Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Organophosphate insecticides (OPs) are commonly used in Argentina and around the world for pest control in food crops. They exert their toxicity through the inhibition of the enzyme acetylcholinesterase. In the present study, we aimed to evaluate biochemical and reproductive effects in Biomphalaria straminea, a freshwater gastropod naturally distributed in Argentina, of subchronic exposures to environmental azinphos-methyl concentrations (20 and 200 µg L−1). For biochemical parameters, adult organisms were exposed for 14 days and the activity of cholinesterases (ChEs), carboxylesterases (CEs), glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), the production of reactive oxygen species (ROS), the total antioxidant capacity (TAC), glycogen and proteins were determined. For reproductive parameters, the egg masses of B. straminea were exposed to azinphos-methyl for one month, and the hatching time and success as well as the offspring survival were registered. We found different toxic effects elicited by the insecticide on the studied biomarkers. CEs activity was significantly inhibited while CAT and GST activities, ROS production and TAC were significantly increased, with respect to the solvent control group. ChE and SOD activities and protein and glycogen contents were not altered by azinphos-methyl. The hatching time and success were not statistically different from control. Nevertheless, the offspring survival was severely affected by the insecticide. Our results show that the primary target of the insecticide (ChE) was not inhibited but CEs, GST, CAT, ROS, TAC and offspring survival were sensitive biomarkers and valuable endpoints for subchronic toxicity assessments in this species. © 2018 Elsevier Inc.

Registro:

Documento: Artículo
Título:Environmental concentrations of azinphos-methyl cause different toxic effects without affecting the main target (cholinesterases) in the freshwater gastropod Biomphalaria straminea
Autor:Cossi, P.F.; Herbert, L.T.; Yusseppone, M.S.; Pérez, A.F.; Kristoff, G.
Filiación:Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica, Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos, Buenos Aires, Argentina
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica, Laboratorio de Enzimología, Estrés Oxidativo, y Metabolismo, Buenos Aires, Argentina
CONICET - Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
Universidad Maimónides. CEBBAD, Laboratorio de Invertebrados Marinos, Buenos Aires, Argentina
Palabras clave:Antioxidants; B-esterases; Biomarkers; Insecticide; Invertebrates; Reproduction; azinphos methyl; biological marker; carboxylesterase; catalase; cholinesterase; glutathione transferase; glycogen; protein; reactive oxygen metabolite; superoxide dismutase; azinphos methyl; carboxylesterase; catalase; cholinesterase; fresh water; glutathione transferase; insecticide; reactive oxygen metabolite; superoxide dismutase; antioxidant; biomarker; concentration (composition); gastropod; insecticide; invertebrate; pollution exposure; reproductive behavior; toxicity; adult; antioxidant activity; Argentina; Article; biochemical analysis; Biomphalaria straminea; chemical parameters; concentration (parameters); controlled study; environmental exposure; enzyme activity; hatching; nonhuman; protein analysis; reproduction; survival rate; toxicity testing; urogenital system parameters; zygote; animal; Biomphalaria; drug effect; metabolism; physiology; toxicity; water pollutant; Argentina; Biomphalaria straminea; Gastropoda; Invertebrata; Animals; Azinphosmethyl; Biomarkers; Biomphalaria; Carboxylic Ester Hydrolases; Catalase; Cholinesterases; Fresh Water; Glutathione Transferase; Insecticides; Reactive Oxygen Species; Reproduction; Superoxide Dismutase; Water Pollutants, Chemical
Año:2018
Volumen:162
Página de inicio:287
Página de fin:295
DOI: http://dx.doi.org/10.1016/j.ecoenv.2018.06.091
Título revista:Ecotoxicology and Environmental Safety
Título revista abreviado:Ecotoxicol. Environ. Saf.
ISSN:01476513
CODEN:EESAD
CAS:azinphos methyl, 86-50-0; carboxylesterase, 59536-71-9, 83380-83-0, 9016-18-6, 9028-01-7; catalase, 9001-05-2; cholinesterase, 9001-08-5; glutathione transferase, 50812-37-8; glycogen, 9005-79-2; protein, 67254-75-5; superoxide dismutase, 37294-21-6, 9016-01-7, 9054-89-1; Azinphosmethyl; Biomarkers; Carboxylic Ester Hydrolases; Catalase; Cholinesterases; Glutathione Transferase; Insecticides; Reactive Oxygen Species; Superoxide Dismutase; Water Pollutants, Chemical
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01476513_v162_n_p287_Cossi

Referencias:

  • Acosta, G., Arándanos y agroquímicos en Blueberries S.A (2014) D. Digit. Junio, , http://www.diariojunio.com.ar/noticia.php?noticia=64236, (Retrieved from)
  • Aliko, V., Hajdaraj, G., Caci, A., Faggio, C., Copper induced lysosomal membrane destabilisation in haemolymph cells of Mediterranean green crab (Carcinus aestuarii, Nardo, 1847) from the Narta Lagoon (Albania) (2015) Braz. Arch. Biol. Technol., 58 (5), pp. 750-756
  • Aliko, V., Qirjo, M., Sula, E., Morina, V., Faggio, C., Antioxidant defense system, immune response and erythron profile modulation in gold fish, Carassius auratus, after acute manganese treatment (2018) Fish. Shellfish Immunol., 76, pp. 101-109
  • Amado, L.L., Garcia, M.L., Ramos, P.B., Freitas, R.F., Zafalon, B., Ferreira, J.L.R., Yunes, J.S., Monserrat, J.M., A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: application to evaluate microcystins toxicity (2009) Sci. Total Environ., 407 (6), pp. 2115-2123
  • Amiard-Triquet, C., Amiard, J.-C., Rainbow, P.S., (2013) EcologicalBiomarkers: Indicators of Ecotoxicological Effects, 26. , CRC Press Boca Raton, London, New York
  • Anguiano, O.L., Castro, C., Venturino, A., Ferrari, A., Acute toxicity and biochemical effects of azinphos methyl in the amphipod Hyalella curvispina (2014) Environ. Toxicol., 29 (9), pp. 1043-1053
  • Baird, D.J., Brown, S.S., Lagadic, L., Liess, M., Maltby, L., Moreira-Santos, M., Schulz, R., Scott, G.I., In situ–based effects measures: determining the ecological relevance of measured responses (2007) Integr. Environ. Assess. Manag., 3, pp. 259-267
  • Barata, C., Solayan, A., Porte, C., Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna (2004) Aquat. Toxicol., 66 (2), pp. 125-139
  • Beauchamp, C., Fridovich, I., Improved assays and an assay applicable to acrylamide gels (1971) Anal. Biochem., 44, pp. 276-287
  • Bianco, K., Yusseppone, M.S., Otero, S., Luquet, C., de Molina, M.D.C.R., Kristoff, G., Cholinesterases and neurotoxicity as highly sensitive biomarkers for an organophosphate insecticide in a freshwater gastropod (Chilina gibbosa) with low sensitivity carboxylesterases (2013) Aquat. Toxicol., 144, pp. 26-35
  • Bianco, K., Otero, S., Oliver, A.B., Nahabedian, D., Kristoff, G., Resistance in cholinesterase activity after an acute and subchronic exposure to azinphos-methyl in the freshwater gastropod Biomphalaria straminea (2014) Ecotoxicol. Environ. Saf., 109, pp. 85-92
  • Blasco, C., Picó, Y., Prospects for combining chemical and biological methods for integrated environmental assessment (2009) TrAC Trends Anal. Chem., 28 (6), pp. 745-757
  • Burgess, R.M., Ho, K.T., Brack, W., Lamoree, M., Effects-directed analysis (EDA) and toxicity identification evaluation (TIE): complementary but different approaches for diagnosing causes of environmental toxicity (2013) Environ. Toxicol. Chem., 32 (9), pp. 1935-1945
  • Burgos-Aceves, M.A., Cohen, A., Smith, Y., Faggio, C., MicroRNAs and their role on fish oxidative stress during xenobiotic environmental exposures (2018) Ecotoxicol. Environ. Saf., 148, pp. 995-1000
  • Cacciatore, L.C., Investigación de procesos toxicocinéticos del pesticida metilazinfos en dos especies de invertebrados acuáticos (Master's thesis) (2009), Biblioteca de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Argentina (Facultad de Ciencias Exactas y Naturales); Cacciatore, L.C., Guerrero, N.V., Cochón, A.C., Cholinesterase and carboxylesterase inhibition in Planorbarius corneus exposed to binary mixtures of azinphos-methyl and chlorpyrifos (2013) Aquat. Toxicol., 128, pp. 124-134
  • Cacciatore, L.C., Nemirovsky, S.I., Guerrero, N.R.V., Cochón, A.C., Azinphos-methyl and chlorpyrifos, alone or in a binary mixture, produce oxidative stress and lipid peroxidation in the freshwater gastropod Planorbarius corneus (2015) Aquat. Toxicol., 167, pp. 12-19
  • Cao, C., Leng, Y., Kufe, D., Catalase activity is regulated by c-Abl and Arg in the oxidative stress response (2003) J. Biol. Chem., 278 (32), pp. 29667-29675
  • Capillo, G., Silvestro, S., Sanfilippo, M., Fiorino, E., Giangrosso, G., Ferrantelli, V., Vazzana, I., Faggio, C., Assessment of electrolytes and metals profile of the Faro Lake (Capo Peloro Lagoon, Sicily, Italy) and its impact on Mytilus galloprovincialis (2018) Chem. Biodivers.
  • Castañé, P.M., Sánchez-Caro, A., Salibián, A., Water quality of the Lujánriver, a lowland watercourse near the metropolitan area of Buenos Aires (Argentina) (2015) Environ. Monit. Assess., 187 (10), p. 645
  • Chromcova, L., Blahova, J., Zivna, D., Plhalova, L., Casuscelli di Tocco, F., Divisova, L., Prokes, M., Svobodova, Z., NeemAzal T/S–toxicity to early-life stages of common carp (Cyprinus carpio L.) (2015) Vet. Med. Czech, 60 (1), pp. 23-30
  • Cichón, L., Araque, L., Garrido, S., Residuos y tolerancias de insecticidas para el control de plagas frutales de pepita en el Alto Valle de Río Negro y Neuquén. Temporada 2014–2015 [pdf file]. EEA Alto Valle (2014), http://www.cafi.org.ar/wp-content/uploads/2014/09/INTA_Residuos-y-tolerancias-de-insecticidas.pdf, Instituto Nacional de Tecnología Agropecuaria (INTA) Argentina (Retrieved from); Claiborne, A., Catalase activity (1985) CRC Handbook of Methods For Oxygen Radical Research, pp. 283-284. , R. Greenwald CRC Press Boca Raton, Florida
  • Cossi, P.F., Beverly, B., Carlos, L., Kristoff, G., Recovery study of cholinesterases and neurotoxic signs in the non-target freshwater invertebrate Chilina gibbosa after an acute exposure to an environmental concentration of azinphos-methyl (2015) Aquat. Toxicol., 167, pp. 248-256
  • Cossi, P.F., Herbert, L.T., Boburg, B., Kristoff, G., Aquatic ecotoxicology: native freshwater gastropods from Argentina (2017) Ecotoxicology in Latin America., pp. 23-36. , C.V.M. Araújo C. Shinn Nova Science Publishers, Inc. New York
  • Ellman, G.L., Courtney, K.D., Andres, V., Jr., Featherstone, R.M., A new and rapidcolorimetric determination of acetylcholinesterase activity (1961) Biochem. Pharma-Col., 7, pp. 88-95
  • Faggio, C., Pagano, M., Alampi, R., Vazzana, I., Felice, M.R., Cytotoxicity, haemolymphatic parameters, and oxidative stress following exposure to sub-lethal concentrations of quaternium-15 in Mytilus galloprovincialis (2016) Aquat. Toxicol., 180, pp. 258-265
  • Faggio, C., Tsarpali, V., Dailianis, S., Mussel digestive gland as a model tissue for assessing xenobiotics: an overview (2018) Sci. Total Environ., 636, pp. 220-229
  • Fiorino, E., Sehonova, P., Plhalova, L., Blahova, J., Svobodova, Z., Faggio, C., Effects of glyphosate on early life stages: comparison between Cyprinus carpio and Danio rerio (2018) Environ. Sci. Pollut. R, 25 (9), pp. 8542-8549
  • Fulton, M.H., Key, P.B., Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects (2001) Environ. Toxicol. Chem., 20 (1), pp. 37-45
  • Gagnaire, B., Geffard, O., Xuereb, B., Margoum, C., Garric, J., Cholinesterase activities as potential biomarkers: characterization in two freshwater snails, Potamopyrgus antipodarum (Mollusca, Hydrobiidae, Smith 1889) and Valvata piscinalis (Mollusca, Valvatidae, Müller 1774) (2008) Chemosphere, 71 (3), pp. 553-560
  • Gallagher, E.P., Canadá, A.T., DiGiulio, R.T., The protective role of glutathione in chlorothalonil-induced toxicity to channel catfish (1992) Aquat. Toxicol., 23, pp. 155-168
  • Guasch, H., Bonet, B., Mun, I., Clements, W., Emerging and Priority Pollutants in Rivers (2012), 19; Habig, W.H., Pabst, M.J., Kakoby, W.B., Glutathione S-transferases. The first enzymatic step in mercapturic acid formation (1974) J. Biol. Chem., 249, pp. 7130-7139
  • Kagley, A.N., Kardong, K.E., Snider, R.G., Casillas, E., Effects of chemical contaminants on growth, age-structure, and reproduction of Mytilus edulis complex from Puget Sound, Washington (2014) B. Environ. Contam. Toxicol., 93 (1), pp. 7-12
  • Khalil, A.M., Toxicological effects and oxidative stress responses in freshwater snail, Lanistes carinatus, following exposure to chlorpyrifos (2015) Ecotoxicol. Environ. Saf., 116, pp. 137-142
  • Kristoff, G., Cacciatore, L.C., Guerrero, N.R.V., Cochón, A.C., Effects of the organophosphate insecticide azinphos-methyl on the reproduction and cholinesterase activity of Biomphalaria glabrata (2011) Chemosphere, 84 (5), pp. 585-591
  • Kristoff, G., Guerrero, N.R.V., Cochón, A.C., Inhibition of cholinesterases and carboxylesterases of two invertebrate species, Biomphalaria glabrata and Lumbriculus variegatus, by the carbamate pesticide carbaryl (2010) Aquat. Toxicol., 96 (2), pp. 115-123
  • Kristoff, G., Verrengia Guerrero, N.R., Cochón, A.C., Effects of azinphos-methyl exposure on enzymatic and non-enzymatic antioxidant defenses in Biomphalaria glabrata and Lumbriculus variegatus (2008) Chemosphere, 72 (9), pp. 1333-1339
  • Krull, M., Barros, F., Key issues in aquatic ecotoxicology in Brazil: a critical review (2010) J. Braz. Soc. Ecotoxicol., 7 (2), pp. 57-66
  • Latanville, J.K., Stone, J.R., Pesticide and predation exposure effects on pond snail immune system function and reproductive output (2013) J. Shellfish Res., 32 (3), pp. 745-750
  • Lavarías, S., García, C., Crespo, R., Pedrini, N., Heras, H., Study of biochemical biomarkers in freshwater prawn Macrobrachium borellii (Crustacea: palaemonidae) exposed to organophosphate fenitrothion (2013) Ecotox. Environ. Saf., 96, pp. 10-16
  • Loewy, M., Kirs, V., Carvajal, G., Venturino, A., de D′Angelo, A.M.P., Groundwater contamination by azinphos methyl in the Northern Patagonic Region (Argentina) (1999) Sci. Total Environ., 225 (3), pp. 211-218
  • Loewy, R.M., Monza, L.B., Kirs, V.E., Savini, M.C., Pesticide distribution in an agricultural environment in Argentina (2011) J. Environ. Sci. Health B, 46 (8), pp. 662-670
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275
  • Marcial, H.S., Hagiwara, A., Effect of diazinon on life stages and resting egg hatchability of rotifer Brachionus plicatilis (2007) Hydrobiologia, 593 (1), pp. 219-225
  • Mates, J.M., Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology (2000) Toxicology, 153 (1), pp. 83-104
  • Nahabedian, D.E., La estructura y formación de la cápsula de los huevos de Biomphalaria glabrata (Mollusca: pulmonata = Planorbidae) (1992), Ph.D. Thesis, Facultad de Ciencias Exactas y Naturales), Facultad de Ciencias Exactas y Naturales) Universidad de Buenos Aires; Narra, M.R., Tissue-specific recovery of oxidative and antioxidant effects of chlorpyrifos in the freshwater crab, Barytelphusa guerini (2014) Arch. Environ. Contam. Toxicol., 67 (2), pp. 158-166
  • Navis, S., Waterkeyn, A., Voet, T., De Meester, L., Brendonck, L., Pesticide exposure impacts not only hatching of dormant eggs, but also hatchling survival and performance in the water flea Daphnia magna (2013) Ecotoxicology, 22 (5), pp. 803-814
  • Negro, C.L., Senkman, L.E., Marino, F., Lorenzatti, E., Collins, P., Effects of chlorpyrifos and endosulfan on different life stages of the freshwater burrowing crab Zilchiopsis collastinensis P.: protective role of chorion (2014) B. Environ. Contam. Toxicol., 92 (6), pp. 625-630
  • Ochoa, V., Riva, C., Faria, M., Barata, C., Responses of B-esterase enzymes in oysters (Crassostrea gigas) transplanted to pesticide contaminated bays form the Ebro Delta (NE, Spain) (2013) Mar. Pollut. Bull., 66 (1), pp. 135-142
  • OECD, Detailed Review Paper (DRP) on Molluscs Life-Cycle Toxicity Testing. OECD Series on Testing and Assessment No. 121 (2010), p. 182. , Organisation for Economic Cooperation and development Paris; Otero, S., Kristoff, G., In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity (2016) Aquat. Toxicol., 180, pp. 186-195
  • Pagano, M., Capillo, G., Sanfilippo, M., Palato, S., Trischitta, F., Manganaro, A., Faggio, C., Evaluation of functionality and biological responses of Mytilus galloprovincialis after exposure to Quaternium-15 (Methenamine 3-Chloroallylochloride) (2016) Molecules, 21 (2), p. 144
  • Pagano, M., Porcino, C., Briglia, M., Fiorino, E., Vazzana, M., Silvestro, S., Faggio, C., The influence of exposure of cadmium chloride and zinc chloride on haemolymph and digestive gland cells from Mytilus galloprovincialis (2017) Int. J. Environ. Res., 11 (2), pp. 207-216
  • Paraense, W.L., The schistosome vectors in the Americas (2001) Mem. do Inst. Oswaldo Cruz, 96, pp. 7-16
  • Patetsini, E., Dimitriadis, V.K., Kaloyianni, M., Biomarkers in marine mussels, Mytilus galloprovincialis, exposed to environmentally relevant levels of the pesticides, chlorpyrifos and penoxsulam (2013) Aquat. Toxicol., 126, pp. 338-345
  • Pérez, A.F., Boy, C.C., Calcagno, J.C., Malanga, G., Reproduction and oxidative metabolism in the brooding sea star Anasterias antarctica (Lütken, 1957) (2015) J. Exp. Mar. Biol. Ecol., 463, pp. 150-157
  • Pointier, J.P., David, P., Jarne, P., Biological invasions: the case of planorbid snails (2005) J. Helminthol., 79, pp. 249-256
  • Pope, C.N., Organophosphorus pesticides: do they all have the same mechanism of toxicity? (1999) J. Toxicol. Environ. Heal. B, 2 (2), pp. 161-181
  • Potter, P.M., Wadkins, R.M., Carboxylesterases–detoxifying enzymes and targets for drug therapy (2006) Curr. Med. Chem., 13 (9), pp. 1045-1054
  • Ramírez Mora, B., Martínez-Tabche, L., Sánchez-Hidalgo, E., Castañeda Hernández, G., Gutiérrez Ruiz, M.C., Flores Murrieta, F., Relationship between toxicokinetics of carbaryl and effect on acetylcholinesterase activity in Pomacea patula snail (2000) Ecotoxicol. Environ. Saf., 46, pp. 234-239
  • Rambabu, J.P., Rao, M.B., Effect of an organochlorine and three organophosphate pesticides on glucose, glycogen, lipid, and protein contents in tissues of the freshwater snail Bellamya dissimilis (Müller) (1994) B. Environ. Contam. Toxicol., 53 (1), pp. 142-148
  • Revathi, K., Bindhuja, M.D., Biochemical changes in Macrobrachium malcolmsonii exposed to organophosphate profenofos (2008) J. Exp. Zool., India, 11 (1), pp. 57-61
  • Rivadeneira, P.R., Agrelo, M., Otero, S., Kristoff, G., Different effects of subchronic exposure to low concentrations of the organophosphate insecticide chlorpyrifos in a freshwater gastropod (2013) Ecotoxicol. Environ. Saf., 90, pp. 82-88
  • Rumi, A., Gutiérrez Gregoric, D.E., Núñez, V., Darrigran, G.A., Malacología Latinoamericana. Moluscos de agua dulce de Argentina (2008) Rev. Biol. Trop., 56 (1), pp. 77-111
  • Sanchez-Hernandez, J.C., Ecotoxicological perspectives of B-esterases in the assessment of pesticide contamination (2007) Environmental Pollution: New Research, pp. 1-45. , R.H. Plattenberg Nova Science Publishers, Inc. New York
  • Savorelli, F., Manfra, L., Croppo, M., Tornambè, A., Palazzi, D., Canepa, S., Trentini, P.L., Faggio, C., Fitness evaluation of Ruditapes philippinarum exposed to Ni (2017) Biol. Trace Elem. Res., 177 (2), pp. 384-393
  • Sehonova, P., Svobodova, Z., Dolezelova, P., Vosmerova, P., Faggio, C., Effects of waterborne antidepressants on non-target animals living in the aquatic environment: a review (2018) Sci. Total Environ., 631-632, pp. 789-794
  • Shayeghi, M., Shahtaheri, S.J., Selsele, M., Phosphorous insecticides residues in Mazandaran river waters, Iran (2000) (2001) Iran. J. Public Health, 30 (3-4), pp. 115-118
  • Soleño, J., Anguiano, L., de D′Angelo, A., Cichón, L., Fernández, D., Montagna, C., Toxicological and biochemical response to azinphos-methyl in Cydia pomonella L. (Lepidoptera: tortricidae) among orchards from the Argentinian Patagonia (2008) Pest Manag. Sci., 64, pp. 964-970
  • Strange, R.C., Jones, P.W., Fryer, A.A., Glutathione S-transferase: genetics and role in toxicology (2000) Toxicol. Lett., 112, pp. 357-363
  • Torre, A., Trischitta, F., Faggio, C., Effect of CdCl2 on regulatory volume decrease (RVD) in Mytilus galloprovincialis digestive cells (2013) Toxicol. in Vitro, 27 (4), pp. 1260-1266
  • Tosi, A.P., Pechen de D′Angelo, A.M., Savini, M.C., Loewy, R.M., Evaluación de riesgo por plaguicidas sobre aguas superficiales de la Región Norpatagónica argentina (2009) Acta Toxicol. Argent, 17 (1), pp. 1-6
  • Vajargah, M.F., Yalsuyi, A.M., Hedayati, A., Faggio, C., Histopathological lesions and toxicity in common carp (Cyprinus carpio L. 1758) induced by copper nanoparticles (2018) Microsc. Res. Tech.
  • Van Handel, E., Estimation de glycogen in small amount soft tissue (1965) Anal. Biochem., 11, pp. 256-265
  • Varó, I., Navarro, J.C., Amat, F., Guilhermino, L., Characterization of cholinesterases and evaluation of the inhibitory potential of chlorpyrifos and dichlorvos to Artemia salina and Artemia parthenogenetica (2002) Chemosphere, 48, pp. 563-569
  • Velki, M., Hackenberger, B.K., Different sensitivities of biomarker responses in two epigeic earthworm species after exposure to pyrethroid and organophosphate insecticides (2013) Arch. Environ. Contam. Toxicol., 65 (3), pp. 498-509
  • Walker, C.H., Sibly, R.M., Hopkin, S.P., Peakall, D.B., Principles of Ecotoxicology (2012), 4th ed. CRC Press Boca Raton, London, New York; Wheelock, C.E., Shan, G., Ottea, J., Overview of carboxylesterases and their role in the metabolism of insecticides (2005) J. Pestic. Sci., 30 (2), pp. 75-83
  • Wheelock, C.E., Phillips, B.M., Anderson, B.S., Miller, J.L., Miller, M.J., Hammock, B.D., Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs) (2008) Rev. Environ. Contam. Toxicol., 195, pp. 117-178
  • Xuereb, B., Noury, P., Felten, V., Garric, J., Geffard, O., Cholinesterase activity in Gammarus pulex (Crustacea Amphipoda): characterization and effects of chlorpyrifos (2007) Toxicology, 236, pp. 178-189
  • Yipp, W., The ecology of Biomphalaria straminea (Dunker, 1848) (gastropoda: pulmonata) Introduced into Hong Kong (Ph.D. thesis) (1983), University of Hong Kong Pokfulam, Hong Kong

Citas:

---------- APA ----------
Cossi, P.F., Herbert, L.T., Yusseppone, M.S., Pérez, A.F. & Kristoff, G. (2018) . Environmental concentrations of azinphos-methyl cause different toxic effects without affecting the main target (cholinesterases) in the freshwater gastropod Biomphalaria straminea. Ecotoxicology and Environmental Safety, 162, 287-295.
http://dx.doi.org/10.1016/j.ecoenv.2018.06.091
---------- CHICAGO ----------
Cossi, P.F., Herbert, L.T., Yusseppone, M.S., Pérez, A.F., Kristoff, G. "Environmental concentrations of azinphos-methyl cause different toxic effects without affecting the main target (cholinesterases) in the freshwater gastropod Biomphalaria straminea" . Ecotoxicology and Environmental Safety 162 (2018) : 287-295.
http://dx.doi.org/10.1016/j.ecoenv.2018.06.091
---------- MLA ----------
Cossi, P.F., Herbert, L.T., Yusseppone, M.S., Pérez, A.F., Kristoff, G. "Environmental concentrations of azinphos-methyl cause different toxic effects without affecting the main target (cholinesterases) in the freshwater gastropod Biomphalaria straminea" . Ecotoxicology and Environmental Safety, vol. 162, 2018, pp. 287-295.
http://dx.doi.org/10.1016/j.ecoenv.2018.06.091
---------- VANCOUVER ----------
Cossi, P.F., Herbert, L.T., Yusseppone, M.S., Pérez, A.F., Kristoff, G. Environmental concentrations of azinphos-methyl cause different toxic effects without affecting the main target (cholinesterases) in the freshwater gastropod Biomphalaria straminea. Ecotoxicol. Environ. Saf. 2018;162:287-295.
http://dx.doi.org/10.1016/j.ecoenv.2018.06.091