Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Electrochemical treatment can be used for local control of solid tumors in both preclinical and clinical studies. In this paper, an integrated analysis of the spatial distributions of the electric potential, electric field, temperature and pH together with the acidic and basic areas are computed, via Finite Element Methods, to improve the geometrical description of electrode arrays for a better electrochemical treatment. These physical quantities are generated by different polarization modes and shapes of electrode arrays. Additionally, the equations over a rectangular two-dimensional domain, which represents the tumor tissue, are solved. The results demonstrate how the electric potential, electric field, temperature and pH distributions depend strongly on the electrode array. Furthermore, significant pH changes and temperature increments are shown after 60 min of treatment. The numerical results agree with the analytical ones reported in the literature. It is concluded that the numerical solution method permits to make an integral analysis, prediction and rapid visualization of the most important electrochemical variables that take place in tumor destruction, thus, providing the possibility of a more effective therapeutic planning before electrochemical treatment isconducted. © 2017 International Association for Mathematics and Computers in Simulation (IMACS)

Registro:

Documento: Artículo
Título:Integrated analysis of the potential, electric field, temperature, pH and tissue damage generated by different electrode arrays in a tumor under electrochemical treatment
Autor:Soba, A.; Suárez, C.; González, M.M.; Cabrales, L.E.B.; Pupo, A.E.B.; Reyes, J.B.; Martínez Tassé, J.P.
Filiación:CNEA, Argentina
Instituto de Física del Plasma, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
Departamento de Farmacia, Facultad de Ciencias Naturales, Universidad de Oriente, Santiago de Cuba, Cuba
Dirección de Ciencia e Innovación, Centro Nacional de Electromagnetismo Aplicado (CNEA), Universidad de Oriente, Santiago de Cuba, Cuba
Departamento de Física, Facultad de Ciencias Naturales, Universidad de Oriente, Santiago de Cuba, Cuba
ESIME-Zacatenco, Instituto Politécnico Nacional, Ciudad de México, DF 07738, Mexico
Palabras clave:Electric field intensity; Electrode arrays; pH fronts; Tissue damage; Electric fields; Electric potential; Electrodes; Finite element method; Numerical methods; Tissue; Tumors; Electric field intensities; Electrochemical treatments; Electrode arrays; Integrated analysis; Numerical solution method; Temperature increment; Tissue damage; Two-dimensional domain; Electrochemical electrodes
Año:2018
Volumen:146
Página de inicio:160
Página de fin:176
DOI: http://dx.doi.org/10.1016/j.matcom.2017.11.006
Título revista:Mathematics and Computers in Simulation
Título revista abreviado:Math Comput Simul
ISSN:03784754
CODEN:MCSID
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784754_v146_n_p160_Soba

Referencias:

  • Agoramurthy, P., Campana, L., Sundararajan, R., Tumor electric field distribution studies using various electrodes configurations (2011) Proc. ESA Annual Meeting on Electrostatics, pp. 1-8
  • Aguilera, A.R., Cabrales, L.E.B., Ciria, L.H.M.C., Pérez, Y.S., González, F.G., González, M.M., Ortíz, L.Z., Cabrales, I.B., Electric current density distribution in planar solid tumor and its surrounding healthy tissue generated by an electrode elliptic array used in electrotherapy (2010) Math. Comput. Simul., 80, pp. 1886-1902
  • Aguilera, A.R., Cabrales, L.E.B., Ciria, H.M.C., Pérez, Y.S., Oria, E.R., Brooks, S.A., González, T.R., Distributions of the potential and electric field of an electrode elliptic array used in electrotherapy: Analytical and numerical solutions (2009) Math. Comput. Simul., 79, pp. 2091-2105
  • Artemov, V.G., Volkov, A.A., Sysoev, N.N., Jr.A.A. Volkov, Autoionization of water: does it really occur? 2015. arXiv preprint. arXiv:1508.00126; Artemov, V.G., Volkov, A.A., Sysoev, N.N., Volkov, A.A., Jr., Conductivity of aqueous HCl, NaOH and NaCl solutions: Is water just a substrate (2015) Europhys. Lett., 109, p. 26002
  • Artemov, V.G., Volkov, A.A., Sysoev, N.N., Volkov, A.A., Jr., On autoionization and pH liquid water (2016) Dokl. Phys., 61, pp. 1-4
  • Bandura, V., Lvov, S.N., The ionization constant of water over a wide range of temperatures and densities (2006) J. Phys. Chem. Ref. Data, 35, pp. 15-30
  • Cabrales, L.E.B., Ciria, H.M.C., Bruzón, R.N.P., Quevedo, M.S., Aldana, R.H., Fernández, L.M., Salas, M.F., Peña, O.G., Electrochemical treatment of mouse Ehrlich tumor with direct electric current (2001) Bioelectromagnetics, 22, pp. 316-322
  • Ciria, H.M.C., Quevedo, M.C.S., Cabrales, L.E.B., Bruzón, R.N.P., Salas, M.F., Peña, O.G., González, T.R., Flores, J.L.M., Antitumor effectiveness of different amounts of electrical charge in Ehrlich and Fibrosarcoma Sa-37 tumors (2004) BMC Cancer, 4, pp. 87-91
  • Čorović, S., Mir, L.M., Miklavčič, D., In vivo muscle electroporation threshold determination: Realistic numerical models and in vivo experiments (2012) J. Membr. Biol., 245, pp. 509-520
  • Čorović, S., Pavlin, M., Miklavčič, D., Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations (2007) Biomed. Eng. Online, 6, p. 37
  • Cury, F.L., Bhindi, B., Rocha, J., Scarlata, E., El Jurdi, K., Ladouceur, M., Beauregard, S., Chevalier, S., Electrochemical red-ox therapy of prostate cancer in nude mice (2015) Bioelectrochem, 104, pp. 1-9
  • Daniels, S., Rubinsky, B., Temperature modulation of electric fields in biological matter (2011) PLoS One, 6, p. e20877
  • Davalos, R., Rubinsky, B., (2007), http://www.rexresearch.com/davalos/davalos.htm, Irreversible electroporation vs. cancer. US Patent Appln #, East Palo Alto, California (available at); Davidson, R.M., Lauritzen, A., Seneff, S., Biological water dynamics and entropy: A biophysical origin of cancer and other diseases (2013) Entropy, 15, pp. 3822-3876
  • Fadugba, S.E., Edogbanya, O.H., Zelibe, S.C., Crank Nicolson method for solving parabolic partial differential equations (2013) Int. J. Appl. Math. Model., 1, pp. 8-23
  • Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F., Stochastic resonance (1998) Rev. Modern Phys., 70, pp. 223-287
  • Garcia, P.A., Jr. Rossmeisl, H., Neal, R.E., Ellis, T.L., Davalos, R.V., A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure (2011) Biomed. Eng. Online, 10, p. 34
  • Golberg, A., Rubinsky, B., A statistical model for multidimensional irreversible electroporation cell death in tissue (2010) Biomed. Eng. Online, 9, p. 13
  • González, M.M., Aguilar, C.H., Pacheco, F.A.D., Cabrales, L.E.B., Reyes, J.B., González, G.V.S., Electrochemical treatment: relation of the tissue damage spatial pattern with the electrodes array shape (2017) Rev. Medisam, 21, p. 1020
  • Griffin, D.T., Dodd, N.F.J., Moore, J.V., Pullan, B.R., Taylor, T.V., The effects of low level direct current therapy on a preclinical mammary carcinoma: tumor regression and systemic biochemical sequelae (1994) Br. J. Cancer, 69, pp. 875-878
  • Hänggi, P., Stochastic resonance in biology. How noise can enhance detection of weak signals and help improve biological information processing (2002) Chem. Phys. Chem., 3, pp. 285-290
  • Heming, T.A., Davé, S.K., Tuazon, D.M., Chopra, A.K., Peterson, J.W., Bidani, A., Effects of extracellular pH on tumor necrosis factor-α production by resident alveolar macrophages (2001) Clin. Sci., 101, pp. 267-274
  • Jaime, D.F., Castaño, G.V., Sánchez, E.O., Pérez, D.T., Prieto, J.B., (2007), pp. 448-459. , Química General 2, Ed. Félix Varela, La Habana, Cuba; Jarque, M.V., Mateus, M.A.F., Palencia, F.S., Cabrales, L.E.B., Jing-Hong, L., Ciria, H.M.C., Brooks, S.C.A., Bordelois, K.C., First clinical experiences in Cuba over the use of electrotherapy in four patients with superficial malignant solid tumors (2007) Rev. Medisam, 11, p. 1
  • Jiménez, R.P., Pupo, A.E.B., Cabrales, J.M.B., Joa, J.A.G., Cabrales, L.E.B., Nava, J.J.G., Aguilera, A.R., Brooks, S.C.A., 3D stationary electric current density in to spherical tumor treated with low direct current (2011) Bioelectromagnetics, 32, pp. 120-130
  • Jing-Hong, L., Effects of electrochemotherapy in treating patients with venous malformations (2011) Oncotherm. J., 2, pp. 27-39
  • Kim, H.B., Ahn, S., Jang, H.J., Sim, S.B., Kim, K.W., Evaluation of corrosion behaviors and surface profiles of platinum-coated electrodes by electrochemistry and complementary microscopy: biomedical implications for anticancer therapy (2007) Micron, 38, pp. 747-753
  • Kos, B., Županič, A., Kotnik, T., Snoj, M., Serša, G., Miklavčič, D., Robustness of treatment planning for electrochemotherapy of deep-seated tumors (2010) J. Membr. Biol., 236, pp. 147-153
  • Lacković, I., Magjarević, R., Miklavčič, D., Three-dimensional finite-element analysis of Joule heating in electrochemotherapy and in vivo gene electrotransfer (2009) IEEE Trans. Dielectr. Electr. Insul., 16, pp. 1338-1347
  • Lee, G.H., Hwang, J.D., Choi, J.Y., Park, H.J., Cho, J.Y., An acidic pH environment increases cell death and pro-inflammatory cytokine release in osteoblasts (2011) Int. J. Biochem. Cell Biol., 43, pp. 1305-1317
  • Li, K.H., Xin, Y.L., Gu, Y.N., Xu, B.L., Fan, D.J., Ni, B.F., Effects of direct current on dog liver: possible mechanisms for tumor electrochemical treatment (1997) Bioelectromagnetics, 18, pp. 2-7
  • Lo, C.F., Stochastic Gompertz model of tumour cell growth (2007) J. Theoret. Biol., 248, pp. 317-321
  • McCarty, M.F., Whitaker, J., Manipulating tumor acidification as a cancer treatment strategy (2010) Altern. Med. Rev., 15, pp. 264-272
  • Miklavčič, D., Pavšelj, N., Hart, F.X., Electric properties of tissues (2006) Wiley Encyclopedia of Biomedical Engineering, pp. 3578-3589. , John Wiley & Sons Inc
  • Nilsson, E., von Euler, H., Berendson, J., Thörne, A., Wersäll, P., Näslund, I., Lagersted, A.S., Olsson, J.M., Electrochemical treatment of tumours (2000) Bioelectromagnetics, 51, pp. 1-11
  • Olaiz, N., Maglietti, F., Suarez, C., Molina, F.V., Miklavčič, D., Mir, L., Marshall, G., Electrochemical treatment of tumors using a one-probe two-electrode device (2010) Electrochim. Acta, 55, pp. 6010-6014
  • Olaiz, N., Signori, E., Maglietti, F., Soba, A., Suarez, C., Turjanski, P., Michinski, S., Marshall, G., Tissue damage modeling in gene electrotransfer: The role of Ph (2014) Bioelectrochem., 100, pp. 105-111
  • Olaiz, N., Suarez, C., Risk, M., Molina, F.V., Marshall, G., Tracking protein electrodenaturation fronts in the electrochemical treatment of tumors (2010) Electrochem. Commun., 12, pp. 94-97
  • Ongaro, A., Campana, L.G., De Mattei, M., Dughiero, F., Forzan, M., Pellati, A., Rossi, C.R., Sieni, E., Evaluation of the electroporation efficiency of a grid electrode for electrochemotherapy from numerical model to in vitro tests (2016) Technol. Cancer Res. Treat., 15, pp. 296-307
  • Pupo, A.E.B., González, M.M., Cabrales, L.E.B., Navas, J.J.G., Oria, E.J.R., Jiménez, R.P., Reyes, J.B., Cabrales, J.M.B., 3d current density on tumor and surrounding healthy tissues generated by a system of straight electrode arrays (2017) Math. Comput. Simul., 138, pp. 49-64
  • Pupo, A.E.B., Reyes, J.B., Cabrales, L.E.B., Cabrales, J.M.B., Analytical and numerical solutions of the potential and electric field generated by different electrode arrays in a tumor tissue under electrotherapy (2011) Biomed. Eng. Online, 10, p. 85
  • Ramos, J.I., Picard́s iterative method for nonlinear advection reaction–diffusion equations (2009) Appl. Math. Comput., 215, pp. 1526-1536
  • Ren, R.L., Vora, N., Yang, F., Longmate, J., Wang, W., Sun, H., Li, J.R., Chou, C.K., Variations of dose and electrode spacing for rat breast cancer electrochemical treatment (2001) Bioelectromagnetics, 22, pp. 205-211
  • Sekino, M., Ohsaki, H., Yamaguchi-Sekino, S., Iriguchi, N., Ueno, S., Low-frequency conductivity tensor of rat brain tissues inferred from diffusion MRI (2009) Bioelectromagnetics, 30, pp. 489-499
  • Stilinger, F.H., (1978) Proton Transfer Reactions and Kinetics in Water, Theoretical Chemistry, Advances and Perspectives, 3, pp. 199-231. , Academic Press New York
  • Suárez, C., Soba, A., Maglietti, F., Olaiz, N., Marshall, G., The role of additional pulses in electropermeabilization protocols (2015) PLoS One, 9, p. e113413
  • Turjanski, P., Olaiz, N., Abou-Adal, P., Suarez, C., Risk, M., Marshall, G., pH front tracking in the electrochemical treatment (EChT) of tumors: Experiments and simulations (2009) Electrochim. Acta, 54, pp. 6199-6206
  • Turjanski, P., Olaiz, N., Maglietti, F., Michinski, S., Suarez, C., Molina, F.V., Marshall, G., The role of pH fronts in reversible electroporation (2011) PLoS One, 6, p. e17303
  • Varney, R.N., Mobility of hydrogen ions (1960) Phys. Rev. Lett., 5, pp. 559-560
  • von Euler, H., Olsson, J.M., Hultenby, K., Thorne, A., Lagerstedt, A.S., Animal models for treatment of unresectable liver tumours: a histopathologic and ultra-structural study of cellular toxic changes after electrochemical treatment in rat and dog liver (2003) Bioelectrochemistry, 59, pp. 89-98
  • von Euler, H., Soderstedt, A., Thorne, A., Olsson, J.M., Yongqing, G., Cellular toxicity induced by different pH levels on the R3230AC rat mammary tumour cell line. An in vitro model for investigation of the tumour destructive properties of electrochemical treatment of tumours (2002) Bioelectrochem., 58, pp. 163-170
  • Werner, J., Buse, M., Temperature profiles with respect to inhomogeneity and geometry of the human body (1988) J. Appl. Physiol., 65, pp. 1110-1118
  • Wituła, R., Hetmaniok, E., Słota, D., Zielonka, A., Application of the Picard's iterative method for the solution of one-phase Stefan problem (2010) Arch. Foundry Eng., 10, pp. 83-88
  • Wróblewski, T., Ziemczonek, L., Gazda, E., Karwasz, G.P., Dissociation energies of protonated water clusters (2003) Radiat. Phys. Chem., 68, pp. 313-318
  • Xin, Y., Zhao, H., Zhang, W., Liang, C., Wang, Z., Liu, G., Electrochemical therapy of tumors (2004) Bioelectromagnetic Medicine, pp. 709-726. , Marcel Dekker Inc
  • Yacoob, S.M., Hassan, N.S., FDTD analysis of a noninvasive hyperthermia system for brain tumors (2012) Biomed. Eng. Online, 11, p. 47
  • Županič, A., Čorović, S., Miklavčič, D., Optimization of electrode position and electric pulse amplitude in electrochemotherapy (2008) Radiol. Oncol., 42, pp. 93-101

Citas:

---------- APA ----------
Soba, A., Suárez, C., González, M.M., Cabrales, L.E.B., Pupo, A.E.B., Reyes, J.B. & Martínez Tassé, J.P. (2018) . Integrated analysis of the potential, electric field, temperature, pH and tissue damage generated by different electrode arrays in a tumor under electrochemical treatment. Mathematics and Computers in Simulation, 146, 160-176.
http://dx.doi.org/10.1016/j.matcom.2017.11.006
---------- CHICAGO ----------
Soba, A., Suárez, C., González, M.M., Cabrales, L.E.B., Pupo, A.E.B., Reyes, J.B., et al. "Integrated analysis of the potential, electric field, temperature, pH and tissue damage generated by different electrode arrays in a tumor under electrochemical treatment" . Mathematics and Computers in Simulation 146 (2018) : 160-176.
http://dx.doi.org/10.1016/j.matcom.2017.11.006
---------- MLA ----------
Soba, A., Suárez, C., González, M.M., Cabrales, L.E.B., Pupo, A.E.B., Reyes, J.B., et al. "Integrated analysis of the potential, electric field, temperature, pH and tissue damage generated by different electrode arrays in a tumor under electrochemical treatment" . Mathematics and Computers in Simulation, vol. 146, 2018, pp. 160-176.
http://dx.doi.org/10.1016/j.matcom.2017.11.006
---------- VANCOUVER ----------
Soba, A., Suárez, C., González, M.M., Cabrales, L.E.B., Pupo, A.E.B., Reyes, J.B., et al. Integrated analysis of the potential, electric field, temperature, pH and tissue damage generated by different electrode arrays in a tumor under electrochemical treatment. Math Comput Simul. 2018;146:160-176.
http://dx.doi.org/10.1016/j.matcom.2017.11.006