Artículo

Silberstein, S.; Vogl, A.M.; Bonfiglio, J.J.; Wurst, W.; Holsboer, F.; Arzt, E.; Deussing, J.M.; Refojo, D. "Immunology, signal transduction, and behavior in hypothalamic-pituitary- adrenal axis-related genetic mouse models" (2009) Annals of the New York Academy of Sciences. 1153:120-130
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A classical view of the neuroendocrine-immune network assumes bidirectional interactions where pro-inflammatory cytokines influence hypothalamic-pituitary- adrenal (HPA) axis-derived hormones that subsequently affect cytokines in a permanently servo-controlled circle. Nevertheless, this picture has been continuously evolving over the last years as a result of the discovery of redundant expression and extended functions of many of the molecules implicated. Thus, cytokines are not only expressed in cells of the immune system but also in the central nervous system, and many hormones present at hypothalamic- pituitary level are also functionally expressed in the brain as well as in other peripheral organs, including immune cells. Because of this intermingled network of molecules redundantly expressed, the elucidation of the unique roles of HPA axis-related molecules at every level of complexity is one of the major challenges in the field. Genetic engineering in the mouse offers the most convincing method for dissecting in vivo the specific roles of distinct molecules acting in complex networks. Thus, various immunological, behavioral, and signal transduction studies performed with different HPA axis-related mutant mouse lines to delineate the roles of β-endorphin, the type 1 receptor of corticotropin-releasing hormone (CRHR1), and its ligand CRH will be discussed here. © 2009 New York Academy of Sciences.

Registro:

Documento: Artículo
Título:Immunology, signal transduction, and behavior in hypothalamic-pituitary- adrenal axis-related genetic mouse models
Autor:Silberstein, S.; Vogl, A.M.; Bonfiglio, J.J.; Wurst, W.; Holsboer, F.; Arzt, E.; Deussing, J.M.; Refojo, D.
Filiación:Laboratorio de Fisiología Y Biología Molecular, Departamento de Fisiología Y Biología Molecular Y Celular, IFYBINE: Inst. de Fisiol., Biol. Molec. Y Neurociencias-Consejo Nac. de Invest. Cie. Y Tecnicas, Buenos Aires, Argentina
Max-Planck Institute of Psychiatry, Munich, Germany
Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
Max-Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany
Laboratorio de Fisiología Y Biología Molecular, FCEN, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Behavior; CRF; CRH; ERK; Forced swim test; HPA axis; MAPK; Mouse models; Stress; Stress-coping behavior; β-endorphin; beta endorphin; corticotropin releasing factor; corticotropin releasing factor receptor 1; cytokine; mitogen activated protein kinase; central nervous system; conference paper; coping behavior; cytokine production; gene overexpression; genetic engineering; human; hypothalamus hypophysis adrenal system; immune system; immunocompetent cell; immunomodulation; neuroendocrine system; nonhuman; protein expression; signal transduction
Año:2009
Volumen:1153
Página de inicio:120
Página de fin:130
DOI: http://dx.doi.org/10.1111/j.1749-6632.2008.03967.x
Título revista:Annals of the New York Academy of Sciences
Título revista abreviado:Ann. New York Acad. Sci.
ISSN:00778923
CODEN:ANYAA
CAS:beta endorphin, 59887-17-1; corticotropin releasing factor, 9015-71-8, 178359-01-8, 79804-71-0, 86297-72-5, 86784-80-7; mitogen activated protein kinase, 142243-02-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00778923_v1153_n_p120_Silberstein

Referencias:

  • Smith, S.M., Vale, W.W., The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress (2006) Dialogues Clin. Neurosci., 8, pp. 383-395. , &
  • De Kloet, E.R., Joels, M., Holsboer, F., Stress and the brain: From adaptation to disease (2005) Nat. Rev. Neurosci., 6, pp. 463-475. , &
  • Hillhouse, E.W., Grammatopoulos, D.K., The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: Implications for physiology and pathophysiology (2006) Endocr. Rev., 27, pp. 260-286. , &
  • Besedovsky, H.O., Del Rey, R.A., Immune-neuro-endocrine interactions: Facts and hypotheses (1996) Endocr. Rev., 17, pp. 64-102. , &
  • Branda, C.S., Dymecki, S.M., Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice (2004) Dev. Cell, 6, pp. 7-28. , &
  • Deussing, J.M., Wurst, W., Dissecting the genetic effect of the CRH system on anxiety and stress-related behaviour (2005) C.R. Biol., 328, pp. 199-212. , &
  • Bale, T.L., Vale, W.W., CRF and CRF receptors: Role in stress responsivity and other behaviors (2004) Annu. Rev. Pharmacol. Toxicol., 44, pp. 525-557. , &
  • Herman, J.P., Figueiredo, H., Mueller, N.K., Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness (2003) Front Neuroendocrinol., 24, pp. 151-180
  • Korosi, A., Baram, T.Z., The central corticotropin releasing factor system during development and adulthood (2008) Eur. J. Pharmacol., 583, pp. 204-214. , &
  • Smagin, G.N., Heinrichs, S.C., Dunn, A.J., The role of CRH in behavioral responses to stress (2001) Peptides, 22, pp. 713-724. , &
  • Arborelius, L., Owens, M.J., Plotsky, P.M., The role of corticotropin-releasing factor in depression and anxiety disorders (1999) J. Endocrinol., 160, pp. 1-12
  • Buzzetti, R., McLoughlin, L., Lavender, P.M., Expression of pro-opiomelanocortin gene and quantification of adrenocorticotropic hormone-like immunoreactivity in human normal peripheral mononuclear cells and lymphoid and myeloid malignancies (1989) J. Clin. Invest., 83, pp. 733-737
  • Lyons, P.D., Blalock, J.E., Pro-opiomelanocortin gene expression and protein processing in rat mononuclear leukocytes (1997) J. Neuroimmunol., 78, pp. 47-56. , &
  • Cabot, P.J., Carter, L., Gaiddon, C., Immune cell-derived beta-endorphin. Production, release, and control of inflammatory pain in rats (1997) J. Clin. Invest., 100, pp. 142-148
  • Smith, E.M., Blalock, J.E., Human lymphocyte production of corticotropin and endorphin-like substances: Association with leukocyte interferon (1981) Proc. Natl. Acad. Sci. USA, 78, pp. 7530-7534. , &
  • Kavelaars, A., Ballieux, R.E., Heijnen, C.J., The role of IL-1 in the corticotropin-releasing factor and arginine-vasopressin-induced secretion of immunoreactive beta-endorphin by human peripheral blood mononuclear cells (1989) J. Immunol., 142, pp. 2338-2342. , &
  • Blalock, J.E., Beta-endorphin in immune cells (1998) Immunol. Today, 19, pp. 191-192
  • Panerai, A.E., Sacerdote, P., Beta-endorphin in the immune system: A role at last? (1997) Immunol. Today, 18, pp. 317-319. , &
  • Apte, R.N., Durum, S.K., Oppenheim, J.J., Opioids modulate interleukin-1 production and secretion by bone-marrow macrophages (1990) Immunol. Lett., 24, pp. 141-148. , &
  • Hosoi, J., Ozawa, H., Granstein, R.D., Beta-Endorphin binding and regulation of cytokine expression in Langerhans cells (1999) Ann. N. Y. Acad. Sci., 885, pp. 405-413. , &
  • Kovalovsky, D., Pereda, M.P., Stalla, G.K., Differential regulation of interleukin-1 receptor antagonist by proopiomelanocortin peptides adrenocorticotropic hormone and beta-endorphin (1999) Neuroimmunomodulation, 6, pp. 367-372
  • Belkowski, S.M., Alicea, C., Eisenstein, T.K., Inhibition of interleukin-1 and tumor necrosis factor-alpha synthesis following treatment of macrophages with the kappa opioid agonist U50, 488H (1995) J. Pharmacol. Exp. Ther., 273, pp. 1491-1496
  • Chao, C.C., Molitor, T.W., Close, K., Morphine inhibits the release of tumor necrosis factor in human peripheral blood mononuclear cell cultures (1993) Int. J. Immunopharmacol., 15, pp. 447-453
  • Fontana, L., Fattorossi, A., D'Amelio, R., Modulation of human concanavalin A-induced lymphocyte proliferative response by physiological concentrations of beta-endorphin (1987) Immunopharmacology, 13, pp. 111-115
  • Gilmore, W., Weiner, L.P., The opioid specificity of beta-endorphin enhancement of murine lymphocyte proliferation (1989) Immunopharmacology, 17, pp. 19-30. , &
  • Van Den Bergh, P., Rozing, J., Nagelkerken, L., Two opposing modes of action of beta-endorphin on lymphocyte function (1991) Immunology, 72, pp. 537-543. , &
  • Puppo, F., Corsini, G., Mangini, P., Influence of beta-endorphin on phytohemagglutinin-induced lymphocyte proliferation and on the expression of mononuclear cell surface antigens in vitro (1985) Immunopharmacology, 10, pp. 119-125
  • Panerai, A.E., Manfredi, B., Granucci, F., The beta-endorphin inhibition of mitogen-induced splenocytes proliferation is mediated by central and peripheral paracrine/autocrine effects of the opioid (1995) J. Neuroimmunol., 58, pp. 71-76
  • Rubinstein, M., Mogil, J.S., Japon, M., Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 3995-4000
  • Refojo, D., Kovalovsky, D., Young, J.I., Increased splenocyte proliferative response and cytokine production in beta-endorphin-deficient mice (2002) J. Neuroimmunol., 131, pp. 126-134
  • Swanson, L.W., Sawchenko, P.E., Rivier, J., Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: An immunohistochemical study (1983) Neuroendocrinology, 36, pp. 165-186
  • Grigoriadis, D.E., The corticotropin-releasing factor receptor: A novel target for the treatment of depression and anxiety-related disorders (2005) Expert. Opin. Ther. Targets, 9, pp. 651-684
  • Holsboer, F., Ising, M., Central CRH system in depression and anxiety - Evidence from clinical studies with CRH1 receptor antagonists (2008) Eur. J. Pharmacol., 583, pp. 350-357. , &
  • Todorovic, C., Jahn, O., Tezval, H., The role of CRF receptors in anxiety and depression: Implications of the novel CRF1 agonist cortagine (2005) Neurosci. Biobehav. Rev., 29, pp. 1323-1333
  • Bittencourt, J.C., Sawchenko, P.E., Do centrally administered neuropeptides access cognate receptors?: An analysis in the central corticotropin-releasing factor system (2000) J. Neurosci., 20, pp. 1142-1156. , &
  • Van Pett, K., Viau, V., Bittencourt, J.C., Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse (2000) J. Comp Neurol., 428, pp. 191-212
  • Hauger, R.L., Risbrough, V., Brauns, O., Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: New molecular targets (2006) CNS Neurol. Disord. Drug Targets, 5, pp. 453-479
  • Timpl, P., Spanagel, R., Sillaber, I., Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1 (1998) Nat. Genet., 19, pp. 162-166
  • Smith, G.W., Aubry, J.M., Dellu, F., Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development (1998) Neuron, 20, pp. 1093-1102
  • Arzt, E., Holsboer, F., CRF signaling: Molecular specificity for drug targeting in the CNS (2006) Trends Pharmacol. Sci., 27, pp. 531-538. , &
  • Philips, A., Lesage, S., Gingras, R., Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells (1997) Mol. Cell Biol., 17, pp. 5946-5951
  • Kovalovsky, D., Refojo, D., Liberman, A.C., Activation and induction of NUR77/NURR1 in corticotrophs by CRH/cAMP: Involvement of calcium, protein kinase A, and MAPK pathways (2002) Mol. Endocrinol., 16, pp. 1638-1651
  • Brar, B.K., Chen, A., Perrin, M.H., Specificity and regulation of extracellularly regulated kinase1/2 phosphorylation through corticotropin-releasing factor (CRF) receptors 1 and 2beta by the CRF/urocortin family of peptides (2004) Endocrinology, 145, pp. 1718-1729
  • Grammatopoulos, D.K., Randeva, H.S., Levine, M.A., Urocortin, but not corticotropin-releasing hormone (CRH), activates the mitogen-activated protein kinase signal transduction pathway in human pregnant myometrium: An effect mediated via R1alpha and R2beta CRH receptor subtypes and stimulation of Gq-proteins (2000) Mol. Endocrinol., 14, pp. 2076-2091
  • Bayatti, N., Zschocke, J., Behl, C., Brain region-specific neuroprotective action and signaling of corticotropin-releasing hormone in primary neurons (2003) Endocrinology, 144, pp. 4051-4060. , &
  • Elliott-Hunt, C.R., Kazlauskaite, J., Wilde, G.J., Potential signalling pathways underlying corticotrophin-releasing hormone-mediated neuroprotection from excitotoxicity in rat hippocampus (2002) J. Neurochem., 80, pp. 416-425
  • Swinny, J.D., Metzger, F., Ijkema-Paassen, J., Corticotropin-releasing factor and urocortin differentially modulate rat Purkinje cell dendritic outgrowth and differentiation in vitro (2004) Eur. J. Neurosci., 19, pp. 1749-1758
  • Di Benedetto, B., Hitz, C., Holter, S.M., Differential mRNA distribution of components of the ERK/MAPK signalling cascade in the adult mouse brain (2007) J. Comp Neurol., 500, pp. 542-556
  • Ailing, F., Fan, L., Li, S., Role of extracellular signal-regulated kinase signal transduction pathway in anxiety (2008) J. Psychiatr. Res., 43, pp. 55-63
  • Meller, E., Shen, C., Nikolao, T.A., Region-specific effects of acute and repeated restraint stress on the phosphorylation of mitogen-activated protein kinases (2003) Brain Res., 979, pp. 57-64
  • Einat, H., Yuan, P., Gould, T.D., The role of the extracellular signal-regulated kinase signaling pathway in mood modulation (2003) J. Neurosci., 23, pp. 7311-7316
  • Duman, C.H., Schlesinger, L., Kodama, M., A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment (2007) Biol. Psychiatry, 61, pp. 661-670
  • Tronson, N.C., Schrick, C., Fischer, A., Regulatory mechanisms of fear extinction and depression-like behavior (2008) Neuropsychopharmacology, 33, pp. 1570-1583
  • Refojo, D., Echenique, C., Muller, M.B., Corticotropin-releasing hormone activates ERK1/2 MAPK in specific brain areas (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 6183-6188
  • Muller, M.B., Zimmermann, S., Sillaber, I., Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress (2003) Nat. Neurosci., 6, pp. 1100-1107
  • Qi, X., Lin, W., Li, J., The depressive-like behaviors are correlated with decreased phosphorylation of mitogen-activated protein kinases in rat brain following chronic forced swim stress (2006) Behav. Brain Res., 175, pp. 233-240
  • Dwivedi, Y., Rizavi, H.S., Roberts, R.C., Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects (2001) J. Neurochem., 77, pp. 916-928
  • Di Benedetto, B., Kallnik, M., Weisenhorn, D.M., Activation of ERK/MAPK in the Lateral Amygdala of the Mouse is Required for Acquisition of a Fear-Potentiated Startle response (2008) Neuropsychopharmacology, , In press
  • Fischer, A., Radulovic, M., Schrick, C., Hippocampal Mek/Erk signaling mediates extinction of contextual freezing behavior (2007) Neurobiol. Learn. Mem., 87, pp. 149-158
  • Berton, O., Nestler, E.J., New approaches to antidepressant drug discovery: Beyond monoamines (2006) Nat. Rev. Neurosci., 7, pp. 137-151. , &
  • Nemeroff, C.B., Widerlov, E., Bissette, G., Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients (1984) Science, 226, pp. 1342-1344
  • Holsboer, F., Von Bardeleben, U., Gerken, A., Blunted corticotropin and normal cortisol response to human corticotropin-releasing factor in depression (1984) N. Engl. J. Med., 311, p. 1127
  • Raadsheer, F.C., Hoogendijk, W.J., Stam, F.C., Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients (1994) Neuroendocrinology, 60, pp. 436-444
  • Nemeroff, C.B., Owens, M.J., Bissette, G., Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims (1988) Arch. Gen. Psychiatry, 45, pp. 577-579
  • Dunn, A.J., Berridge, C.W., Physiological and behavioral responses to corticotropin-releasing factor administration: Is CRF a mediator of anxiety or stress responses? (1990) Brain Res. Brain Res. Rev., 15, pp. 71-100. , &
  • Tamminga, C.A., Nemeroff, C.B., Blakely, R.D., Developing novel treatments for mood disorders: Accelerating discovery (2002) Biol. Psychiatry, 52, pp. 589-609
  • Stenzel-Poore, M.P., Cameron, V.A., Vaughan, J., Development of Cushing's syndrome in corticotropin-releasing factor transgenic mice (1992) Endocrinology, 130, pp. 3378-3386
  • Groenink, L., Pattij, T., De, J.R., 5-HT1A receptor knockout mice and mice overexpressing corticotropin-releasing hormone in models of anxiety (2003) Eur. J. Pharmacol., 463, pp. 185-197
  • Tronche, F., Kellendonk, C., Kretz, O., Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety (1999) Nat. Genet., 23, pp. 99-103
  • Lu, A., Steiner, M.A., Whittle, N., Conditional mouse mutants highlight mechanisms of corticotropin-releasing hormone effects on stress-coping behavior (2008) Mol. Psychiatry, 13, pp. 1028-1042
  • Hasler, G., Drevets, W.C., Manji, H.K., Discovering endophenotypes for major depression (2004) Neuropsychopharmacology, 29, pp. 1765-1781
  • Van Gaalen, M.M., Reul, J.H., Gesing, A., Mice overexpressing CRH show reduced responsiveness in plasma corticosterone after a5-HT1A receptor challenge (2002) Genes Brain Behav., 1, pp. 174-177
  • Steckler, T., Holsboer, F., Corticotropin-releasing hormone receptor subtypes and emotion (1999) Biol. Psychiatry, 46, pp. 1480-1508. , &

Citas:

---------- APA ----------
Silberstein, S., Vogl, A.M., Bonfiglio, J.J., Wurst, W., Holsboer, F., Arzt, E., Deussing, J.M.,..., Refojo, D. (2009) . Immunology, signal transduction, and behavior in hypothalamic-pituitary- adrenal axis-related genetic mouse models. Annals of the New York Academy of Sciences, 1153, 120-130.
http://dx.doi.org/10.1111/j.1749-6632.2008.03967.x
---------- CHICAGO ----------
Silberstein, S., Vogl, A.M., Bonfiglio, J.J., Wurst, W., Holsboer, F., Arzt, E., et al. "Immunology, signal transduction, and behavior in hypothalamic-pituitary- adrenal axis-related genetic mouse models" . Annals of the New York Academy of Sciences 1153 (2009) : 120-130.
http://dx.doi.org/10.1111/j.1749-6632.2008.03967.x
---------- MLA ----------
Silberstein, S., Vogl, A.M., Bonfiglio, J.J., Wurst, W., Holsboer, F., Arzt, E., et al. "Immunology, signal transduction, and behavior in hypothalamic-pituitary- adrenal axis-related genetic mouse models" . Annals of the New York Academy of Sciences, vol. 1153, 2009, pp. 120-130.
http://dx.doi.org/10.1111/j.1749-6632.2008.03967.x
---------- VANCOUVER ----------
Silberstein, S., Vogl, A.M., Bonfiglio, J.J., Wurst, W., Holsboer, F., Arzt, E., et al. Immunology, signal transduction, and behavior in hypothalamic-pituitary- adrenal axis-related genetic mouse models. Ann. New York Acad. Sci. 2009;1153:120-130.
http://dx.doi.org/10.1111/j.1749-6632.2008.03967.x