Artículo

Estamos trabajando para conseguir la versión final de este artículo
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Phasins are the major polyhydroxyalkanoate (PHA) granule-associated proteins. They promote bacterial growth and PHA synthesis and affect the number, size, and distribution of the granules. These proteins can be classified in 4 families with distinctive characteristics. Low-resolution structural studies and in silico predictions were performed in order to elucidate the structure of different phasins. Most of these proteins share some common structural features, such as a preponderant α-helix composition, the presence of disordered regions that provide flexibility to the protein, and coiled-coil interacting regions that form oligomerization domains. Due to their amphiphilic nature, these proteins play an important structural function, forming an interphase between the hydrophobic content of PHA granules and the hydrophilic cytoplasm content. Phasins have been observed to affect both PHA accumulation and utilization. Apart from their role as granule structural proteins, phasins have a remarkable variety of additional functions. Different phasins have been determined to (i) activate PHA depolymerization, (ii) increase the expression and activity of PHA synthases, (iii) participate in PHA granule segregation, and (iv) have both in vivo and in vitro chaperone activities. These properties suggest that phasins might play an active role in PHA-related stress protection and fitness enhancement. Due to their granule binding capacity and structural flexibility, several biotechnological applications have been developed using different phasins, increasing the interest in the study of these remarkable proteins. © 2016, American Society for Microbiology.

Registro:

Documento: Artículo
Título:Phasins, multifaceted polyhydroxyalkanoate granule-associated proteins
Autor:Mezzina, M.P.; Pettinari, M.J.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
Palabras clave:Cytology; Granulation; Biotechnological applications; Granule-associated proteins; Hydrophobic content; Poly-hydroxyalkanoate; Polyhydroxyalkanoates; Structural flexibilities; Structural function; Structural proteins; Proteins; biotechnology; cytoplasm; enzyme activity; growth rate; hydrophobicity; polymer; protein; Bacteria (microorganisms); acyltransferase; bacterial protein; phasin; plant lectin; poly(3-hydroxyalkanoic acid) synthase; polyhydroxyalkanoic acid; bacterium; chemistry; enzymology; genetics; metabolism; Acyltransferases; Bacteria; Bacterial Proteins; Plant Lectins; Polyhydroxyalkanoates
Año:2016
Volumen:82
Número:17
Página de inicio:5060
Página de fin:5067
DOI: http://dx.doi.org/10.1128/AEM.01161-16
Título revista:Applied and Environmental Microbiology
Título revista abreviado:Appl. Environ. Microbiol.
ISSN:00992240
CODEN:AEMID
CAS:acyltransferase, 9012-30-0, 9054-54-0; Acyltransferases; Bacterial Proteins; phasin; Plant Lectins; poly(3-hydroxyalkanoic acid) synthase; Polyhydroxyalkanoates
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00992240_v82_n17_p5060_Mezzina

Referencias:

  • Keshavarz, T., Roy, I., Polyhydroxyalkanoates: bioplastics with a green agenda (2010) Curr Opin Microbiol, 13, pp. 321-326. , http://dx.doi.org/10.1016/j.mib.2010.02.006
  • Rai, R., Keshavarz, T., Roether, J.A., Boccaccini, A.R., Roy, I., Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future (2011) Mater Sci Eng R, 72, pp. 29-47. , http://dx.doi.org/10.1016/j.mser.2010.11.002
  • Jendrossek, D., Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes) (2009) J Bacteriol, 191, pp. 3195-3202. , http://dx.doi.org/10.1128/JB.01723-08
  • Pieper-Fürst, U., Madkour, M.H., Mayer, F., Steinbüchel, A., Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules in Rhodococcus ruber (1994) J Bacteriol, 176, pp. 4328-4337
  • Wieczorek, R., Pries, A., Steinbüchel, A., Mayer, F., Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus (1995) J Bacteriol, 177, pp. 2425-2435
  • Pötter, M., Müller, H., Reinecke, F., Wieczorek, R., Fricke, F., Bowien, B., Friedrich, B., Steinbüchel, A., The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha (2004) Microbiology, 150, pp. 2301-2311. , http://dx.doi.org/10.1099/mic.0.26970-0
  • Pfeiffer, D., Jendrossek, D., Localization of poly(3-hydroxybutyrate) (PHB) granule-associated proteins during PHB granule formation and identification of two new phasins, PhaP6 and PhaP7, in Ralstonia eutropha H16 (2012) J Bacteriol, 194, pp. 5909-5921. , http://dx.doi.org/10.1128/JB.00779-12
  • McCool, G.J., Cannon, M.C., Polyhydroxyalkanoate inclusion bodyassociated proteins and coding region in Bacillus megaterium (1999) J Bacteriol, 181, pp. 585-592
  • Maehara, A., Ueda, S., Nakano, H., Yamane, T., Analyses of a polyhydroxyalkanoic acid granule-associated 16-kilodalton protein and its putative regulator in the pha locus of Paracoccus denitrificans (1999) J Bacteriol, 181, pp. 2914-2921
  • Prieto, M.A., Bühler, B., Jung, K., Witholt, B., Kessler, B., PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes (1999) J Bacteriol, 181, pp. 858-868
  • Peralta-Gil, M., Segura, D., Guzmán, J., Servi, L., Expression of the Azotobacter vinelandii poly-β-hydroxybutyrate biosynthetic phbBAC operon is driven by two overlapping promoters and is dependent on the transcriptional activator PhbR (2002) J Bacteriol, 184, pp. 5672-5677. , http://dx.doi.org/10.1128/JB.184.20.5672-5677.2002
  • Hauf, W., Watzer, B., Roos, N., Klotz, A., Forchhammer, K., Photoautotrophic polyhydroxybutyrate granule formation is regulated by cyanobacterial phasin PhaP in Synechocystis s. strain PCC 6803 (2015) Appl Environ Microbiol, 81, pp. 4411-4422
  • Cai, S., Cai, L., Liu, H., Liu, X., Han, J., Zhou, J., Xiang, H., Identification of the haloarchaeal phasin (PhaP) that functions in polyhydroxyalkanoate accumulation and granule formation in Haloferax mediterranei (2012) Appl Environ Microbiol, 78, pp. 1946-1952. , http://dx.doi.org/10.1128/AEM.07114-11
  • Hokamura, A., Fujino, K., Isoda, Y., Arizono, K., Shiratsuchi, H., Hiromi, M., Characterization and identification of the proteins bound to two types of polyhydroxyalkanoate granules in Pseudomonas sp. 61-3 (2015) Biosci Biotechnol Biochem, 79, pp. 1369-1377
  • Ayub, N.D., Pettinari, M.J., Méndez, B.S., López, N.I., The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island (2007) Plasmid, 58, pp. 240-248. , http://dx.doi.org/10.1016/j.plasmid.2007.05.003
  • Manso Cobos, I., Ibáñez García, M.I., de la Peña Moreno, F., Sáez Melero, L.P., Luque-Almagro, V.M., Castillo Rodríguez, F., Roldán Ruiz, M.D., Moreno Vivián, C., Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity (2015) Microb Cell Fact, 14, pp. 771-772. , http://dx.doi.org/10.1186/s12934-015-0267-8
  • Neumann, L., Spinozzi, F., Sinibaldi, R., Rustichelli, F., Pötter, M., Steinbüchel, A., Binding of the major phasin, PhaP1, from Ralstonia eutropha H16 to poly(3-hydroxybutyrate) granules (2008) J Bacteriol, 190, pp. 2911-2919. , http://dx.doi.org/10.1128/JB.01486-07
  • Mezzina, M.P., Wetzler, D.E., Catone, M.V., Bucci, H., Di Paola, M., Pettinari, M.J., A phasin with many faces: structural insights on PhaP from Azotobacter sp. FA8 (2014) PLoS One, 9. , http://dx.doi.org/10.1371/journal.pone.0103012
  • Maestro, B., Galán, B., Alfonso, C., Rivas, G., Prieto, M.A., Sanz, J.M., A new family of intrinsically disordered proteins: structural characterization of the major phasin PhaF from Pseudomonas putida KT2440 (2013) PLoS One, 8. , http://dx.doi.org/10.1371/journal.pone.0056904
  • Zhao, M., Li, Z., Zheng, W., Lou, Z., Chen, G.Q., Crystallization and initial X-ray analysis of polyhydroxyalkanoate granule-associated protein from Aeromonas hydrophila (2006) Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, pp. 814-819. , http://dx.doi.org/10.1107/S1744309106025000
  • Sickmeier, M., Hamilton, J.A., LeGall, T., Vacic, V., Cortese, M.S., Tantos, A., Szabo, B., Dunker, A.K., DisProt: the Database of Disordered Proteins (2007) Nucleic Acids Res, 35, pp. D786-D793. , http://dx.doi.org/10.1093/nar/gkl893
  • Pfeiffer, D., Jendrossek, D., Development of a transferable bimolecular fluorescence complementation system for the investigation of interactions between poly(3-hydroxybutyrate) granule-associated proteins in gram-negative bacteria (2013) Appl Environ Microbiol, 79, pp. 2989-2999. , http://dx.doi.org/10.1128/AEM.03965-12
  • Mezzina, M.P., Wetzler, D.E., de Almeida, A., Dinjaski, N., Prieto, M.A., Pettinari, M.J., A phasin with extra talents: a polyhydroxyalkanoate granule-associated protein has chaperone activity (2015) Environ Microbiol, 17, pp. 1765-1776. , http://dx.doi.org/10.1111/1462-2920.12636
  • Kalscheuer, R., Wältermann, M., Manuel, H., Alexander, A., Preparative isolation of lipid inclusions from Rhodococcus opacus and Rhodococcus ruber and identification of granule-associated proteins (2001) Arch Microbiol, 177, pp. 20-28. , http://dx.doi.org/10.1007/s00203-001-0355-5
  • Hanisch, J., Waltermann, M., Robenek, H., Steinbüchel, A., The Ralstonia eutropha H16 phasin PhaP1 is targeted to intracellular triacylglycerol inclusions in Rhodococcus opacus PD630 and Mycobacterium smegmatis mc2155, and provides an anchor to target other proteins (2016) Microbiology, 152, pp. 3271-3280. , http://dx.doi.org/10.1099/mic.0.28969-0
  • Pfeiffer, D., Jendrossek, D., Interaction between poly(3-hydroxybutyrate) granule-associated proteins as revealed by two-hybrid analysis and identification of a new phasin in Ralstonia eutropha H16 (2011) Microbiology, 157, pp. 2795-2807. , http://dx.doi.org/10.1099/mic.0.051508-0
  • de Almeida, A., Nikel, P.I., Giordano, A.M., Pettinari, M.J., Effects of granule-associated protein PhaP on glycerol-dependent growth and polymer production in poly(3-hydroxybutyrate)-producing Escherichia coli (2007) Appl Environ Microbiol, 73, pp. 7912-7916. , http://dx.doi.org/10.1128/AEM.01900-07
  • Handrick, R., Reinhardt, S., Schultheiss, D., Reichart, T., Jendrossek, V., Jendrossek, D., Unraveling the function of the Rhodospirillum rubrum activator of polyhydroxybutyrate (PHB) degradation: the activator is a PHB-granule-bound protein (phasin) (2004) J Bacteriol, 186, pp. 2466-2475. , http://dx.doi.org/10.1128/JB.186.8.2466-2475.2004
  • Steinbuchel, A., Aerts, K., Babel, W., Follner, C., Liebergesell, M., Madkour, M.H., Mayer, F., Valentin, H.E., Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions (1995) Can J Microbiol, 41, pp. S94-S105
  • York, G.M., Junker, B.H., Stubbe, J.O.A., Sinskey, A.J., Accumulation of the PhaP phasin of Ralstonia eutropha is dependent on production of polyhydroxybutyrate in cells (2001) J Bacteriol, 183, pp. 4217-4226. , http://dx.doi.org/10.1128/JB.183.14.4217-4226.2001
  • York, G.M., Stubbe, J., Sinskey, A.J., New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate (2001) J Bacteriol, 183, pp. 2394-2397. , http://dx.doi.org/10.1128/JB.183.7.2394-2397.2001
  • York, G.M., Stubbe, J., Sinskey, A.J., The Ralstonia eutropha PhaR protein couples synthesis of the PhaP phasin to the presence of polyhydroxybutyrate in cells and promotes polyhydroxybutyrate production (2002) J Bacteriol, 184, pp. 59-66. , http://dx.doi.org/10.1128/JB.184.1.59-66.2002
  • Pötter, M., Madkour, M.H., Mayer, F., Steinbüchel, A., Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16 (2002) Microbiology, 148, pp. 2413-2426. , http://dx.doi.org/10.1099/00221287-148-8-2413
  • Pötter, M., Steinbüchel, A., Poly(3-hydroxybutyrate) granuleassociated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation (2005) Biomacromolecules, 6, pp. 552-560. , http://dx.doi.org/10.1021/bm049401n
  • Lee, T.-R., Lin, J.-S., Wang, S.-S., Shaw, G.-C., PhaQ, a new class of poly-β-hydroxybutyrate (PHB)-responsive repressor, regulates phaQ and phaP (phasin) expression in Bacillus megaterium through interaction with PHB (2004) J Bacteriol, 186, pp. 3015-3021. , http://dx.doi.org/10.1128/JB.186.10.3015-3021.2004
  • Cai, S., Cai, L., Zhao, D., Liu, G., Han, J., Zhou, J., Xiang, H., A novel DNA-binding protein, PhaR, plays a central role in the regulation of polyhydroxyalkanoate accumulation and granule formation in the haloarchaeon Haloferax mediterranei (2015) Appl Environ Microbiol, 81, pp. 373-385. , http://dx.doi.org/10.1128/AEM.02878-14
  • Handrick, R., Technow, U., Reichart, T., Reinhardt, S., Sander, T., Jendrossek, D., The activator of the Rhodospirillum rubrum PHB depolymerase is a polypeptide that is extremely resistant to high temperature (121°C) and other physical or chemical stresses (2004) FEMS Microbiol Lett, 230, pp. 265-274. , http://dx.doi.org/10.1016/S0378-1097(03)00919-4
  • Kuchta, K., Chi, L., Fuchs, H., Pötter, M., Steinbüchel, A., Studies on the influence of phasins on accumulation and degradation of PHB and nanostructure of PHB granules in Ralstonia eutropha H16 (2007) Biomacromolecules, 8, pp. 657-662. , http://dx.doi.org/10.1021/bm060912e
  • Schultheiss, D., Handrick, R., Jendrossek, D., Hanzlik, M., Schüler, D., The presumptive magnetosome protein Mms16 is a poly(3-hydroxybutyrate) granule-bound protein (phasin) in Magnetospirillum gryphiswaldense (2005) J Bacteriol, 187, pp. 2416-2425. , http://dx.doi.org/10.1128/JB.187.7.2416-2425.2005
  • Qi, Q., Steinbüchel, A., Rehm, B.H.A., In vitro synthesis of poly(3-hydroxydecanoate): purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa (2000) Appl Microbiol Biotechnol, 54, pp. 37-43. , http://dx.doi.org/10.1007/s002530000357
  • Pfeiffer, D., Jendrossek, D., PhaM is the physiological activator of poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) in Ralstonia eutropha (2014) Appl Environ Microbiol, 80, pp. 555-563. , http://dx.doi.org/10.1128/AEM.02935-13
  • Ushimaru, K., Motoda, Y., Numata, K., Tsuge, T., Phasin proteins activate Aeromonas caviae polyhydroxyalkanoate (PHA) synthase but not Ralstonia eutropha PHA synthase (2014) Appl Environ Microbiol, 80, pp. 2867-2873. , http://dx.doi.org/10.1128/AEM.04179-13
  • Kawashima, Y., Orita, I., Nakamura, S., Fukui, T., Compositional regulation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by replacement of granule-associated protein in Ralstonia eutropha (2015) Microb Cell Fact, 14, pp. 1-12. , http://dx.doi.org/10.1186/s12934-014-0183-3
  • Galán, B., Dinjaski, N., Maestro, B., de Eugenio, L.I., Escapa, I.F., Sanz, J.M., García, J.L., Prieto, M.A., Nucleoid-associated PhaF phasin drives intracellular location and segregation of polyhydroxyalkanoate granules in Pseudomonas putida KT2442 (2011) Mol Microbiol, 79, pp. 402-418. , http://dx.doi.org/10.1111/j.1365-2958.2010.07450.x
  • Tian, S.-J., Lai, W.-J., Zheng, Z., Wang, H.-X., Chen, G.-Q., Effect of overexpression of phasin gene from Aeromonas hydrophila on biosynthesis of copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (2005) FEMS Microbiol Lett, 244, pp. 19-25. , http://dx.doi.org/10.1016/j.femsle.2005.01.020
  • Han, M., Yoon, S.S., Lee, S.Y., Proteome analysis of metabolically engineered Escherichia coli producing poly(3-hydroxybutyrate) (2001) J Bacteriol, 183, pp. 301-308. , http://dx.doi.org/10.1128/JB.183.1.301-308.2001
  • Han, M., Park, S.J., Lee, J.W., Min, B., Lee, S.Y., Kim, S., Yoo, J.S., Analysis of poly(3-hydroxybutyrate) granule-associated proteome in recombinant Escherichia coli (2006) J Microbiol Biotechnol, 16, pp. 901-910
  • de Almeida, A., Catone, M.V., Rhodius, V.A., Gross, C.A., Pettinari, M.J., Unexpected stress-reducing effect of PhaP, a poly(3-hydroxybutyrate) granule-associated protein, in Escherichia coli (2011) Appl Environ Microbiol, 77, pp. 6622-6629. , http://dx.doi.org/10.1128/AEM.05469-11
  • Kadouri, D., Jurkevitch, E., Okon, Y., Castro-Sowinski, S., Ecological and agricultural significance of bacterial polyhydroxyalkanoates (2005) Crit Rev Microbiol, 31, pp. 55-67. , http://dx.doi.org/10.1080/10408410590899228
  • Banki, M.R., Gerngross, T.U., Wood, D.W., Novel and economical purification of recombinant proteins: intein-mediated protein purification using in vivo polyhydroxybutyrate (PHB) matrix association (2005) Protein Sci, 14, pp. 1387-1395
  • Yao, Y.-C., Zhan, X.-Y., Zhang, J., Zou, X.-H., Wang, Z.-H., Xiong, Y.-C., Chen, J., Chen, G.-Q., A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands (2008) Biomaterials, 29, pp. 4823-4830. , http://dx.doi.org/10.1016/j.biomaterials.2008.09.008
  • Moldes, C., García, P., García, L., Prieto, M.A., In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF (2004) Appl Environ Microbiol, 70, pp. 3205-3212. , http://dx.doi.org/10.1128/AEM.70.6.3205-3212.2004
  • Moldes, C., Farinós, G.P., de Eugenio, L.I., García, P., García, J.L., Ortego, F., Hernández-Crespo, P., Prieto, M.A., New tool for spreading proteins to the environment: Cry1Ab toxin immobilized to bioplastics (2006) Appl Microbiol Biotechnol, 72, pp. 88-93. , http://dx.doi.org/10.1007/s00253-005-0257-6
  • Bäckström, B.T., Brockelbank, J.A., Rehm, B.H.A., Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein (2007) BMC Biotechnol, 7, p. 3. , http://dx.doi.org/10.1186/1472-6750-7-3
  • Wei, D.-X., Chen, C.-B., Fang, G., Li, S.-Y., Chen, G.-Q., Application of polyhydroxyalkanoate binding protein PhaP as a bio-surfactant (2011) Appl Microbiol Biotechnol, 91, pp. 1037-1047. , http://dx.doi.org/10.1007/s00253-011-3258-7
  • Segura, D., Espín, G., Inactivation of pycA, encoding pyruvate carboxylase activity, increases poly-beta-hydroxybutyrate accumulation in Azotobacter vinelandii on solid medium (2004) Appl Microbiol Biotechnol, 65, pp. 414-418
  • Segura, D., Guzmán, J., Espín, G., Azotobacter vinelandii mutants that overproduce poly-beta-hydroxybutyrate or alginate (2003) Appl Microbiol Biotechnol, 63, pp. 159-163

Citas:

---------- APA ----------
Mezzina, M.P. & Pettinari, M.J. (2016) . Phasins, multifaceted polyhydroxyalkanoate granule-associated proteins. Applied and Environmental Microbiology, 82(17), 5060-5067.
http://dx.doi.org/10.1128/AEM.01161-16
---------- CHICAGO ----------
Mezzina, M.P., Pettinari, M.J. "Phasins, multifaceted polyhydroxyalkanoate granule-associated proteins" . Applied and Environmental Microbiology 82, no. 17 (2016) : 5060-5067.
http://dx.doi.org/10.1128/AEM.01161-16
---------- MLA ----------
Mezzina, M.P., Pettinari, M.J. "Phasins, multifaceted polyhydroxyalkanoate granule-associated proteins" . Applied and Environmental Microbiology, vol. 82, no. 17, 2016, pp. 5060-5067.
http://dx.doi.org/10.1128/AEM.01161-16
---------- VANCOUVER ----------
Mezzina, M.P., Pettinari, M.J. Phasins, multifaceted polyhydroxyalkanoate granule-associated proteins. Appl. Environ. Microbiol. 2016;82(17):5060-5067.
http://dx.doi.org/10.1128/AEM.01161-16