Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We analyze, within the wavelet theory framework, the wandering over a screen of the centroid of a laser beam after it has propagated through a time-changing laboratory-generated turbulence. Following a previous work (Fractals 12 (2004) 223) two quantifiers are used, the Hurst parameter, H, and the normalized total wavelet entropy. The temporal evolution of both quantifiers, obtained from the laser spot data stream, is studied and compared. This allows us to extract information on the stochastic process associated with the turbulence dynamics. © 2005 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform: Dynamic study
Autor:Zunino, L.; Pérez, D.G.; Garavaglia, M.; Rosso, O.A.
Filiación:Centro de Investigaciones Ópticas (CIOp), CC. 124 Correo Central, 1900 La Plata, Argentina
Instituto de Física, Pontificia Universidad Católica de Valparaíso (PUCV), 23-40025 Valparaíso, Chile
Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de la Plata (UNLP), 1900 La Plata, Argentina
Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Ciudad de Buenos Aires, Argentina
Palabras clave:Hurst parameter; Lightwave propagation; Normalized total wavelet entropy; Turbulence; Entropy; Fractals; Laser beams; Turbulence; Wavelet transforms; Hurst parameter; Laser spot data; Lightwave propagation; Normalized total wavelet entropy; Turbulence dynamics; Wavelet entropy; Wave propagation
Año:2006
Volumen:364
Página de inicio:79
Página de fin:86
DOI: http://dx.doi.org/10.1016/j.physa.2005.09.054
Título revista:Physica A: Statistical Mechanics and its Applications
Título revista abreviado:Phys A Stat Mech Appl
ISSN:03784371
CODEN:PHYAD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v364_n_p79_Zunino

Referencias:

  • Zunino, L., Pérez, D.G., Rosso, O.A., Garavaglia, M., Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform (2004) Fractals, 12 (2), pp. 223-233
  • Rosso, O.A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., Başar, E., Wavelet entropy: A new tool for analysis of short duration brain electrical signals (2001) J. Neurosci. Method, 105, pp. 65-75
  • Kolmogorov, A.N., Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum, the Wiener spiral and some other interesting curves in a Hilbert space (1940) C. R. (Dokl.) Acad. Sci. USSR, 26, pp. 115-118
  • Mandelbrot, B.B., Ness, J.W.V., Fractional Brownian motions, fractional noises and applications (1968) SIAM Rev., 4, pp. 422-437
  • Peréz, A., D'Attellis, C.E., Rapacioli, M., Hirchoren, G.A., Flores, V., Analyzing blood cell concentration as a stochastic process (2001) IEEE Eng. Med. Biol., pp. 170-175
  • Flandrin, P., On the spectrum of fractional Brownian motions (1989) IEEE Trans. Inf. Theory, IT-35 (1), pp. 197-199
  • Flandrin, P., Wavelet analysis and synthesis of fractional Brownian motion (1992) IEEE Trans. Inf. Theory, IT-38 (2), pp. 910-917
  • Tewfik, A.H., Kim, M., Correlation structure of the discrete wavelet coefficients of fractional Brownian motion (1992) IEEE Trans. Inf. Theory, 38 (2), pp. 904-909
  • Masry, E., The wavelet transform of stochastic processes with stationary increments and its applications to fractional Brownian motion (1993) IEEE Trans. Inf. Theory, IT-39 (1), pp. 260-264
  • Abry, P., Veitch, D., Wavelet analysis of long-range dependent traffic (1998) IEEE Trans. Inf. Theory, 44 (1), pp. 2-15
  • Soltani, S., Simard, P., Boichu, D., Estimation of the self-similarity parameter using the wavelet transform (2004) Signal Process., 84 (1), pp. 117-123
  • Abry, P., Flandrin, P., Taqqu, M.S., Veitch, D., Wavelets for the analysis, estimation, and synthesis of scaling data (2000) Self-similar Network Traffic and Performance Evaluation, , K. Park W. Willinger Wiley New York
  • Carbone, A., Castelli, G., Stanley, H.E., Time-dependent Hurst exponent in financial time series (2004) Physica A, 344 (1-2), pp. 267-271
  • Cajueiro, D.O., Tabak, B.M., The Hurst exponent over time: Testing the assertion that emerging markets are becoming more efficient (2004) Physica A, 336 (3-4), pp. 521-537
  • Grech, D., Mazur, Z., Can one make any crash prediction in finance using the local Hurst exponent idea? (2004) Physica A, 336 (1-2), pp. 133-145
  • Passoni, I., Rabal, H., Arizmendi, C.M., Characterizing dynamic speckle time series with the Hurst coefficient concept (2004) Fractals, 12 (3), pp. 319-329
  • Peltier, R.F., Vehel, J.L., Multifractional Brownian motion: Definition and preliminary results (1995) Research Report, RR-2645. , INRIA
  • Coeurjolly, J.-F., (2000) Statistical Inference for Fractional and Multifractional Brownian Motions, , http://bibliotheque.imag.fr/publications/theses/2000, Ph.D. Thesis, Laboratoire de Modélisation et Calcul-Institut d'Informatique el Mathématiques Appliquées de Grenoble
  • Rosso, O.A., Mairal, M.L., Characterization of time dynamical evolution of electroencephalographic epileptic records (2002) Physica A, 312 (3-4), pp. 469-504
  • Sello, S., Wavelet entropy as a measure of solar cycle complexity (2000) Astron. Astrophys., 363, pp. 311-315
  • Sello, S., Wavelet entropy and the multi-peaked structure of solar cycle maximum (2003) New Astronomy, 8, pp. 105-117
  • Passoni, I., Dai Pra, A., Rabal, H., Trivi, M., Arizaga, R., Dynamic speckle processing using wavelets based entropy (2005) Opt. Commun., 246 (1-3), pp. 219-228
  • Pérez, D.G., Zunino, L., Garavaglia, M., Rosso, O.A., Wavelet entropy and fractional Brownian motion time series (2005) Physica A, , in press
  • Unser, M., Spline: A perfect fit for signal and image processing (1999) IEEE Signal Process. Mag., 16, pp. 22-38
  • Thévenaz, P., Blu, T., Unser, M., Interpolation revisited (2000) IEEE Trans. Med. Imaging, 19 (7), pp. 739-758
  • Ayache, A., Lévy Véhel, J., On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion (2004) Stochastic Processes Appl., 111, pp. 119-156

Citas:

---------- APA ----------
Zunino, L., Pérez, D.G., Garavaglia, M. & Rosso, O.A. (2006) . Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform: Dynamic study. Physica A: Statistical Mechanics and its Applications, 364, 79-86.
http://dx.doi.org/10.1016/j.physa.2005.09.054
---------- CHICAGO ----------
Zunino, L., Pérez, D.G., Garavaglia, M., Rosso, O.A. "Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform: Dynamic study" . Physica A: Statistical Mechanics and its Applications 364 (2006) : 79-86.
http://dx.doi.org/10.1016/j.physa.2005.09.054
---------- MLA ----------
Zunino, L., Pérez, D.G., Garavaglia, M., Rosso, O.A. "Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform: Dynamic study" . Physica A: Statistical Mechanics and its Applications, vol. 364, 2006, pp. 79-86.
http://dx.doi.org/10.1016/j.physa.2005.09.054
---------- VANCOUVER ----------
Zunino, L., Pérez, D.G., Garavaglia, M., Rosso, O.A. Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform: Dynamic study. Phys A Stat Mech Appl. 2006;364:79-86.
http://dx.doi.org/10.1016/j.physa.2005.09.054