Artículo

Estamos trabajando para conseguir la versión final de este artículo
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this article we introduce a simple grand canonical screening (GCS) approach to accurately compute vapor pressures from molecular dynamics or Monte Carlo simulations. This procedure entails a screening of chemical potentials using a conventional grand canonical scheme, and therefore it is straightforward to implement for any kind of interface. The scheme is validated against data obtained from Gibbs ensemble simulations for water and argon. Then, it is applied to obtain the vapor pressure of the coarse-grained mW water model, and it is shown that the computed value is in excellent accord with the one formally deduced using statistical thermodynamics arguments. Finally, this methodology is used to calculate the vapor pressure of a water nanodroplet of 94 molecules. Interestingly, the result is in perfect agreement with the one predicted by the Kelvin equation for a homogeneous droplet of that size. © 2014 AIP Publishing LLC.

Registro:

Documento: Artículo
Título:A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems
Autor:Factorovich, M.H.; Molinero, V.; Scherlis, D.A.
Filiación:Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, United States
Palabras clave:Molecular dynamics; Monte Carlo methods; Quantum theory; Statistical mechanics; Thermodynamics; Vapor pressure; Coarse-grained; Finite-size systems; Gibbs ensemble; Grand canonical; Kelvin equation; Nanodroplet; Water modeling; Hydrostatic pressure
Año:2014
Volumen:140
Número:6
DOI: http://dx.doi.org/10.1063/1.4865137
Título revista:Journal of Chemical Physics
Título revista abreviado:J Chem Phys
ISSN:00219606
CODEN:JCPSA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219606_v140_n6_p_Factorovich

Referencias:

  • Rouquerol, F., Rouquerol, J., Sing, K., (1999) Adsorption by Powders and Porous Solids, , 1st ed. (Academic Press)
  • Kematick, R., Myers, C.E., (1996) Chem. Mater., 8, p. 287. , 10.1021/cm950386q
  • Yoshizawa, M., Xu, W., Angell, C.A., (2003) J. Am. Chem. Soc., 125, p. 15411. , 10.1021/ja035783d
  • Kodambaka, M.C.R.S., Tersoff, J., Ross, F.M., (2007) Science, 316, p. 729. , 10.1126/science.1139105
  • See, C.H., Harris, A.T., (2007) Ind. Eng. Chem. Res., 46, p. 997. , 10.1021/ie060955b
  • Choi, S., Jamshidi, A., Seok, T.J., Wu, M.C., Zohdi, T.I., Pisano, A.P., (2012) Langmuir, 28, p. 3102. , 10.1021/la204362s
  • Peeters, P., Hrubý, J., Van Dongen, M.E.H., (2001) J. Phys. Chem. B, 105, p. 11763. , 10.1021/jp011670+
  • Shavorskiy, A., Aksoy, F., Grass, M.E., Liu, Z., Bluhm, H., Held, G., (2011) J. Am. Chem. Soc., 133, p. 6659. , 10.1021/ja110910y
  • Mandal, M., Landskron, K., (2013) Acc. Chem. Res., 46, p. 2536. , 10.1021/ar4000373
  • Rodebush, W.H., (1954) Proc. Natl. Acad. Sci. U.S.A., 40, p. 789. , 10.1073/pnas.40.9.789
  • Andreae, M.O., (2013) Science, 339, p. 911. , 10.1126/science.1233798
  • Zhang, R., Khalizov, A., Wang, L., Hu, M., Xu, W., (2012) Chem. Rev., 112, p. 1957. , 10.1021/cr2001756
  • Panagiotopoulos, A., Quirke, N., Stapleton, M., Tildesley, D., (1988) Mol. Phys., 63, p. 527. , 10.1080/00268978800100361
  • Panagiotopoulos, A., (2000) J. Phys. Condens. Matter, 12, pp. R25. , 10.1088/0953-8984/12/3/201
  • Frenkel, D., Smit, B., (2002) Understanding Molecular Simulation, , 2nd ed. (Academic Press)
  • Lyubartsev, A., Martsinovski, A., Shevkunov, S., Vorontsov-Velyaminov, P., (1992) J. Chem. Phys., 96, p. 1776. , 10.1063/1.462133
  • Marinari, E., Parisi, G., (1992) Europhys. Lett., 19, p. 451. , 10.1209/0295-5075/19/6/002
  • Mezei, M., (1987) J. Comput. Phys., 68, p. 237. , 10.1016/0021-9991(87)90054-4
  • Bruce, A., Wilding, N., (2003) Adv. Chem. Phys., 127, p. 1. , 10.1002/0471466603.ch1
  • Smith, G.R., Bruce, A.D., (1995) J. Phys. A: Math. Gen., 28, p. 6623. , 10.1088/0305-4470/28/23/015
  • Fitzgerald, M., Picard, R.R., Silver, R.N., (1999) Europhys. Lett., 46, p. 282. , 10.1209/epl/i1999-00257-1
  • Wang, J.-S., Tay, T.K., Swendsen, R.H., (1999) Phys. Rev. Lett., 82, p. 476. , 10.1103/PhysRevLett.82.476
  • Wang, J.-S., (1999) Comput. Phys. Commun., 121-122, p. 22. , 10.1016/S0010-4655(99)00270-2
  • Wang, J.-S., Swendsen, R.H., (2002) J. Stat. Phys., 106, p. 245. , 10.1023/A:1013180330892
  • Errington, J.K., (2003) J. Chem. Phys., 118, p. 9915. , 10.1063/1.1572463
  • Paluch, A.S., Shen, V.K., Errington, J.R., (2008) Ind. Eng. Chem. Res., 47, p. 4533. , 10.1021/ie800143n
  • Rane, K.S., Murali, S., Errington, J.R., (2013) J. Chem. Theory Comput., 9, p. 2552. , 10.1021/ct400074p
  • Kumar, V., Errington, J.R., (2013) J. Chem. Phys., 138, p. 174112. , 10.1063/1.4803024
  • Grzelak, E.M., Errington, J.R., (2010) J. Chem. Phys., 132, p. 224702. , 10.1063/1.3431525
  • Fujikawa, S., Yano, T., Watanabe, M., (2011) Vapor Liquid Interfaces, Bubbles and Droplets. Fundamentals and Applications, , (Springer-Verlag, Berlin/Heidelberg)
  • Thompson, S.M., Gubbins, K.E., (1984) J. Chem. Phys., 81, p. 530. , 10.1063/1.447358
  • Shreve, A.P., Walton, J.P.R.B., Gubbins, K.E., (1986) J. Chem. Phys., 85, p. 2178. , 10.1063/1.451111
  • Nijmeijer, M.J.P., Bruin, C., Van Woerkom, A.B., Bakker, A.F., Van Leeuwen, J.M.J., (1992) J. Chem. Phys., 96, p. 565. , 10.1063/1.462495
  • Moody, M.P., Attard, P., (2003) Phys. Rev. Lett., 91, p. 056104. , 10.1103/PhysRevLett.91.056104
  • Plimpton, S., (1995) J. Comput. Phys., 117, p. 1. , 10.1006/jcph.1995.1039
  • Martin, M.G., Chen, B., Wick, C.D., Potoff, J.J., Stubbs, J.M., Siepmann, J.I., (2013), http://towhee.sourceforge.net, MCCCS Towhee, Version 7.0.6, see; Berendsen, H.J., Grigera, J.R., Straatsma, T.P., (1987) J. Phys. Chem., 91, p. 6269. , 10.1021/j100308a038
  • Papadopoulou, A., Becker, E.D., Lupkowski, M., Van Swol, F., (1993) J. Chem. Phys., 98, p. 4897. , 10.1063/1.464945
  • Heffelfinger, G.S., Van Swol, F., (1994) J. Chem. Phys., 100, p. 7548. , 10.1063/1.466849
  • Arya, G., Chang, H.-S., Maginn, E.J., (2001) J. Chem. Phys., 115, p. 8112. , 10.1063/1.1407002
  • Cracknell, R.F., Nicholson, D., Quirke, N., (1995) Phys. Rev. Lett., 74, p. 2463. , 10.1103/PhysRevLett.74.2463
  • Hirschfelder, J.O., Curtiss, C.F., Bird, R.B., (1964) Molecular Theory of Gases and Liquids, , 2nd ed. (John Wiley and Sons)
  • Molinero, V., Moore, E.B., (2009) J. Phys. Chem. B, 113, p. 4008. , 10.1021/jp805227c
  • Moore, E.B., Molinero, V., (2011) Nature (London), 479, p. 506. , 10.1038/nature10586
  • Puibasset, J., Pellenq, R.J.-M., (2003) J. Chem. Phys., 118, p. 5613. , 10.1063/1.1556075
  • Puibasset, J., Pellenq, R.J.-M., (2008) J. Phys. Chem. B, 112, p. 6390. , 10.1021/jp7097153
  • Malani, A., Ayappa, K.G., (2009) J. Phys. Chem. B, 113, p. 1058. , 10.1021/jp805730p
  • Tombácz, E., Hajdú, A., Illés, E., László, K., Garberoglio, G., Jedlovszky, P., (2009) Langmuir, 25, p. 13007. , 10.1021/la901875f
  • Liu, J.-C., Monson, P.A., (2005) Langmuir, 21, p. 10219. , 10.1021/la0508902
  • Errington, J.R., Panagiotopoulos, A.Z., (1998) J. Phys. Chem. B, 102, p. 7470. , 10.1021/jp982068v
  • Vega, C., De Miguel, E., (2007) J. Chem. Phys., 126, p. 154707. , 10.1063/1.2715577
  • Vega, C., Abascal, J.L.F., (2011) Phys. Chem. Chem. Phys., 13, p. 19663. , 10.1039/c1cp22168j
  • Al-Matar, A.K., Tobgy, A.H., Suleiman, I.A., (2008) Mol. Simul., 34, p. 289. , 10.1080/08927020701829864
  • Wagner, W., Pruß, A., (2002) J. Phys. Chem. Ref. Data, 31, p. 387. , 10.1063/1.1461829
  • Skinner, L.B., Huang, C., Schlesinger, D., Pettersson, L.G.M., Nilsson, A., Benmore, C.J., (2013) J. Chem. Phys., 138, p. 074506. , 10.1063/1.4790861
  • Sampayo, J.G., Malijevský, A., Muller, E.A., De Miguel, E., Jackson, G., (2010) J. Chem. Phys., 132, p. 141101. , 10.1063/1.3376612
  • Tolman, R.C., (1949) J. Chem. Phys., 17, p. 333. , 10.1063/1.1747247
  • Tolman, R.C., (1949) J. Chem. Phys., 17, p. 118. , 10.1063/1.1747204
  • Lu, H.M., Jiang, Q., (2005) Langmuir, 21, p. 779. , 10.1021/la0489817
  • Xue, Y.-Q., Yang, X.-C., Cui, Z.-X., Lai, W.-P., (2011) J. Phys. Chem. B, 115, p. 109. , 10.1021/jp1084313
  • (2011) NIST Chemistry WebBook, , http://webbook.nist.gov, NIST Standard Reference Database Number 69, fitting by L. I. Drii and V. A. Rabinovich (National Institute of Standards and Technology); see

Citas:

---------- APA ----------
Factorovich, M.H., Molinero, V. & Scherlis, D.A. (2014) . A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems. Journal of Chemical Physics, 140(6).
http://dx.doi.org/10.1063/1.4865137
---------- CHICAGO ----------
Factorovich, M.H., Molinero, V., Scherlis, D.A. "A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems" . Journal of Chemical Physics 140, no. 6 (2014).
http://dx.doi.org/10.1063/1.4865137
---------- MLA ----------
Factorovich, M.H., Molinero, V., Scherlis, D.A. "A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems" . Journal of Chemical Physics, vol. 140, no. 6, 2014.
http://dx.doi.org/10.1063/1.4865137
---------- VANCOUVER ----------
Factorovich, M.H., Molinero, V., Scherlis, D.A. A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems. J Chem Phys. 2014;140(6).
http://dx.doi.org/10.1063/1.4865137