Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Given a function ψ in L2(Rd), the affine (wavelet) system generated by ψ, associated to an invertible matrix a and a lattice Γ, is the collection of functions {|det a|j/2ψ (ajx - γ) : j ∈ Z, γ ∈ Γ}. In this paper we prove that the set of functions generating affine systems that are a Riesz basis of L2(Rd) is dense in L2(Rd). We also prove that a stronger result is true for affine systems that are a frame of L2(Rd). In this case we show that the generators associated to a fixed but arbitrary dilation are a dense set. Furthermore, we analyze the orthogonal case in which we prove that the set of generators of orthogonal (not necessarily complete) affine systems, that are compactly supported in frequency, are dense in the unit sphere of L2(R d) with the induced metric. As a byproduct we introduce the p-Grammian of a function and prove a convergence result of this Grammian as a function of the lattice. This result gives insight in the problem of oversampling of affine systems. © 2007 Springer.

Registro:

Documento: Artículo
Título:Density of the set of generators of wavelet systems
Autor:Cabrelli, C.; Molter, U.M.
Filiación:Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Capital Federal, Argentina
CONICET, Argentina
Palabras clave:Affine systems; Riesz basis wavelets; Wavelet frames; Wavelet set
Año:2007
Volumen:26
Número:1
Página de inicio:65
Página de fin:81
DOI: http://dx.doi.org/10.1007/s00365-006-0644-5
Título revista:Constructive Approximation
Título revista abreviado:Constr. Approx.
ISSN:01764276
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01764276_v26_n1_p65_Cabrelli

Referencias:

  • ALDROUBI, A., CABRELLI, C.A., MOLTER, U., Wavelets on irregular grids with arbitrary dilation matrices, and frame atoms for L2(Rd ) (2004) Appl. Comput. Harmon. Anal, 17 (2), pp. 171-191. , ACM04
  • [Beu66] A. BEURLING (1966): Local harmonic analysis with some applications to differential operators. Some Recent Advances in the Basic Sciences, 1 (Proc. Annual Sci. Conf., Belfer Grad. School Sci., Yeshiva University, New York, 1962-1964), Belfer Graduate School of Science, Yeshiva University, New York, pp. 109-125; BENEDETTO, J.J., FRAZIER, M.W., (1994) Introduction, Wavelets: Mathematics and Applications. Studies in Advanced Mathematics, pp. 1-20. , BF94, Boca Raton, FL: CRC, pp
  • BENEDETTO, J.J., LEON, M., The construction of single wavelets in d-dimensions (2001) J. Geom. Anal, 11 (1), pp. 1-15. , BL01
  • BAGGETT, L.W., MEDINA, H.A., MERRILL, K.D., Generalized multi-resolution analyses and a construction procedure for all wavelet sets in Rn (1999) J. Fourier Anal. Appl, 5 (6), pp. 563-573. , BMM99
  • BOWNIK, M., Quasi-affine systems and the Calderón condition (2001) Contemporary Mathematics, 320, pp. 29-43. , Bow03, Harmonic Analysis at Mount Holyoke South Hadley, MA, Providence, RI: Amer. Math. Soc, pp
  • BOWNIK, M., (2005) Connectivity and density in the set of framelets, , Bow05, Preprint
  • BENEDETTO, J.J., SUMETKIJAKAN, S., A fractal set constructed from a class of wavelet sets (2001) Contemporary Mathematics, 313, pp. 19-35. , BS02, Inverse Problems, Image Analysis, and Medical Imaging New Orleans, LA, Providence, RI: Amer. Math. Soc, pp
  • BENEDETTO, J.J., SUMETKIJAKAN, S., (2004) Tight frames and geometric properties of wavelet sets, , BS04, Preprint
  • BENEDETTO, J.J., WU, H.C., Non-uniform sampling and spiral MRI reconstruction (1999) Proc. SampTA, 99. , BW99, Trondheim, Norway
  • CHUI, C.K., CZAJA, W., MAGGIONI, M., WEISS, G., Characterization of general tight wavelet frames with matrix dilations and tightness preserving oversampling (2002) J. Fourier Anal. Appl, 8 (2), pp. 173-200. , CCMW02
  • CABRELLI, C., HEIL, C., MOLTER, U., Self-similarity and multiwavelets in higher dimensions (2004) Mem. Amer. Math. Soc, 170. , CHM04
  • Basic properties of wavelets (1998) J. Fourier Anal. Appl, 4 (4-5), pp. 575-594. , Con98] The Wutam Consortium
  • CHUI, C.K., SHI, X., Orthonormal wavelets and tight frames with arbitrary real dilations (2000) Appl. Comput. Harmon. Anal, 9 (3), pp. 243-264. , CS00
  • DAUBECHIES, I., Orthonormal bases of compactly supported wavelets (1988) Comm. Pure Appl. Math, 41, pp. 909-996. , Dau88
  • DAI, X., LARSON, D.R., (1998) Wandering vectors for unitary systems and orthogonal wavelets, 134. , DL98, Mem. Amer. Math. Soc, 640:viii+68
  • DAI, X., LARSON, D.R., SPEEGLE, D.M., Wavelet sets in Rn (1997) J. Fourier Anal. Appl, 3 (4), pp. 451-456. , DLS97, MR 98m:42048
  • DAI, X., LARSON, D.R., SPEEGLE, D.M., Wavelet sets in Rn, II (1997) Wavelets, Multiwavelets, and Their Applications, pp. 15-40. , DLS98, San Diego, CA, Providence, RI: Amer. Math. Soc, pp, MR 99d:42054
  • [GLL+04] K. GUO, D. LABATE, W.-Q LIM, G. WEISS, E. WILSON (2004): Wavelets with composite dilations. Electron. Res. Announc. Amer. Math. Soc., 10:78-87 (electronic); GOODMAN, T.N.T., LEE, S.L., TANG, W.-S., Wavelets in wandering subspaces (1993) Trans. Amer. Math. Soc, 338, pp. 639-654. , GLT93
  • IONASCU, E.J., LARSON, D.R., PEARCY, C.M., On wavelet sets (1998) J. Fourier Anal. Appl, 4 (6), pp. 711-721. , ILP98
  • JIMENEZ, D., WANG, L., WANG, Y., (2005) PCM quantization errors and the white noise hypothesis, , JWW05, Preprint
  • LARSON, D., Unitary systems and wavelet sets (2005) Proceedings of the Fourth ICWAA, pp. 5-35. , Lar05, Macau: Springer, pp
  • MALLAT, S., Multiresolution approximations and wavelet orthonormal basis of L2(R) (1989) Trans. Amer. Math. Soc, 315 (1), pp. 69-87. , Mal89
  • MEYER, Y., (1988) Ondelettes et operateurs, 1. , Mey88, Paris: Hermann
  • MEYER, Y., (1992) Wavelets and Operators, , Mey92, Cambridge: Cambridge University Press
  • SPEEGLE, D.M., The s-elementary wavelets are path-connected (1999) Proc. Amer. Math. Soc, 127 (1), pp. 223-233. , Spe99
  • SOARDI, P.M., WEILAND, D., Single wavelets in n-dimensions (1998) J. Fourier Anal. Appl, 4 (3), pp. 299-315. , SW98
  • WANG, Y., Wavelets, tiling, and spectral sets (2002) Duke Math. J, 114 (1), pp. 43-57. , Wan02
  • ZAKHAROV, V., (1996) Nonseparable multidimensional Littlewood-Paley-like wavelet bases, , Zak96, Preprint

Citas:

---------- APA ----------
Cabrelli, C. & Molter, U.M. (2007) . Density of the set of generators of wavelet systems. Constructive Approximation, 26(1), 65-81.
http://dx.doi.org/10.1007/s00365-006-0644-5
---------- CHICAGO ----------
Cabrelli, C., Molter, U.M. "Density of the set of generators of wavelet systems" . Constructive Approximation 26, no. 1 (2007) : 65-81.
http://dx.doi.org/10.1007/s00365-006-0644-5
---------- MLA ----------
Cabrelli, C., Molter, U.M. "Density of the set of generators of wavelet systems" . Constructive Approximation, vol. 26, no. 1, 2007, pp. 65-81.
http://dx.doi.org/10.1007/s00365-006-0644-5
---------- VANCOUVER ----------
Cabrelli, C., Molter, U.M. Density of the set of generators of wavelet systems. Constr. Approx. 2007;26(1):65-81.
http://dx.doi.org/10.1007/s00365-006-0644-5