Artículo

Ferreiro, D.U.; Komives, E.A.; Wolynes, P.G. "Frustration in biomolecules" (2014) Quarterly Reviews of Biophysics. 47(4):285-363
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their own structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of frustration in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and especially how biomolecular structure connects to function by means of localized frustration. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding mechanisms. We review here how the biological functions of proteins are related to subtle local physical frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. In this review, we also emphasize that frustration, far from being always a bad thing, is an essential feature of biomolecules that allows dynamics to be harnessed for function. In this way, we hope to illustrate how Frustration is a fundamental concept in molecular biology. © Cambridge University Press 2014.

Registro:

Documento: Artículo
Título:Frustration in biomolecules
Autor:Ferreiro, D.U.; Komives, E.A.; Wolynes, P.G.
Filiación:Dep. de Química Biológica, Facultad de Ciencias Exactas Y Naturales, UBA-CONICET-IQUIBICEN, Buenos Aires, Argentina
Department of Chemistry and Biochemistry, U.C. San Diego, San Diego, CA 92093-0378, United States
Department of Chemistry, Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States
Palabras clave:biopolymer; biochemistry; chemistry; human; magnetism; metabolism; movement (physiology); procedures; thermodynamics; Biochemistry; Biopolymers; Humans; Magnetic Phenomena; Movement; Thermodynamics
Año:2014
Volumen:47
Número:4
Página de inicio:285
Página de fin:363
DOI: http://dx.doi.org/10.1017/S0033583514000092
Título revista:Quarterly Reviews of Biophysics
Título revista abreviado:Q. Rev. Biophys.
ISSN:00335835
CODEN:QURBA
CAS:Biopolymers
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00335835_v47_n4_p285_Ferreiro

Referencias:

  • Adams, M.J., Blundell, T.L., Dodson, E.J., Dodson, G.G., Vijayan, M., Baker, E.N., Harding, M.M., Sheat, S.D., Structure of rhombohedral 2 zinc insulin crystals (1969) Nature, 224, pp. 491-495
  • Aksel, T., Barrick, D., Analysis of repeat-protein folding using nearest-neighbor statistical mechanical models (2009) Methods in Enzymology, 455, pp. 95-125
  • Anderson, P.W., Antiferromagnetism. Theory of superexchange interaction (1950) Physical Review, 79, pp. 350-356. , http://link.aps.org/doi/10.1103/PhysRev.79.350
  • André, I., Strauss, C.E.M., Kaplan, D.B., Bradley, P., Baker, D., Emergence of symmetry in homooligomeric biological assemblies (2008) Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 16148-16152
  • Anfinsen, C.B., Principles that govern the folding of protein chains (1973) Science, 181, pp. 223-230
  • Anonymous, Frustration (2013) Wikipedia, the Free Encyclopedia, , http://en.wikipedia.org/wiki/Frustration, visited on 2013
  • Baker, E.N., Blundell, T.L., Cutfield, J.F., Cutfield, S.M., Dodson, E.J., Dodson, G.G., Hodgkin, D.M., Reynolds, C.D., The structure of 2Zn pig insulin crystals at 1.5 A resolution (1988) Philosophical Transaction of the Royal Society B, Biological Sciences, 319, pp. 369-456
  • Barrick, D., Ferreiro, D.U., Komives, E.A., Folding landscapes of ankyrin repeat proteins: Experiments meet theory (2008) Currunet Opinion in Structural Biology, 18, pp. 27-34
  • Beasley, J.R., Hecht, M., Protein design: The choice of de novo sequences (1997) Journal of Biological Chemistry, 272, pp. 2031-2034
  • Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., The protein data bank (2000) Nucleic Acids Research, 28, pp. 235-242
  • Best, R.B., 'Atomistic molecular simulations of protein folding (2012) Currunet Opinion in Structural Biology, 22 (1), pp. 52-61
  • Best, R.B., Hummer, G., Eaton, W.A., Native contacts determine protein folding mechanisms in atomistic simulations (2013) Proceedings of the National Academy of Sciences of the United States of America, 110 (44), pp. 17874-17879
  • Binz, H.K., Stumpp, M.T., Forrer, P., Amstutz, P., Plückthun, A., Designing repeat proteins: Well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins (2003) Journal of Molecular Biology, 332, pp. 489-503
  • Borgia, A., Wensley, B.G., Soranno, A., Nettels, D., Borgia, M.B., Hoffmann, A., Pfeil, S.H., Schuler, B., Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy (2012) Nature Communications, 3, p. 1195
  • Bradley, L.H., Thumfort, P.P., Hecht, M.H., De novo proteins from binarypatterned combinatorial libraries (2006) Methods in Molecular Biology, 340, pp. 53-69
  • Bray, D., Protein molecules as computational elements in living cells (1995) Nature, 376, pp. 307-312
  • Brems, D.N., Alter, L.A., Beckage, M.J., Chance, R.E., Dimarchi, R.D., Green, L.K., Long, H.B., Frank, B.H., Altering the association properties of insulin by amino acid replacement (1992) Protein Engineering, 5, pp. 527-533
  • Brenner, S.E., Chothia, C., Hubbard, T.J., Population statistics of protein structures: Lessons from structural classifications (1997) Currunet Opinion in Structural Biology, 7, pp. 369-376
  • Brown, B.M., Sauer, R.T., Tolerance of Arc repressor to multiple-alanine substitutions (1999) Proceedings of the National Academy of Sciences of the United States of America, 96, pp. 1983-1988
  • Bruylants, G., Redfield, C., 15N NMR relaxation data reveal significant chemical exchange broadening in the á-domain of human α-lactalbumin (2009) Biochemistry, 48, pp. 4031-4039
  • Bryngelson, J.D., Onuchic, J.N., Socci, N.D., Wolynes, P.G., Funnels, pathways, and the energy landscape of protein folding: A synthesis (1995) Proteins, 21, pp. 167-195
  • Bryngelson, J.D., Wolynes, P.G., Spin glasses and the statistical mechanics of protein folding (1987) Proceedings of the National Academy of Sciences of the United States of America, 84, pp. 7524-7528
  • Bullough, P.A., Hughson, F.M., Skehel, J.J., Wiley, D.C., Structure of influenza haemagglutinin at the pH of membrane fusion (1994) Nature, 371, pp. 37-43
  • Capaldi, A.P., Kleanthous, C., Radford, S.E., Im7 folding mechanism: Misfolding on a path to the native state (2002) Nature Structural Biology, 9, pp. 209-216
  • Capraro, D.T., Roy, M., Onuchic, J.N., Gosavi, S., Jennings, P.A., beta-Bulge triggers routeswitching on the functional landscape of interleukin-1 beta (2012) Proceedings of the National Academy of Sciences of the United States of America, 109, pp. 1490-1493
  • Chang, J.-Y., Diverse pathways of oxidative folding of disulfide proteins: Underlying causes and folding models (2011) Biochemistry, 50, pp. 3414-3431
  • Changeux, J.-P., 50 Years of allosteric interactions: The twists and turns of the models (2013) Nature Reviews Molecular Cell Biology
  • Chaudhari, P., Turnbull, D., Structure and properties of metallic glasses (1978) Science, 199, pp. 11-21
  • Chavez, L.L., Onuchic, J.N., Clementi, C., Quantifying the roughness on the free energy landscape: Entropic bottlenecks and protein folding rates (2004) Journal of the American Chemical Society, 126, pp. 8426-8432
  • Cho, S.S., Levy, Y., Wolynes, P.G., P versus Q: Structural reaction coordinates capture protein folding on smooth landscapes (2006) Proceedings of the National Academy of Sciences of the United States of America, 103, pp. 586-591
  • Cho, S.S., Levy, Y., Wolynes, P.G., Quantitative criteria for native energetic heterogeneity influences in the prediction of protein folding kinetics (2009) Proceedings of the National Academy of Sciences of the United States of America, 106, pp. 434-439
  • Cierpicki, T., Otlewski, J., NMR structures of two variants of bovine pancreatic trypsin inhibitor (BPTI) reveal unexpected influence of mutations on protein structure and stability (2002) Journal of Molecular Biology, 321, pp. 647-658
  • Clarke, N.D., Sequence 'minimization': Exploring the sequence landscape with simplified sequences (1995) Current Opinion in Biotechnology, 6, pp. 467-472
  • Clementi, C., Coarse-grained models of protein folding: Toy models or predictive tools? (2008) Currunet Opinion in Structural Biology, 18, pp. 10-15
  • Clementi, C., Nymeyer, H., Onuchic, J.N., Topological and energetic factors: What determines the structural details of the transition state ensemble and 'en-route' intermediates for protein folding? An investigation for small globular proteins (2000) Journal of Molecular Biology, 298, pp. 937-953
  • Clementi, C., Plotkin, S.S., The effects of non-native interactions on protein folding rates: Theory and simulation (2004) Protein Science, 13, pp. 1750-1766
  • Collins, M.F., Petrenko, O.A., Review/synthèse: Triangular antiferromagnets (1997) Canadian Journal of Physics, 75, pp. 605-655
  • Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J., Beenen, M., Leaver-Fay, A., Players, F., Predicting protein structures with a multiplayer online game (2010) Nature, 466, pp. 756-760
  • Creighton, T.E., Goldenberg, D.P., Kinetic role of a meta-stable native-like two-disulphide species in the folding transition of bovine pancreatic trypsin inhibitor (1984) Journal of Molecular Biology, 179, pp. 497-526
  • Crick, F., General model for the chromosomes of higher organisms (1971) Nature, 234, pp. 25-27
  • Davtyan, A., Schafer, N.P., Zheng, W., Clementi, C., Wolynes, P.G., Papoian, G.A., AWSEM-MD: Protein structure prediction using coarse-grained physical potentials and bioinformatically based local structure biasing (2012) Journal of Physical Chemistry B, 116, pp. 8494-8503
  • Derrida, B., Random-energy model: An exactly solvable model of disordered systems (1981) Physical Review B, 2, p. 2613
  • Dixit, A., Verkhivker, G.M., 'The energy landscape analysis of cancer mutations in protein kinases (2011) PLoS ONE, 6, p. e26071
  • Eastwood, M.P., Hardin, C., Luthey-Schulten, Z., Wolynes, P.G., Evaluating protein structure-prediction schemes using energy landscape theory (2001) IBM Journal of Research and Development, 45, pp. 475-497
  • Ejtehadi, M.R., Avall, S.P., Plotkin, S.S., Three-body interactions improve the prediction of rate and mechanism in protein folding models (2004) Proceedings of the National Academy of Sciences of the United States of America, 101, pp. 15088-15093
  • Englander, S.W., Protein folding intermediates and pathways studied by hydrogen exchange (2000) Annual Review of Biophysics and Biomolecular Structure, 29, pp. 213-238
  • Fernández, A., Shakhnovich, E.I., Activation-energy landscape for metastable RNA folding (1990) Physical Review A, 42, pp. 3657-3659
  • Ferreiro, D.U., Hegler, J.A., Komives, E.A., Wolynes, P.G., Localizing frustration in native proteins and protein assemblies (2007) Proceedings of the National Academy of Sciences of the United States of America, 104, pp. 19819-19824
  • Ferreiro, D.U., Hegler, J.A., Komives, E.A., Wolynes, P.G., On the role of frustration in the energy landscapes of allosteric proteins (2011) Proceedings of the National Academy of Sciences of the United States of America, 108, pp. 3499-3503
  • Ferreiro, D.U., Komives, E.A., The plastic landscape of repeat proteins (2007) Proceedings of the National Academy of Sciences of the United States of America, 104, pp. 7735-7736
  • Ferreiro, D.U., Komives, E.A., Molecular mechanisms of system control of NF-kappaB signaling by IkappaBalpha (2010) Biochemistry, 49, pp. 1560-1567
  • Ferreiro, D.U., Sánchez, I.E., De Prat Gay, G., Transition state for protein-DNA recognition (2008) Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 10797-10802
  • Ferreiro, D.U., Walczak, A.M., Komives, E.A., Wolynes, P.G., The energy landscapes of repeat-containing proteins: Topology, cooperativity, and the folding funnels of one-dimensional architectures (2008) PLoS Computational Biology, 4, p. e1000070
  • Ferreiro, D.U., Wolynes, P.G., The capillarity picture and the kinetics of one-dimensional protein folding (2008) Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 9853-9854
  • Fersht, A.R., Matouschek, A., Serrano, L., The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding (1992) Journal of Molecular Biology, 224, pp. 771-782
  • Field, D.J., Wavelets, vision and the statistics of natural scenes (1999) Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357, pp. 2527-2542
  • Figueiredo, A.M., Whittaker, S.B.-M., Knowling, S.E., Radford, S.E., Moore, G.R., Conformational dynamics is more important than helical propensity for the folding of the all alpha-helical protein IM7 (2013) Protein Science
  • Foit, L., Morgan, G.J., Kern, M.J., Steimer, L.R., Von Hacht, A.A., Titchmarsh, J., Warriner, S.L., Bardwell, J.C.A., Optimizing protein stability in vivo (2009) Molecular Cell, 36, pp. 861-871
  • Frauenfelder, H., Function and dynamics of myoglobin (1987) Annals of the New York Academy of Sciences, 504, pp. 151-167
  • Frauenfelder, H., Chen, G., Berendzen, J., Fenimore, P.W., Jansson, H., McMahon, B.H., Stroe, I.R., Young, R.D., A unified model of protein dynamics (2009) Proceedings of the National Academy of Sciences of the United States of America, 106, pp. 5129-5134
  • Frauenfelder, H., McMahon, B.H., Fenimore, P.W., Myoglobin: The hydrogen atom of biology and a paradigm of complexity (2003) Proceedings of the National Academy of Sciences of the United States of America, 100, pp. 8615-8617
  • Frauenfelder, H., Sligar, S.G., Wolynes, P.G., The energy landscapes and motions of proteins (1991) Science, 254, pp. 1598-1603
  • Frauenfelder, H., Wolynes, P.G., Rate theories and puzzles of hemeprotein kinetics (1985) Science, 299, pp. 337-345
  • Friedrichs, M.S., Wolynes, P.G., Toward protein tertiary structure recognition by means of associative memory Hamiltonians (1989) Science, 246, pp. 371-373
  • Friel, C.T., Smith, D.A., Vendruscolo, M., Gsponer, J., Radford, S.E., The mechanism of folding of Im7 reveals competition between functional and kinetic evolutionary constraints (2009) Nature Structural & Molecular Biology, 16, pp. 318-324
  • Fuglestad, B., Gasper, P.M., McCammon, J.A., Markwick, P.R.L., Komives, E.A., Correlated motions and residual frustration in thrombin (2013) Journal of Physical Chemistry B, 117, pp. 12857-12863
  • Galzitskaya, O.V., Finkelstein, A.V., A theoretical search for folding/unfolding nuclei in three-dimensional protein structures (1999) Proceedings of the National Academy of Sciences of the United States of America, 96, pp. 11299-11304
  • Gambin, Y., Schug, A., Lemke, E.A., Lavinder, J.J., Ferreon, A.C.M., Magliery, T.J., Onuchic, J.N., Deniz, A.A., Direct single-molecule observation of a protein living in two opposed native structures (2009) Proceedings of the National Academy of Sciences of the United States of America, 106, pp. 10153-10158
  • Gassner, N.C., Baase, W.A., Lindstrom, J.D., Lu, J., Dahlquist, F.W., Matthews, B.W., Methionine and alanine substitutions show that the formation of wild-type-like structure in the carboxyterminal domain of T4 lysozyme is a rate-limiting step in folding (1999) Biochemistry, 38, pp. 14451-14460
  • Gerland, U., Moroz, J.D., Hwa, T., Physical constraints and functional characteristics of transcription factor-DNA interaction (2002) Proceedings of the National Academy of Sciences of the United States of America, 99, pp. 12015-12020
  • Gilbert, W., The exon theory of genes (1987) Cold Spring Harbor Symposia on Quantitative Biology, 52, pp. 901-905. , New York, NY: Cold Spring Harbor Laboratory Press
  • Go, N., Theoretical studies of protein folding (1983) Annual Review of Biophysics and Bioengineering, 12, pp. 183-210
  • Goldstein, R.A., Luthey-Schulten, Z.A., Wolynes, P.G., Protein tertiary structure recognition using optimized Hamiltonians with local interactions (1992) Proceedings of the National Academy of Sciences of the United States of America, 89, pp. 9029-9033
  • Goldstein, R.A., Luthey-Schulten, Z.A., Wolynes, P.G., Optimal protein-folding codes from spin-glass theory (1992) Proceedings of the National Academy of Sciences of the United States of America, 89, pp. 4918-4922
  • Gosavi, S., Chavez, L.L., Jennings, P.A., Onuchic, J.N., Topological frustration and the folding of interleukin-1 beta (2006) Journal of Molecular Biology, 357, pp. 986-996
  • Gosavi, S., Whitford, P.C., Jennings, P.A., Onuchic, J.N., Extracting function from a betatrefoil folding motif (2008) Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 10384-10389
  • Greet, R.J., Turnbull, D., Glass transition in o-terphenyl (1967) Journal of Chemical Physics, 46, p. 1243
  • Gulukota, K., Wolynes, P.G., Statistical mechanics of kinetic proofreading in protein folding in vivo (1994) Proceedings of the National Academy of Sciences of the United States of America, 91, pp. 9292-9296
  • Hagai, T., Azia, A., Trizac, E., Levy, Y., Modulation of folding kinetics of repeat proteins: Interplay between intra- and interdomain interactions (2012) Biophysical Journal, 103, pp. 1555-1565
  • Han, J.-H., Batey, S., Nickson, A.A., Teichmann, S.A., Clarke, J., The folding and evolution of multidomain proteins (2007) Nature Reviews Molecular Cell Biology, 8, pp. 319-330
  • Hegler, J.A., Weinkam, P., Wolynes, P.G., The spectrum of biomolecular states and motions (2008) HFSP Journal, 2, pp. 307-313
  • Henry, E.R., Best, R.B., Eaton, W.A., Comparing a simple theoretical model for protein folding with all-atom molecular dynamics simulations (2013) Proceedings of the National Academy of Sciences of the United States of America, 110, pp. 17880-17885
  • Henzler-Wildman, K.A., Thai, V., Lei, M., Ott, M., Wolf-Watz, M., Fenn, T., Pozharski, E., Kern, D., Intrinsic motions along an enzymatic reaction trajectory (2007) Nature, 450, pp. 838-844
  • Heytesbury, W., Regule solvendi sophismata (1494) Bonetus Locatellus
  • Hopfield, J.J., Neural networks and physical systems with emergent collective computational abilities (1982) Proceedings of the National Academy of Sciences of the United States of America, 79, pp. 2554-2558
  • Hua, Q.-X., Nakagawa, S.H., Jia, W., Huang, K., Phillips, N.B., Hu, S.-Q., Weiss, M.A., Design of an active ultrastable single-chain insulin analog: Synthesis, structure, and therapeutic implications (2008) Journal of Biological Chemistry, 283, pp. 14703-14716
  • Huntington, J.A., Read, R.J., Carrell, R.W., Structure of a serpin-protease complex shows inhibition by deformation (2000) Nature, 407, pp. 923-926
  • Im, H., Ahn, H.Y., Yu, M.H., Bypassing the kinetic trap of serpin protein folding by loop extension (2000) Protein Science, 9, pp. 1497-1502
  • Itzhaki, L.S., Lowe, A.R., From artificial antibodies to nanosprings: The biophysical properties of repeat proteins (2012) Advances in Experimental Medicine and Biology, 747, pp. 153-166
  • Jane Dyson, H., Wright, P.E., Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance (2002) Advances in Protein Chemistry, 62, pp. 311-340
  • Javadi, Y., Main, E.R.G., Exploring the folding energy landscape of a series of designed consensus tetratricopeptide repeat proteins (2009) Proceedings of the National Academy of Sciences of the United States of America, 106, pp. 17383-17388
  • Jenik, M., Parra, R.G., Radusky, L.G., Truchanski, A., Wolynes, P.G., Ferreiro, D.U., Protein frustratometer: A tool to localize energetic frustration in protein molecules (2012) Nucleic Acids Research, 40 (WEB SERVER ISSUE), pp. W348-W351
  • Jin, W., Kambara, O., Sasakawa, H., Tamura, A., Takada, S., De novo design of foldable proteins with smooth folding funnel: Automated negative design and experimental verification (2003) Structure, 11, pp. 581-590
  • Kajava, A.V., Tandem repeats in proteins: From sequence to structure (2012) Journal of Structural Biology, 179, pp. 279-288
  • Kamtekar, S., Schiffer, J.M., Xiong, H., Babik, J.M., Hecht, M.H., Protein design by binary patterning of polar and nonpolar amino acids (1993) Science, 262, pp. 1680-1685
  • Karplus, M., McCammon, J.A., Dynamics of proteins: Elements and function (1983) Annual Review in Biochemistry, 52, pp. 263-300
  • Kato, A., Yamada, M., Nakamura, S., Kidokoro, S.-I., Kuroda, Y., Thermodynamic properties of BPTI variants with highly simplified amino acid sequences (2007) Journal of Molecular Biology, 372, pp. 737-746
  • Kauffman, S., (2013) Beyond Reductionism Twice: No Laws Entail Biosphere Evolution, Formal Cause Laws Beyond Efficient Cause Laws, , arXiv:1303.5684
  • Kauzmann, W., Forces responsible for maintaining the native configurations of proteins (1959) Advances in Protein Chemistry, 14, pp. 33-35
  • Keefe, A.D., Szostak, J.W., Functional proteins from a random-sequence library (2001) Nature, 410, pp. 715-718
  • Klimov, D.K., Thirumalai, D., Stiffness of the distal loop restricts the structural heterogeneity of the transition state ensemble in SH3 domains (2002) Journal of Molecular Biology, 317, pp. 721-737
  • Koretke, K.K., Luthey-Schulten, Z., Wolynes, P.G., Self-consistently optimized statistical mechanical energy functions for sequence structure alignment (1996) Protein Science, 5, pp. 1043-1059
  • Kramer, M.A., Wetzel, S.K., Plückthun, A., Mittl, P.R.E., Grütter, M.G., Structural determinants for improved stability of designed ankyrin repeat proteins with a redesigned C-capping module (2010) Journal of Molecular Biology, 404, pp. 381-391
  • Kretzmann, N., Syncategoremata, exponibilia, sophismata (1982) The Cambridge History of Later Medieval Philosophy, pp. 211-245. , (eds. N. KRETZMANN, A. KENNY & J. PINBORG), Cambridge: Cambridge University Press
  • Kuhlman, B., Dantas, G., Ireton, G.C., Varani, G., Stoddard, B.L., Baker, D., Design of a novel globular protein fold with atomic-level accuracy (2003) Science, 302, pp. 1364-1368
  • Kuriyan, J., Eisenberg, D., The origin of protein interactions and allostery in colocalization (2007) Nature, 450, pp. 983-990
  • Kuroda, Y., Kim, P.S., Folding of bovine pancreatic trypsin inhibitor (BPTI) variants in which almost half the residues are alanine (2000) Journal of Molecular Biology, 298, pp. 493-501
  • Lau, A.W.C., Hoffman, B.D., Davies, A., Crocker, J.C., Lubensky, T.C., Microrheology, stress fluctuations, and active behavior of living cells (2003) Physics Review Letters, 91, p. 198101
  • Leffler, J.E., Parameters for the description of transition states (1953) Science, 117, pp. 340-341
  • Levinthal, C., Are there pathways for protein folding (1968) Journal de Chimie Physique, 65, pp. 44-45
  • Levy, Y., Cho, S.S., Shen, T., Onuchic, J.N., Wolynes, P.G., Symmetry and frustration in protein energy landscapes: A near degeneracy resolves the Rop dimer-folding mystery (2005) Proceedings of the National Academy of Sciences of the United States of America, 102, pp. 2373-2378
  • Levy, Y., Onuchic, J.N., Wolynes, P.G., Fly-casting in protein-DNA binding: Frustration between protein folding and electrostatics facilitates target recognition (2007) Journal of the American Chemical Society, 129, pp. 738-739
  • Levy, Y., Wolynes, P.G., Onuchic, J.N., Protein topology determines binding mechanism (2004) Proceedings of the National Academy of Sciences of the United States of America, 101, pp. 511-516
  • Little, W.A., The existence of persistent states in the brain (1974) Mathematical Biosciences, 19, pp. 101-120
  • Liu, R., Baase, W.A., Matthews, B.W., The introduction of strain and its effects on the structure and stability of T4 lysozyme (2000) Journal of Molecular Biology, 295, pp. 127-145
  • Lum, K., Chandler, D., Weeks, J.D., Hydrophobicity at small and large length scales (1999) Journal of Physical Chemistry B, 103, pp. 4570-4577
  • Luo, M., Influenza virus entry (2012) Advances in Experimental Medicine and Biology, 726, pp. 201-221
  • Luthey-Schulten, Z., Ramirez, B.E., Wolynes, P.G., Helix-coil, liquid crystal, and spin glass transitions of a collapsed heteropolymer (1995) Journal of Physical Chemistry, 99, pp. 2177-2185
  • Ma, H., Wan, C., Wu, A., Zewail, A.H., DNA folding and melting observed in real time redefine the energy landscape (2007) Proceedings of the National Academy of Sciences of the United States of America, 104, pp. 712-716
  • Marcovitz, A., Levy, Y., Frustration in protein-DNA binding influences conformational switching and target search kinetics (2011) Proceedings of the National Academy of Sciences of the United States of America, 108, pp. 17957-17962
  • Marcovitz, A., Levy, Y., Weak frustration regulates sliding and binding kinetics on rugged protein- DNA landscapes (2013) Journal of Physical Chemistry B, 112, pp. 13005-13014
  • Marek, M.S., Johnson-Buck, A., Walter, N.G., The shape-shifting quasispecies of RNA: One sequence, many functional folds (2011) Physical Chemistry Chemical Physics, 13, pp. 11524-11537
  • Matouschek, A., Kellis, J.T., Jr., Serrano, L., Fersht, A.R., Mapping the transition state and pathway of protein folding by protein engineering (1989) Nature, 340, pp. 122-126
  • Matthews, C.R., Hurle, M.R., Mutant sequences as probes of protein folding mechanisms (1987) Bioessays, 6, pp. 254-257
  • May, A.C., Towards more meaningful hierarchical classification of amino acid scoring matrices (1999) Protein Engineering, 12, pp. 707-712
  • Meiering, E.M., Serrano, L., Fersht, A.R., Effect of active site residues in barnase on activity and stability (1992) Journal of Molecular Biology, 225, pp. 585-589
  • Mélin, R., Li, H., Wingreen, N.S., Tang, C., Designability, thermodynamic stability, and dynamics in protein folding: A lattice model study (1999) Journal of Chemical Physics, 110, p. 1252
  • Mello, C.C., Barrick, D., An experimentally determined protein folding energy landscape (2004) Proceedings of the National Academy of Sciences of the United States of America, 101, pp. 14102-14107
  • Mézard, M., Mora, T., Constraint satisfaction problems and neural networks: A statistical physics perspective (2009) Journal of Physiology - Paris, 103, pp. 107-113
  • Miyashita, O., Onuchic, J.N., Wolynes, P.G., Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins (2003) Proceedings of the National Academy of Sciences of the United States of America, 100, pp. 12570-12575
  • Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L., Determining computational complexity from characteristic 'phase transitions' (1999) Nature, 400, pp. 133-137
  • Monod, J., (1973) Le Hasard et la Nécessité: Essai Sur la Philosophie Naturelle de la Biologie Moderne. Éditions du Seuil
  • Muñoz, V., Eaton, W.A., A simple model for calculating the kinetics of protein folding from three-dimensional structures (1999) Proceedings of the National Academy of Sciences of the United States of America, 96, pp. 11311-11316
  • Munson, M., Anderson, K.S., Regan, L., Speeding up protein folding: Mutations that increase the rate at which Rop folds and unfolds by over four orders of magnitude (1997) Folding and Designing, 2, pp. 77-87
  • Murphy, L.R., Wallqvist, A., Levy, R.M., Simplified amino acid alphabets for protein fold recognition and implications for folding (2000) Protein Engineering, 13, pp. 149-152
  • Naganathan, A.N., Muñoz, V., Insights into protein folding mechanisms from large scale analysis of mutational effects (2010) Proceedings of the National Academy of Sciences of the United States of America, 107, pp. 8611-8616
  • Néel, L., Magnetism and the local molecular field (1970) Nobel Lectures, Vol. Physics 1963-1970, pp. 318-341. , (ed. G. EKSPONG), Amsterdam: Elsevier
  • Noel, J.K., Whitford, P.C., Onuchic, J.N., The shadow map: A general contact definition for capturing the dynamics of biomolecular folding and function (2012) Journal of Physical Chemistry B, 116, pp. 8692-8702
  • Noel, J.K., Whitford, P.C., Sanbonmatsu, K.Y., Onuchic, J.N., SMOG@ctbp: Simplified deployment of structure-based models in GROMACS (2010) Nucleic Acids Research, 38 (WEB SERVER ISSUE), pp. W657-W661
  • Norambuena, T., Melo, F., The protein-DNA Interface database (2010) BMC Bioinformatics, 11, p. 262
  • Nordblad, P., Competing interaction in magnets: The root of ordered disorder or only frustration? (2013) Physica Scripta, 88, p. 058301
  • Oliveberg, M., Wolynes, P.G., The experimental survey of protein-folding energy landscapes (2005) Quarterly Reviews of Biophysics, 38, pp. 245-288
  • Olsson, M.H.M., Parson, W.W., Warshel, A., Dynamical contributions to enzyme catalysis: Critical tests of a popular hypothesis (2006) Chemical Reviews, 106, pp. 1737-1756
  • Onuchic, J.N., Luthey-Schulten, Z., Wolynes, P.G., Theory of protein folding: The energy landscape perspective (1997) Annual Review of Physical Chemistry, 48, pp. 545-600
  • Onuchic, J.N., Wolynes, P.G., Theory of protein folding (2004) Currunet Opinion in Structural Biology, 14, pp. 70-75
  • Onuchic, J.N., Wolynes, P.G., Luthey-Schulten, Z., Socci, N.D., Toward an outline of the topography of a realistic protein-folding funnel (1995) Proceedings of the National Academy of Sciences of the United States of America, 92, pp. 3626-3630
  • Panchenko, A.R., Luthey-Schulten, Z., Wolynes, P.G., Foldons, protein structural modules, and exons (1996) Proceedings of the National Academy of Sciences of the United States of America, 93, pp. 2008-2013
  • Papoian, G.A., Ulander, J., Eastwood, M.P., Lutheyschulten, Z., Wolynes, P.G., Water in protein structure prediction (2004) Proceedings of the National Academy of Sciences of the United States of America, 101, pp. 3352-3357
  • Papoian, G.A., Ulander, J., Wolynes, P.G., Role of water mediated interactions in protein-protein recognition landscapes (2003) Journal of the American Chemical Society, 125, pp. 9170-9178
  • Papoian, G.A., Wolynes, P.G., The physics and bioinformatics of binding and folding-an energy landscape perspective (2003) Biopolymers, 68, pp. 333-349
  • Parra, R.G., Espada, R., Sánchez, I.E., Sippl, M.J., Ferreiro, D.U., Detecting repetitions and periodicities in proteins by tiling the structural space (2013) Journal of Physical Chemistry B, 117, pp. 12887-12897
  • Pervushin, K., Vamvaca, K., Vögeli, B., Hilvert, D., Structure and dynamics of a molten globular enzyme (2007) Nature Structural and Molecular Biology, 14, pp. 1202-1206
  • Piana, S., Lindorff-Larsen, K., Shaw, D.E., How robust are protein folding simulations with respect to force field parameterization? (2011) Biophysical Journal, 100, pp. L47-L49
  • Piana, S., Lindorff-Larsen, K., Shaw, D.E., Protein folding kinetics and thermodynamics from atomistic simulation (2012) Proceedings of the National Academy of Sciences of the United States of America, 109, pp. 17845-17850
  • Plaxco, K.W., Simons, K.T., Baker, D., Contact order, transition state placement and the refolding rates of single domain proteins (1998) Journal of Molecular Biology, 277, pp. 985-994
  • Plotkin, S.S., Onuchic, J.N., Understanding protein folding with energy landscape theory. Part I: Basic concepts (2002) Quarterly Reviews of Biophysics, 35, pp. 111-167
  • Plotkin, S.S., Wang, J., Wolynes, P.G., Correlated energy landscape model for finite, random heteropolymers (1996) Physical Review E, 53, p. 6271
  • Plotkin, S.S., Wang, J., Wolynes, P.G., Statistical mechanics of a correlated energy landscape model for protein folding funnels (1997) Journal of Chemical Physics, 106, pp. 2932-2948. , http://dx.doi.org/10.1063/1.473355
  • Porter, C.T., Bartlett, G.J., Thornton, J.M., The Catalytic Site Atlas: A resource of catalytic sites and residues identified in enzymes using structural data (2004) Nucleic Acids Research, 32 (DATABASE ISSUE), pp. D129-D133
  • Portman, J.J., Takada, S., Wolynes, P.G., Variational theory for site resolved protein folding free energy surfaces (1998) Physical Review Letters, 81, p. 5237
  • Portman, J.J., Takada, S., Wolynes, P.G., Microscopic theory of protein folding rates. I. Fine structure of the free energy profile and folding routes from a variational approach (2001) Journal of Chemical Physics, 114, pp. 5237-5240
  • Portman, J.J., Takada, S., Wolynes, P.G., Microscopic theory of protein folding rates. II. Local reaction coordinates and chain dynamics (2001) Journal of Chemical Physics, 114, p. 5082
  • Reches, M., Snyder, P.W., Whitesides, G.M., Folding of electrostatically charged beads-on-a-string as an experimental realization of a theoretical model in polymer science (2009) Proceedings of the National Academy of Sciences of the United States of America, 106, pp. 17644-17649
  • Riddle, D.S., Santiago, J.V., Bray-Hall, S.T., Doshi, N., Grantcharova, V.P., Yi, Q., Baker, D., Functional rapidly folding proteins from simplified amino acid sequences (1997) Nature Structural Biology, 4, pp. 805-809
  • Rothemund, P.W.K., Folding DNA to create nanoscale shapes and patterns (2006) Nature, 440, pp. 297-302
  • Sali, A., Shakhnovich, E., Karplus, M., Kinetics of protein folding. A lattice model study of the requirements for folding to the native state (1994) Journal of Molecular Biology, 235, pp. 1614-1636
  • Sánchez, I.E., Kiefhaber, T., Evidence for sequential barriers and obligatory intermediates in apparent two-state protein folding (2003) Journal of Molecular Biology, 325, pp. 367-376
  • Sánchez, I.E., Kiefhaber, T., Non-linear rate-equilibrium free energy relationships and Hammond behavior in protein folding (2003) Biophysical Chemistry, 100, pp. 397-407
  • Sánchez, I.E., Ferreiro, D.U., Dellarole, M., De Prat-Gay, G., Experimental snapshots of a protein-DNA binding landscape (2010) Proceedings of the National Academy of Sciences of the United States of America, 107, pp. 7751-7756
  • Sánchez, I.E., Ferreiro, D.U., De Prat Gay, G., Mutational analysis of kinetic partitioning in protein folding and protein-DNA binding (2011) Protein Engineering Design and Selection, 24, pp. 179-184
  • Scalley-Kim, M., Baker, D., Characterization of the folding energy landscapes of computer generated proteins suggests high folding free energy barriers and cooperativity may be consequences of natural selection (2004) Journal of Molecular Biology, 338, pp. 573-583
  • Schafer, N.P., Hoffman, R.M.B., Burger, A., Craig, P.O., Komives, E.A., Wolynes, P.G., Discrete kinetic models from funneled energy landscape simulations (2012) PLoS ONE, 7, p. e50635
  • Schiffer, M., Edmundson, A.B., Use of helical wheels to represent the structures of proteins and to identify segments with helical potential (1967) Biophysical Journal, 7, pp. 121-135
  • Schiffer, P., Ramirez, A.P., Recent experimental progress in the study of geometrical magnetic frustration (1996) Comments on Condensed Matter Physics, 18, pp. 21-50
  • Schildkraut, C., Lifson, S., Dependence of the melting temperature of DNA on salt concentration (1965) Biopolymers, 3, pp. 195-208
  • Serganov, A., Nudler, E., A decade of riboswitches (2013) Cell, 152, pp. 17-24
  • Shakhnovich, E., Gutin, A., Enumeration of all compact conformations of copolymers with random sequence of links (1990) Journal of Chemical Physics, 93, p. 5967
  • Shen, T., Hofmann, C.P., Oliveberg, M., Wolynes, P.G., Scanning malleable transition state ensembles: Comparing theory and experiment for folding protein U1A (2005) Biochemistry, 44, pp. 6433-6439
  • Shoemaker, B.A., Portman, J.J., Wolynes, P.G., Speeding molecular recognition by using the folding funnel: The fly-casting mechanism (2000) Proceedings of the National Academy of Sciences of the United States of America, 97, pp. 8868-8873
  • Shoemaker, B.A., Wang, J., Wolynes, P.G., Exploring structures in protein folding funnels with free energy functionals: The transition state ensemble (1999) Journal of Molecular Biology, 287, pp. 675-694
  • Shoichet, B.K., Baase, W.A., Kuroki, R., Matthews, B.W., A relationship between protein stability and protein function (1995) Proceedings of the National Academy of Sciences of the United States of America, 92, pp. 452-456
  • Simondon, G., (2005) L'individuation: À la Lumière des Notions de Forme et D'information. Editions Jérôme Millon
  • Sippl, M.J., Wiederstein, M., Detection of spatial correlations in protein structures and molecular complexes (2012) Structure, 20, pp. 718-728
  • Slutsky, M., Mirny, L.A., Kinetics of protein-DNA interaction: Facilitated target location in sequencedependent potential (2004) Biophysical Journal, 87, pp. 4021-4035
  • Smith, B.A., Hecht, M.H., Novel proteins: From fold to function (2011) Current Opinion in Chemical Biology, 15, pp. 421-426
  • Solomatin, S.V., Greenfeld, M., Chu, S., Herschlag, D., Multiple native states reveal persistent ruggedness of an RNA folding landscape (2010) Nature, 463, pp. 681-684
  • Spolar, R.S., Record, M.T., Jr., Coupling of local folding to site-specific binding of proteins to DNA (1994) Science, 263, pp. 777-784
  • Stevenson, J.D., Wolynes, P.G., The ultimate fate of supercooled liquids (2010) Journal of Physical Chemistry A, 115, pp. 3713-3719
  • Street, T.O., Barrick, D., Predicting repeat protein folding kinetics from an experimentally determined folding energy landscape (2009) Protein Science, 18, pp. 58-68
  • Sułkowska, J.I., Noel, J.K., Onuchic, J.N., Energy landscape of knotted protein folding (2012) Proceedings of the National Academy of Sciences of the United States of America, 109, pp. 17783-17788
  • Sutto, L., Lätzer, J., Hegler, J.A., Ferreiro, D.U., Wolynes, P.G., Consequences of localized frustration for the folding mechanism of the IM7 protein (2007) Proceedings of the National Academy of Sciences of the United States of America, 104, pp. 19825-19830
  • Tamaskovic, R., Simon, M., Stefan, N., Schwill, M., Plückthun, A., Designed ankyrin repeat proteins (DARPins) from research to therapy (2012) Methods in Enzymology, 503, pp. 101-134
  • Todd, M.J., Lorimer, G.H., Thirumalai, D., Chaperonin-facilitated protein folding: Optimization of rate and yield by an iterative annealing mechanism (1996) Proceedings of the National Academy of Sciences of the United States of America, 93, pp. 4030-4035
  • Tokuriki, N., Jackson, C.J., Afriat-Jurnou, L., Wyganowski, K.T., Tang, R., Tawfik, D.S., Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme (2012) Nature Communications, 3, p. 1257
  • Tokuriki, N., Stricher, F., Serrano, L., Tawfik, D.S., How protein stability and new functions trade off (2008) PLoS Computational Biology, 4, p. e1000002
  • Tokuriki, N., Tawfik, D.S., Stability effects of mutations and protein evolvability (2009) Currunet Opinion in Structural Biology, 19, pp. 596-604
  • Tripp, K.W., Barrick, D., Rerouting the folding pathway of the Notch ankyrin domain by reshaping the energy landscape (2008) Journal of the American Chemical Society, 130, pp. 5681-5688
  • Truong, H.H., Kim, B.L., Schafer, N.P., Wolynes, P.G., Funneling and frustration in the energy landscapes of some designed and simplified proteins (2013) Journal of Chemical Physics, 139, p. 121908
  • Tsutsui, Y., Kuri, B., Sengupta, T., Wintrode, P.L., The structural basis of serpin polymerization studied by hydrogen/deuterium exchange and mass spectrometry (2008) Journal of Biological Chemistry, 283, pp. 30804-30811
  • Vannimenus, J., Toulouse, G., Theory of the frustration effect. II. Ising spins on a square lattice (1977) Journal of Physics C: Solid State Physics, 10, p. L537. , http://stacks.iop.org/0022-3719/10/i=18/a=008
  • Viasnoff, V., Meller, A., Isambert, H., DNA nanomechanical switches under folding kinetics control (2006) Nano Letters, 6, pp. 101-104
  • Von Hippel, P.H., Berg, O.G., Facilitated target location in biological system (1989) Journal of Biological Chemistry, 264, pp. 675-678
  • Wales, D.J., Symmetry, near-symmetry and energetics (1998) Chemical Physics Letters, 285, pp. 330-336
  • Wang, S., Wolynes, P.G., On the spontaneous collective motion of active matter (2011) Proceedings of the National Academy of Sciences of the United States of America, 108, pp. 15184-15189
  • Wannier, G.H., Antiferromagnetism (1950) The Triangular Ising Net. Physical Review, 79, pp. 357-364. , http://link.aps.org/doi/10.1103/PhysRev.79.357
  • Watson, J.D., Crick, F.H.C., Molecular structure of nucleic acids (1953) Nature, 171, pp. 737-738
  • Weinkam, P., Romesberg, F.E., Wolynes, P.G., Chemical frustration in the protein folding landscape: Grand canonical ensemble simulations of cytochrome c (2009) Biochemistry, 48, pp. 2394-2402
  • Weinkam, P., Wolynes, P.G., The folding landscapes of metalloproteins; in protein folding and metal ions: Mechanisms, biology and disease (2010) Protein Folding and Metal Ions: Mechanisms, Biology and Disease, pp. 247-273. , (eds. P. WITTUNG-STAFSHED & M.C. GOMES) Boca Raton, FL: Taylor and Francis
  • Weinkam, P., Zimmermann, J., Romesberg, F.E., Wolynes, P.G., The folding energy landscape and free energy excitations of cytochrome c (2010) Accounts of Chemical Research, 43, pp. 652-660
  • Weinkam, P., Zimmermann, J., Sagle, L.B., Matsuda, S., Dawson, P.E., Wolynes, P.G., Romesberg, F.E., Characterization of alkaline transitions in ferricytochrome c using carbon-deuterium infrared probes (2008) Biochemistry, 47, pp. 13470-13480
  • Weinkam, P., Zong, C., Wolynes, P.G., A funneled energy landscape for cytochrome c directly predicts the sequential folding route inferred from hydrogen exchange experiments (2005) Proceedings of the National Academy of Sciences of the United States of America, 102, pp. 12401-12406
  • Weiss, M.A., Diabetes mellitus due to the toxic misfolding of proinsulin variants (2013) FEBS Letters, 587, pp. 1942-1950
  • Weiss, O., Jimenez-Montano, M.A., Herzel, H., Information content of protein sequences (2000) Journal of Theoretical Biology, 206, pp. 379-386
  • Weissman, J.S., Kim, P.S., Reexamination of the folding of BPTI: Predominance of native intermediates (1991) Science, 253, pp. 1386-1393
  • Weissman, J.S., Kim, P.S., Kinetic role of nonnative species in the folding of bovine pancreatic trypsin inhibitor (1992) Proceedings of the National Academy of Sciences of the United States of America, 89, pp. 9900-9904
  • Wensley, B.G., Batey, S., Bone, F.A.C., Chan, Z.M., Tumelty, N.R., Steward, A., Kwa, L.G., Clarke, J., Experimental evidence for a frustrated energy landscape in a three-helix-bundle protein family (2010) Nature, 463, pp. 685-688
  • Wensley, B.G., Kwa, L.G., Shammas, S.L., Rogers, J.M., Browning, S., Yang, Z., Clarke, J., Separating the effects of internal friction and transition state energy to explain the slow, frustrated folding of spectrin domains (2012) Proceedings of the National Academy of Sciences of the United States of America, 109, pp. 17795-17799
  • Werbeck, N.D., Itzhaki, L.S., Probing a moving target with a plastic unfolding intermediate of an ankyrin-repeat protein (2007) Proceedings of the National Academy of Sciences of the United States of America, 104, pp. 7863-7868
  • Werbeck, N.D., Rowling, P.J.E., Chellamuthu, V.R., Itzhaki, L.S., Shifting transition states in the unfolding of a large ankyrin repeat protein (2008) Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 9982-9987
  • Whitford, P.C., Onuchic, J.N., Wolynes, P.G., Energy landscape along an enzymatic reaction trajectory: Hinges or cracks? (2008) HFSP Journal, 2, pp. 61-64
  • Whittaker, S.B.-M., Clayden, N.J., Moore, G.R., NMR characterisation of the relationship between frustration and the excited state of IM7 (2011) Journal of Molecular Biology, 414, pp. 511-529
  • Whittingham, J.L., Edwards, D.J., Antson, A.A., Clarkson, J.M., Dodson, G.G., Interactions of phenol and m-cresol in the insulin hexamer, and their effect on the association properties of B28 pro - Asp insulin analogues (1998) Biochemistry, 37, pp. 11516-11523
  • Wolynes, P.G., Symmetry and the energy landscapes of biomolecules (1996) Proceedings of the National Academy of Sciences of the United States of America, 93, pp. 14249-14255
  • Wolynes, P.G., As simple as can be? (1997) Nature Structural Biology, 4, pp. 871-874
  • Wolynes, P.G., Folding funnels and energy landscapes of larger proteins within the capillarity approximation (1997) Proceedings of the National Academy of Sciences of the United States of America, 94, pp. 6170-6175
  • Wolynes, P.G., Latest folding game results: Protein a barely frustrates computationalists (2004) Proceedings of the National Academy of Sciences of the United States of America, 101, pp. 6837-6838
  • Wolynes, P.G., Energy landscapes and solved protein-folding problems (2005) Philosophical Transaction of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363, pp. 453-464
  • Woodside, M.T., Anthony, P.C., Behnke-Parks, W.M., Larizadeh, K., Herschlag, D., Block, S.M., Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid (2006) Science, 314, pp. 1001-1004
  • Wright, C.F., Teichmann, S.A., Clarke, J., Dobson, C.M., The importance of sequence diversity in the aggregation and evolution of proteins (2005) Nature, 438, pp. 878-881
  • Yadahalli, S., Gosavi, S., Designing cooperativity into the designed protein Top7 (2014) Proteins, 82, pp. 364-374
  • Yamasaki, M., Li, W., Johnson, D.J.D., Huntington, J.A., Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization (2008) Nature, 455, pp. 1255-1258
  • Yang, S., Cho, S.S., Levy, Y., Cheung, M.S., Levine, H., Wolynes, P.G., Onuchic, J.N., Domain swapping is a consequence of minimal frustration (2004) Proceedings of the National Academy of Sciences of the United States of America, 101, pp. 13786-13791
  • Yi, Q., Rajagopal, P., Klevit, R.E., Baker, D., Structural and kinetic characterization of the simplified SH3 domain FP1 (2003) Protein Science, 12, pp. 776-783
  • Yue, K., Fiebig, K.M., Thomas, P.D., Chan, H.S., Shakhnovich, E.I., Dill, K.A., A test of lattice protein folding algorithms (1995) Proceedings of the National Academy of Sciences of the United States of America, 92, pp. 325-329
  • Zerbetto, M., Anderson, R., Bouguet-Bonnet, S., Rech, M., Zhang, L., Meirovitch, E., Polimeno, A., Buck, M., Analysis of 15N-1H NMR relaxation in proteins by a combined experimental and molecular dynamics simulation approach: Picosecond-nanosecond dynamics of the Rho GTPase binding domain of plexin-b1 in the dimeric state indicates allosteric pathways (2013) Journal of Physical Chemistry B, 117, pp. 174-184
  • Zhang, H.J., Sheng, X.R., Pan, X.M., Zhou, J.M., Activation of adenylate kinase by denaturants is due to the increasing conformational flexibility at its active sites (1997) Biochemical and Biophysical Research Communications, 238, pp. 382-386
  • Zhang, X.-J., Baase, W.A., Matthews, B.W., A helix initiation signal in T4 lysozyme identified by polyalanine mutagenesis (2002) Biophysical Chemistry 101-102, pp. 43-56
  • Zhang, Z., Chan, H.S., Competition between native topology and nonnative interactions in simple and complex folding kinetics of natural and designed proteins (2010) Proceedings of the National Academy of Sciences of the United States of America, 107, pp. 2920-2925
  • Zheng, W., Schafer, N.P., Davtyan, A., Papoian, G.A., Wolynes, P.G., Predictive energy landscapes for protein-protein association (2012) Proceedings of the National Academy of Sciences of the United States of America, 109, pp. 19244-19249
  • Zheng, W., Schafer, N.P., Wolynes, P.G., Frustration in the energy landscapes of multidomain protein misfolding (2013) Proceedings of the National Academy of Sciences of the United States of America, 110, pp. 1680-1685
  • Zimm, B.H., Bragg, J.K., Theory of the phase transition between helix and random coil in polypeptide chains (1959) Journal of Chemical Physics, 31, p. 526
  • Zong, C., Wilson, C.J., Shen, T., Wolynes, P.G., Wittung-Stafshede, P., φ-Value analysis of apo-azurin folding: Comparison between experiment and theory (2006) Biochemistry, 45, pp. 6458-6466
  • Zuckerkandl, E., Pauling, L., Molecules as documents of evolutionary history (1965) Journal of Theoretical Biology, 8, pp. 357-366

Citas:

---------- APA ----------
Ferreiro, D.U., Komives, E.A. & Wolynes, P.G. (2014) . Frustration in biomolecules. Quarterly Reviews of Biophysics, 47(4), 285-363.
http://dx.doi.org/10.1017/S0033583514000092
---------- CHICAGO ----------
Ferreiro, D.U., Komives, E.A., Wolynes, P.G. "Frustration in biomolecules" . Quarterly Reviews of Biophysics 47, no. 4 (2014) : 285-363.
http://dx.doi.org/10.1017/S0033583514000092
---------- MLA ----------
Ferreiro, D.U., Komives, E.A., Wolynes, P.G. "Frustration in biomolecules" . Quarterly Reviews of Biophysics, vol. 47, no. 4, 2014, pp. 285-363.
http://dx.doi.org/10.1017/S0033583514000092
---------- VANCOUVER ----------
Ferreiro, D.U., Komives, E.A., Wolynes, P.G. Frustration in biomolecules. Q. Rev. Biophys. 2014;47(4):285-363.
http://dx.doi.org/10.1017/S0033583514000092