Artículo

Estamos trabajando para conseguir la versión final de este artículo
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present a path-integral-molecular-dynamics study of the thermodynamic stabilities of DOH⋯ X- and HOD⋯ X- (X = F, Cl, Br, I) coordination in aqueous solutions at ambient conditions. In agreement with experimental evidence, our results for the F- case reveal a clear stabilization of the latter motif, whereas, in the rest of the halogen series, the former articulation prevails. The DOH⋯ X- preference becomes more marked the larger the size of the ionic solute. A physical interpretation of these tendencies is provided in terms of an analysis of the global quantum kinetic energies of the light atoms and their geometrical decomposition. The stabilization of the alternative ionic coordination geometries is the result of a delicate balance arising from quantum spatial dispersions along parallel and perpendicular directions with respect to the relevant O-H⋯X- axis, as the strength of the water-halide H-bond varies. This interpretation is corroborated by a complementary analysis performed on the different spectroscopic signals of the corresponding IR spectra. © 2018 Author(s).

Registro:

Documento: Artículo
Título:Isotope effects in aqueous solvation of simple halides
Autor:Videla, P.E.; Rossky, P.J.; Laria, D.
Filiación:Departamento de Quimica Inorganica Analitica y Quimica-Fisica e INQUIMAe, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Buenos Aires, 1428, Argentina
Department of Chemistry, Rice University, Houston, TX 77251-1892, United States
Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, Buenos Aires, 1429, Argentina
Department of Chemistry, Yale University, New Haven, CT 06520-8107, United States
Palabras clave:Ionic strength; Kinetic energy; Molecular dynamics; Solutions; Spectroscopic analysis; Stabilization; Ambient conditions; Complementary analysis; Coordination geometry; Experimental evidence; Path-integral molecular dynamics; Physical interpretation; Spatial dispersion; Spectroscopic signals; Fluorine
Año:2018
Volumen:148
Número:10
DOI: http://dx.doi.org/10.1063/1.4986231
Título revista:Journal of Chemical Physics
Título revista abreviado:J Chem Phys
ISSN:00219606
CODEN:JCPSA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219606_v148_n10_p_Videla

Referencias:

  • Robertson, W.H., Johnson, M.A., (2003) Annu. Rev. Phys. Chem., 54, p. 173
  • Gurney, R.W., (1953) Ionic Processes in Solution, , (McGraw-Hill, New York)
  • Collins, K.D., Washabaugh, M.W., (1985) Q. Rev. Biophys., 18, p. 323
  • Marcus, Y., (2009) Chem. Rev., 109, p. 1346
  • Kropman, M.F., Bakker, H.J., (2001) Science, 291, p. 2118
  • Omta, A.W., Kropman, M.F., Wourtersen, S., Bakker, H.J., (2003) Science, 301, p. 347
  • Smith, J.D., Saykally, R.J., Geissler, P.L., (2007) J. Am. Chem. Soc., 129, p. 13847
  • Ball, P., Hallsworth, J.E., (2015) Phys. Chem. Chem. Phys., 17, p. 8297
  • Nickolov, Z.S., Miller, J.D., (2005) J. Colloid Interface Sci., 287, p. 572
  • Kropman, M.F., Bakker, H.J., (2003) Chem. Phys. Lett., 370, p. 741
  • Litman, Y.E., Videla, P.E., Rodriguez, J., Laria, D., (2016) J. Phys. Chem. A, 120, p. 7213
  • Videla, P.E., Rossky, P.J., Laria, D., (2015) J. Phys. Chem. B, 119, p. 11783
  • Habershon, S., (2014) Phys. Chem. Chem. Phys., 16, p. 9154
  • Chandler, D., Wolynes, P., (1981) J. Chem. Phys., 74, p. 4078
  • Habershon, S., Fanourgakis, G.S., Manolopoulos, D.E., (2008) J. Chem. Phys., 129
  • Tuckerman, M., Berne, B.J., Martyna, G.J., (1992) J. Chem. Phys., 97, p. 1990
  • Ceriotti, M., Parrinello, M., Markland, T.E., Manolopoulos, D.E., (2010) J. Chem. Phys., 133
  • Essmann, U., (1995) J. Chem. Phys., 103, p. 8577
  • Habershon, S., Markland, T.E., Manolopoulos, D.E., (2009) J. Chem. Phys., 131
  • Abascal, J.L.F., Vega, C., (2005) J. Chem. Phys., 123
  • Markland, T.E., Berne, B.J., (2012) Proc. Natl. Acad. Sci. U. S. A., 109, p. 7988
  • Liu, J., (2013) J. Phys. Chem. C, 117, p. 2944
  • Peng, T., Chang, T., Sun, X., Nguyen, A.V., Dang, L.X., (2012) J. Mol. Liq., 173, p. 47
  • Joung, S., Cheatham, T.E., III, (2008) J. Phys. Chem. B, 112, p. 9020
  • Jensen, K.P., Jorgensen, W.L., (2006) J. Chem. Theory Comput., 2, p. 1499
  • Lamoureux, G., Roux, B., (2006) J. Phys. Chem. B, 110, p. 3308
  • Yu, H., (2010) J. Chem. Theory Comput., 6, p. 774
  • Karmakar, A., Chandra, A., (2015) J. Phys. Chem. B, 119, p. 8561
  • Luzar, A., Chandler, D., (1996) Phys. Rev. Lett., 76, p. 928
  • Chandra, A., (2003) J. Phys. Chem. B, 107, p. 3899
  • Craig, I.R., Manolopoulos, D.E., (2004) J. Chem. Phys., 121, p. 3368
  • Habershon, S., Manolopoulos, D.E., Markland, T.E., Miller, T.F., III, (2013) Annu. Rev. Phys. Chem., 64, p. 387
  • Cheng, B., Ceriotti, M., (2014) J. Chem. Phys., 141
  • Kakiuchi, M., (1997) Z. Naturforsch., 52 A, p. 811
  • Kakiuchi, M., (2007) Z. Naturforsch., 62 A, p. 721
  • Jungwirth, P., Tobias, D.J., (2002) J. Phys. Chem. B, 106, p. 6361
  • Jungwirth, P., Tobias, D.J., (2002) J. Phys. Chem. A, 106, p. 379
  • Greyson, J., (1967) J. Phys. Chem., 71, p. 2210
  • Vanicek, J., Miller, W.H., (2007) J. Chem. Phys., 127
  • Ceriotti, M., Markland, T.E., (2013) J. Chem. Phys., 138, p. 14112
  • Herman, M.F., Bruskin, J., Berne, B.J., (1982) J. Chem. Phys., 76, p. 5150
  • Yates, B.F., Shaefer, H.F., III, Lee, T.J., Rice, J.E., (1988) J. Am. Chem. Soc., 110, p. 6237
  • Thompson, W.H., Hynes, J.T., (2000) J. Am. Chem. Soc., 122, p. 6278
  • Wilkins, D.M., Manolopoulos, D.E., Dang, L.X., (2015) J. Chem. Phys., 142
  • Diken, E.G., Shin, J.-W., Price, E.A., Johnson, M.A., (2004) Chem. Phys. Lett., 387, p. 17
  • Walrafen, G.E., (2005) J. Chem. Phys., 122
  • Witt, A., Ivanov, S.D., Shiga, M., Forbert, H., Marx, D., (2009) J. Chem. Phys., 130
  • Rossi, M., Ceriotti, M., Manolopoulos, D.E., (2014) J. Chem. Phys., 140
  • Nakagawa, I., Shimanouchi, T., (1964) Spectrochim. Acta, 20, p. 429

Citas:

---------- APA ----------
Videla, P.E., Rossky, P.J. & Laria, D. (2018) . Isotope effects in aqueous solvation of simple halides. Journal of Chemical Physics, 148(10).
http://dx.doi.org/10.1063/1.4986231
---------- CHICAGO ----------
Videla, P.E., Rossky, P.J., Laria, D. "Isotope effects in aqueous solvation of simple halides" . Journal of Chemical Physics 148, no. 10 (2018).
http://dx.doi.org/10.1063/1.4986231
---------- MLA ----------
Videla, P.E., Rossky, P.J., Laria, D. "Isotope effects in aqueous solvation of simple halides" . Journal of Chemical Physics, vol. 148, no. 10, 2018.
http://dx.doi.org/10.1063/1.4986231
---------- VANCOUVER ----------
Videla, P.E., Rossky, P.J., Laria, D. Isotope effects in aqueous solvation of simple halides. J Chem Phys. 2018;148(10).
http://dx.doi.org/10.1063/1.4986231