Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We analyze the evolution of coronal plasma upflows from the edges of AR 10978, which has the best limb-to-limb data coverage with Hinode's EUV Imaging Spectrometer (EIS). We find that the observed evolution is largely due to the solar rotation progressively changing the viewpoint of nearly stationary flows. From the systematic changes in the upflow regions as a function of distance from disc center, we deduce their 3D geometrical properties as inclination and angular spread in three coronal lines (Si vii, Fe xii, and Fe xv). In agreement with magnetic extrapolations, we find that the flows are thin, fan-like structures rooted in quasi separatrix layers (QSLs). The fans are tilted away from the AR center. The highest plasma velocities in these three spectral lines have similar magnitudes and their heights increase with temperature. The spatial location and extent of the upflow regions in the Si vii, Fe xii, and Fe xv lines are different owing to i) temperature stratification and ii) line of sight integration of the spectral profiles with significantly different backgrounds. We conclude that we sample the same flows at different temperatures. Further, we find that the evolution of line widths during the disc passage is compatible with a broad range of velocities in the flows. Everything considered, our results are compatible with the AR upflows originating from reconnections along QSLs between over-pressure AR loops and neighboring under-pressure loops. The flows are driven along magnetic field lines by a pressure gradient in a stratified atmosphere. Our interpretation of the above results is that, at any given time, we observe the superposition of flows created by successive reconnections, leading to a broad velocity distribution. © 2013 Springer Science+Business Media Dordrecht.

Registro:

Documento: Artículo
Título:The 3D Geometry of Active Region Upflows Deduced from Their Limb-to-Limb Evolution
Autor:Démoulin, P.; Baker, D.; Mandrini, C.H.; van Driel-Gesztelyi, L.
Filiación:Observatoire de Paris, LESIA, UMR 8109 (CNRS), 92195 Meudon Principal Cedex, France
UCL-Mullard Space Science Laboratory, Holmbury St Mary, Dorking, Surrey, RH5 6NT, United Kingdom
Instituto de Astronomía y Física del Espacio (IAFE), CONICET-UBA, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales (FCEN), UBA, Buenos Aires, Argentina
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budapest, Hungary
Palabras clave:Active regions, magnetic fields; Active regions, velocity field; Corona, active; Spectral line, broadening
Año:2013
Volumen:283
Número:2
Página de inicio:341
Página de fin:367
DOI: http://dx.doi.org/10.1007/s11207-013-0234-7
Título revista:Solar Physics
Título revista abreviado:Sol. Phys.
ISSN:00380938
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00380938_v283_n2_p341_Demoulin

Referencias:

  • Aulanier, G., Janvier, M., Schmieder, B., (2012) Astron. Astrophys., 543, pp. A110. , doi:10.1051/0004-6361/201219311
  • Aulanier, G., Pariat, E., Démoulin, P., (2005) Astron. Astrophys., 444, p. 961. , doi:10.1051/0004-6361:20053600
  • Baker, D., van Driel-Gesztelyi, L., Mandrini, C.H., Démoulin, P., Murray, M.J., (2009) Astrophys. J., 705, p. 926. , doi:10.1088/0004-637X/705/1/926
  • Bradshaw, S.J., Aulanier, G., Del Zanna, G., (2011) Astrophys. J., 743, p. 66. , doi:10.1088/0004-637X/743/1/66
  • Brooks, D.H., Warren, H.P., (2011) Astrophys. J. Lett., 727, pp. L13. , doi:10.1088/2041-8205/727/1/L13
  • Bryans, P., Young, P.R., Doschek, G.A., (2010) Astrophys. J., 715, p. 1012. , doi:10.1088/0004-637X/715/2/1012
  • Brynildsen, N., Brekke, P., Fredvik, T., Haugan, S.V.H., Kjeldseth-Moe, O., Maltby, P., (1998) Solar Phys., 179, p. 279
  • Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., (2007) Solar Phys., 243, p. 19. , doi:10.1007/s01007-007-0293-1
  • De Pontieu, B., McIntosh, S.W., Hansteen, V.H., Schrijver, C.J., (2009) Astrophys. J. Lett., 701, pp. L1. , doi:10.1088/0004-637X/701/1/L1
  • Del Zanna, G., (2008) Astron. Astrophys., 481, pp. L49. , doi:10.1051/0004-6361:20079087
  • Del Zanna, G., (2009) Astron. Astrophys., 508, p. 501. , doi:10.1051/0004-6361/200913082
  • Del Zanna, G., (2009) Astron. Astrophys., 508, p. 513. , doi:10.1051/0004-6361/200912557
  • Del Zanna, G., Aulanier, G., Klein, K.L., Török, T., (2011) Astron. Astrophys., 526, pp. A137. , doi:10.1051/0004-6361/201015231
  • Démoulin, P., Hénoux, J.C., Priest, E.R., Mandrini, C.H., (1996) Astron. Astrophys., 308, p. 643
  • Démoulin, P., Bagalá, L.G., Mandrini, C.H., Hénoux, J.C., Rovira, M.G., (1997) Astron. Astrophys., 325, p. 305
  • Doschek, G.A., Mariska, J.T., Warren, H.P., Brown, C.M., Culhane, J.L., Hara, H., Watanabe, T., Mason, H.E., (2007) Astrophys. J. Lett., 667, pp. L109. , doi:10.1086/522087
  • Doschek, G.A., Warren, H.P., Mariska, J.T., Muglach, K., Culhane, J.L., Hara, H., Watanabe, T., (2008) Astrophys. J., 686, p. 1362. , doi:10.1086/591724
  • Gekelman, W., Lawrence, E., van Compernolle, B., (2012) Astrophys. J., 753, p. 131. , doi:10.1088/0004-637X/753/2/131
  • Hara, H., Watanabe, T., Harra, L.K., Culhane, J.L., Young, P.R., Mariska, J.T., Doschek, G.A., (2008) Astrophys. J. Lett., 678, pp. L67. , doi:10.1086/588252
  • Harra, L.K., Sakao, T., Mandrini, C.H., Hara, H., Imada, S., Young, P.R., van Driel-Gesztelyi, L., Baker, D., (2008) Astrophys. J. Lett., 676, pp. L147. , doi:10.1086/587485
  • Imada, S., Hara, H., Watanabe, T., Kamio, S., Asai, A., Matsuzaki, K., Harra, L.K., Mariska, J.T., (2007) Publ. Astron. Soc. Japan, 59, pp. S793
  • Imada, S., Hara, H., Watanabe, T., Murakami, I., Harra, L.K., Shimizu, T., Zweibel, E.G., (2011) Astrophys. J., 743, p. 57. , doi:10.1088/0004-637X/743/1/57
  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., (2007) Solar Phys., 243, p. 3. , doi:10.1007/s11207-007-9014-6
  • Marsch, E., Wiegelmann, T., Xia, L.D., (2004) Astron. Astrophys., 428, p. 629. , doi:10.1051/0004-6361:20041060
  • Masson, S., Aulanier, G., Pariat, E., Klein, K.L., (2012) Solar Phys., 276, p. 199. , doi:10.1007/s11207-011-9886-3
  • McIntosh, S.W., de Pontieu, B., (2009) Astrophys. J., 707, p. 524. , doi:10.1088/0004-637X/707/1/524
  • Peter, H., (2010) Astron. Astrophys., 521, pp. A51. , doi:10.1051/0004-6361/201014433
  • Sakao, T., Kano, R., Narukage, N., Kotoku, J., Bando, T., DeLuca, E.E., (2007) Science, 318, p. 1585
  • Sechler, M., McIntosh, S.W., Tian, H., De Pontieu, B., (2012) 4th Hinode Science Meeting: Unsolved Problems and Recent Insights, 455, p. 361
  • Teriaca, L., Banerjee, D., Doyle, J.G., (1999) Astron. Astrophys., 349, p. 636
  • Tian, H., McIntosh, S.W., De Pontieu, B., (2011) Astrophys. J. Lett., 727, pp. L37. , doi:10.1088/2041-8205/727/2/L37
  • Tian, H., McIntosh, S.W., De Pontieu, B., Martínez-Sykora, J., Sechler, M., Wang, X., (2011) Astrophys. J., 738, p. 18. , doi:10.1088/0004-637X/738/1/18
  • Tripathi, D., Mason, H.E., Dwivedi, B.N., del Zanna, G., Young, P.R., (2009) Astrophys. J., 694, p. 1256. , doi:10.1088/0004-637X/694/2/1256
  • Ugarte-Urra, I., Warren, H.P., (2011) Astrophys. J., 730, p. 37. , doi:10.1088/0004-637X/730/1/37
  • van Driel-Gesztelyi, L., Culhane, J.L., Baker, D., Démoulin, P., Mandrini, C., DeRosa, M.L., (2012) Solar Phys., , doi:10.1007/s11207-012-0076-8
  • Warren, H.P., Ugarte-Urra, I., Young, P.R., Stenborg, G., (2011) Astrophys. J., 727, p. 58. , doi:10.1088/0004-637X/727/1/58
  • Young, P.R., O'Dwyer, B., Mason, H.E., (2012) Astrophys. J., 744, p. 14. , doi:10.1088/0004-637X/744/1/14
  • Young, P.R., Del Zanna, G., Mason, H.E., Dere, K.P., Li, E., Lini, M., (2007) Publ. Astron. Soc. Japan, 59, p. 857

Citas:

---------- APA ----------
Démoulin, P., Baker, D., Mandrini, C.H. & van Driel-Gesztelyi, L. (2013) . The 3D Geometry of Active Region Upflows Deduced from Their Limb-to-Limb Evolution. Solar Physics, 283(2), 341-367.
http://dx.doi.org/10.1007/s11207-013-0234-7
---------- CHICAGO ----------
Démoulin, P., Baker, D., Mandrini, C.H., van Driel-Gesztelyi, L. "The 3D Geometry of Active Region Upflows Deduced from Their Limb-to-Limb Evolution" . Solar Physics 283, no. 2 (2013) : 341-367.
http://dx.doi.org/10.1007/s11207-013-0234-7
---------- MLA ----------
Démoulin, P., Baker, D., Mandrini, C.H., van Driel-Gesztelyi, L. "The 3D Geometry of Active Region Upflows Deduced from Their Limb-to-Limb Evolution" . Solar Physics, vol. 283, no. 2, 2013, pp. 341-367.
http://dx.doi.org/10.1007/s11207-013-0234-7
---------- VANCOUVER ----------
Démoulin, P., Baker, D., Mandrini, C.H., van Driel-Gesztelyi, L. The 3D Geometry of Active Region Upflows Deduced from Their Limb-to-Limb Evolution. Sol. Phys. 2013;283(2):341-367.
http://dx.doi.org/10.1007/s11207-013-0234-7