y., Wang, Z., Cui, X., Huang, T., Wang, B., Luo, Y., Yang, J., Hou, J., (2009) J. Am. Chem. Soc, 131, p. 7958. , 10.1021/ja902259k
  • Farnesi Camellone, M., Kowalski, P.M., Marx, D., (2011) Phys. Rev. B, 84, p. 035413. , 10.1103/PhysRevB.84.035413
  • Wanbayor, R., Deák, P., Frauenheim, T., Ruangpornvisuti, V., (2011) J. Chem. Phys, 134, p. 104701. , 10.1063/1.3562366
  • Ganduglia-Pirovano, M.V., Hofmann, A., Sauer, J., (2007) Surf. Sci. Rep, 62, p. 219. , 10.1016/j.surfre2007.03.002
  • Kowalski, P.M., Farnesi Camellone, M., Nair, N.N., Meyer, B., Marx, D., (2010) Phys. Rev. Lett, 105, p. 146405. , 10.1103/PhysRevLett.105.146405
  • Giannozzi, P., (2009) J. Phys. Condens. Matter, 21, p. 395502. , http://www.quantum-espresso.org/, see. 10.1088/0953-8984/21/39/395502
  • Perdew, J.P., Wang, Y., (1992) Phys. Rev. B, 45, p. 13244. , 10.1103/PhysRevB.45.13244
  • Perdew, J.P., (1992) Phys. Rev. B, 46, p. 6671. , 10.1103/PhysRevB.46.6671
  • Vanderbilt, D., (1990) Phys. Rev. B, 41, p. 7892. , 10.1103/PhysRevB.41.7892
  • Car, R., Parrinello, M., (1985) Phys. Rev. Lett, 55, p. 2471. , 10.1103/PhysRevLett.55.2471
  • McQuarrie, D.A., (2000) Statistical Mechanics, , (University Science Books, Sausalito, California)
  • Silvestrelli, P.L., Bernasconi, M., Parrinello, M., (1997) Chem. Phys. Lett, 277, p. 478. , 10.1016/S0009-2614(97)00930-5
  • Coudert, F.-X., Vuilleumier, R., Boutin, A., (2006) ChemPhysChem, 7, p. 2464. , 10.1002/cphc.200600561
  • Kumar, N., Neogi, S., Kent, P.R.C., Bandura, A.V., Kubicki, J.D., Wesolowski, D.J., Cole, D., Sofo, J.O., (2009) J. Phys. Chem. C, 113, p. 13732. , 10.1021/jp901665e
  • Tangney, P., Scandolo, S., (2002) J. Chem. Phys, 116, p. 14. , 10.1063/1.1423331
  • Wathelet, V., Champagne, B., Mosley, D.H., André, J.-M., Massidda, S., (1997) Chem. Phys. Lett, 275, p. 506. , 10.1016/S0009-2614(97)00753-7
  • Wanbayor, R., Ruangpornvisuti, V., (2010) Mater. Chem. Phys, 124, p. 720. , 10.1016/j.matchemphys.2010.07.043
  • Minato, T., Sainoo, Y., Kim, Y., Kato, H.S., Ichi Aika, K., Kawai, M., Zhao, J., He, W., (2009) J. Chem. Phys, 130, p. 124502. , 10.1063/1.3082408
  • He, Y., Dulub, O., Cheng, H., Selloni, A., Diebold, U., (2009) Phys. Rev. Lett, 102, p. 106105. , 10.1103/PhysRevLett.102.106105
  • Cheng, H., Selloni, A., (2009) J. Chem. Phys, 131, p. 054703. , 10.1063/1.3194301
  • Cheng, H., Selloni, A., (2009) Phys. Rev. B, 79, p. 092101. , 10.1103/PhysRevB.79.092101

Citas:

---------- APA ----------
Lustemberg, P.G. & Scherlis, D.A. (2013) . Monoxide carbon frequency shift as a tool for the characterization of TiO2 surfaces: Insights from first principles spectroscopy. Journal of Chemical Physics, 138(12).
http://dx.doi.org/10.1063/1.4796199
---------- CHICAGO ----------
Lustemberg, P.G., Scherlis, D.A. "Monoxide carbon frequency shift as a tool for the characterization of TiO2 surfaces: Insights from first principles spectroscopy" . Journal of Chemical Physics 138, no. 12 (2013).
http://dx.doi.org/10.1063/1.4796199
---------- MLA ----------
Lustemberg, P.G., Scherlis, D.A. "Monoxide carbon frequency shift as a tool for the characterization of TiO2 surfaces: Insights from first principles spectroscopy" . Journal of Chemical Physics, vol. 138, no. 12, 2013.
http://dx.doi.org/10.1063/1.4796199
---------- VANCOUVER ----------
Lustemberg, P.G., Scherlis, D.A. Monoxide carbon frequency shift as a tool for the characterization of TiO2 surfaces: Insights from first principles spectroscopy. J Chem Phys. 2013;138(12).
http://dx.doi.org/10.1063/1.4796199