Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Up to 35% of pregnant women take psychotropic drugs at least once during gestation [Austin and Mitchell, 1998]. From concurrent animal and human evidence, it has been proposed that exposure to several psychoactive medications in utero or during lactation increases the risk for permanent brain disorders. Present preventive or therapy practices applied on humans for this type of long-lasting behavioral alterations are mainly based on empirical results. Here, we test an experimental approach designed to counteract a circling performance deficit that appears in Sprague-Dawley rats at puberty on exposure to the dopaminergic blocker haloperidol (HAL) during gestation [J.L. Brusés, J.M. Azcurra, The circling training: A behavioral paradigm for functional teratology testing, in: P.M. Conn (Ed.), Paradigms for the study of behavior, Acad. Press, New York, 1993, pp. 166-179. Method Neurosci. 14]. Gestational exposure to HAL (GD 5-18, 2.5 mg/kg/day ip) induced the expected circling activity decrease in the offspring at the fifth week of life. When prenatal exposure to HAL was continued through lactation (PD5-21, 1.5 mg/kg/day ip), rats otherwise showed a control-like circling performance. No difference was yet found between lactation-only, HAL-exposed pups and saline (SAL)-treated controls (n=8 each group). We further performed saturating (3H)-spiroperidol (SPI) binding assays on striatal P2 membrane fractions 2 months later. The dopamine-type D2-specific binding results suggested that above circling behavior findings could be partially explained by enduring HAL-induced neurochemical changes. The role of critical periods of sensitivity as transient windows for opportunistic therapies for behavioral teratology is discussed. © 2004 Elsevier Inc. All rights reserved.

Registro:

Documento: Artículo
Título:Postnatal haloperidol eliminates the deficit in circling behavior produced by prenatal exposure to the same drug
Autor:Wolansky, M.J.; Soiza-Reilly, M.; Fossati, M.; Azcurra, J.M.
Filiación:Interdisc. Proj. on Neuroteratology, Depto. de Biodiversidad Y Biol. Exp., Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
C. F. Melo 4127 (C.P. 1602), Buenos Aires, Argentina
Neurotoxicology Division, Natl. Hlth. Environ. Effects Res. L., US EPA, Research Triangle Park, NC 27711, United States
Palabras clave:Behavioral teratogen; Haloperidol; Therapeutic agent; haloperidol; animal experiment; animal model; animal tissue; article; behavior disorder; behavior teratology; circling behavior; controlled study; female; lactation; nonhuman; perinatal drug exposure; prenatal drug exposure; priority journal; progeny; Analysis of Variance; Animals; Animals, Newborn; Behavior, Animal; Brain; Dopamine Antagonists; Female; Haloperidol; Male; Pregnancy; Prenatal Exposure Delayed Effects; Radioligand Assay; Random Allocation; Rats; Rats, Sprague-Dawley; Spiperone; Stereotyped Behavior; Stereotypic Movement Disorder; Tritium; Animalia
Año:2004
Volumen:26
Número:4
Página de inicio:561
Página de fin:569
DOI: http://dx.doi.org/10.1016/j.ntt.2004.04.006
Título revista:Neurotoxicology and Teratology
Título revista abreviado:Neurotoxicol. Teratol.
ISSN:08920362
CODEN:NETEE
CAS:haloperidol, 52-86-8; Dopamine Antagonists; Haloperidol, 52-86-8; Spiperone, 749-02-0; Tritium, 10028-17-8
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08920362_v26_n4_p561_Wolansky

Referencias:

  • Andersen, S.L., Gazzara, R.A., Effects of (-)-sulpiride on dopamine release in striatum of developing rats: Degree of depolarization influences responsiveness (1996) J. Neurochem., 67 (5), pp. 1931-1937
  • Austin, M.-P.V., Mitchell, P.B., Psychotropic medications in pregnant women: Treatment dilemmas (1998) Med. J. Aust. (Australia), 169, pp. 428-431
  • Baldessarini, R.J., Tarazi, F.I., Drugs and the treatment of psychiatric disorders: Psychosis and mania (2001) The Pharmacological Basis of Therapeutics Tenth Edition, pp. 485-519. , J.G. Hardman, L.E. Limbird, & A. Goodman Gilman. New York: MacGraw-Hill. Chapter 20
  • Barik, S., Beaurepaire, R., Evidence for a functional role of the dopamine D3 receptors in the cerebellum (1996) Brain Res., 737 (12), pp. 347-350
  • Brusés, J.L., Azcurra, J.M., The circling training: A behavioral paradigm for functional teratology testing (1993) Paradigms for the Study of Behavior Methods Neurosci., 14, pp. 166-179. , P.M. Conn. New York: Academic Press
  • Brusés, J.L., Berninsone, P.M., Ojea, S., Azcurra, J.M., The circling training rat model as a behavioral teratology test (1991) Pharmacol. Biochem. Behav., 38, pp. 739-745
  • Burger, J., Gochfield, M., Lead and neurobehavioral development in gulls: A model for understanding effects in the laboratory and the field (1997) Neurotoxicology, 18 (2), pp. 495-506
  • Burke, R.E., Postnatal developmental programmed cell death in dopamine neurons (2003) Ann. N.Y. Acad. Sci., 991, pp. 69-79
  • Cagiano, R., Barfield, R.J., White, N.R., Pleim, E.T., Weinstein, M., Cuomo, V., Subtle behavioral changes produced in rat pups by in utero exposure to haloperidol (1988) Eur. J. Pharmacol., 157 (1), pp. 45-50
  • Calabresi, P., De Murtas, M., Mercuri, N.B., Bernardi, G., Chronic neuroleptic treatment: D2 dopamine receptor supersensitivity and striatal glutamatergic transmission (1992) Ann. Neurol., 31 (4), pp. 366-373
  • Castro, R., Brito, B., Segovia, J., Martin-Trujillo, J.M., Notario, V., Prenatal haloperidol induces a selective reduction in the expression of plasticity-related genes in neonate rat forebrain (1994) Mol. Brain Res., 26 (12), pp. 74-80
  • Chakos, M.H., Shirakawa, O., Lieberman, J., Lee, H., Bilder, R., Tamminga, C., Striatal enlargement in rats chronically treated with neuroleptics (1998) Biol. Psychiatry, 44 (8), pp. 675-684
  • Coyle, J.T., Campochiaro, P., Ontogenesis of cholinergic-dopaminergic interactions in the rat striatum: A neurochemical study (1976) J. Neurochem., 27, pp. 673-678
  • Creese, I., Burt, D., Snyder, S.H., Dopamine receptor binding predicts clinical and pharmacological potencies of anti-schizophrenic drugs (1976) Science, 192, pp. 481-483
  • Cuomo, V., Perinatal neurotoxicology of psychotropic drugs (1987) Trends Pharmacol. Sci., 8, pp. 346-350
  • Cuomo, V., Cagiano, R., Renna, G., Serinelli, A., Brunello, N., Racagni, G., Comparative evaluation of the behavioral consequences of prenatal and early postnatal exposure to haloperidol in rats (1985) Neurobehav. Toxicol. Teratol., 7 (5), pp. 489-492
  • Dean, J.C., Hailey, H., Moore, S.J., Lloyd, D.J., Turnpenny, P.D., Little, J., Long term health and neurodevelopment in children exposed to antiepileptic drugs before birth (2002) J. Med. Genet., 39 (4), pp. 251-259
  • Dewey, S.L., Smith, G.S., Logan, J., Brodie, J.D., Effects of central cholinergic blockade on striatal dopamine release measured with positron emission tomography in normal human subjects (1993) Proc. Natl. Acad. Sci. U. S. A., 90, pp. 11816-11820
  • Eastwood, S.L., Hefferman, J., Harrison, P.J., Chronic haloperidol treatment differentially affects the expression of synaptic and neuronal plasticity-associated genes (1997) Mol. Psychiatry, 2 (4), pp. 322-329
  • Faustman, E.M., Oinenn, G.S., Risk assessment (2001) Casarett and Doull's Toxicology, the Basic Science of Poisons Sixth Edition, pp. 93-94. , C.D. Klassen. New York: McGraw-Hill
  • Fox, C.A., Mansour, A., Watson Jr., S.J., The effects of haloperidol on dopamine receptor gene expression (1994) Exp. Neurol., 130 (2), pp. 288-303
  • Freed, C.R., Yamamoto, B.K., Regional brain dopamine metabolism: A marker for speed, direction, and posture of moving animals (1985) Science, 229, pp. 62-65
  • Galili, R., Mosberg, Gil-Ad, I., Weizman, A., Melamed, E., Offen, D., Haloperidol-induced neurotoxicity. Possible implications for tardive dyskinesia (2000) J. Neural Transm., 107 (4), pp. 479-490
  • Gjere, N.A., Psychopharmacology in pregnancy (2001) J. Perinat. Neonatal Nurs., 14 (4), pp. 12-35
  • Heyman, G.M., Beer, B., A new approach for evaluating the behavioral effects of antipsychotic drugs (1987) TIPS, 8, pp. 388-393
  • Hill, H.F., Engblom, J., Effects of pre- and postnatal haloperidol administration to pregnant and nursing rats on brain catecholamine levels in their offspring (1984) Dev. Pharmacol. Ther., 7, pp. 188-197
  • Ibarra, G.R., Paratcha, G.C., Wolansky, M.J., Azcurra, J.M., Co-alteration of dopamine D2 receptor and muscarinic acetylcholine receptor binding in rat striatum after circling training (1996) NeuroReport, 7 (1517), pp. 2491-2494
  • Imperato, A., Obiunu, M.C., Gessa, G.L., Is in vivo acetylcholine output under a tonic inhibitory control by dopamine? (1995) J. Neural Transm., Suppl., 45, pp. 91-102
  • Iñiguez, C., Calle, F., Marshall, E., Carreres, J., Morphological effects of chronic haloperidol administration on the postnatal development of the rat striatum (1987) Brain Res., 432 (1), pp. 27-34
  • Lee, M.H., Rabe, A., Neocortical transplant in the micrencephalic rat brain: Morphology and behavior (1988) Brain Res. Bull., 21 (5), pp. 813-824
  • Lescaudron, L., Stein, D.G., Functional recovery following transplants of embryonic brain tissue in rats with lesions of visual, frontal and motor cortex: Problems and prospects for future research (1990) Neuropsychologia, 28 (6), pp. 585-599
  • Levant, B., Grigoriadis, D.E., De Souza, E.B., Relative affinities of dopaminergic drugs at dopamine D2 and D3 receptors (1995) Eur. J. Pharmacol., 278 (3), pp. 243-247
  • Lowry, O.H., Rosebrough, N.J., Lewis Farr, A., Randall, R.J., Protein measurement with Folin phenol reagent (1951) J. Biol. Chem., 158, pp. 265-275
  • Marchand, R., Lajoie, L., Histogenesis of the striatopallidal system in the rat: Neurogenesis on its neurons (1986) Neuroscience, 17 (3), pp. 573-590
  • Middaugh, L.D., Zemp, J.W., Dopaminergic mediation of long-term behavioral effects of in utero drug exposure (1985) Neurobehav. Toxicol. Teratol., 7, pp. 685-689
  • Mihaly, G.W., Morgan, D.J., Placental drug transfer: Effects of gestational age and species (1983) Pharmacol. Ther., 23 (2), pp. 253-266
  • Miller, J.C., Friedhoff, A.J., Prenatal neurotransmitter programming of postnatal receptor function (1988) Prog. Brain Res., 73, pp. 491-508
  • Mitchell, I.J., Cooper, A.C., Griffiths, M.R., Cooper, A.J., Acute administration of haloperidol induces apoptosis of neurons in the striatum and substantia nigra in the rat (2002) Neuroscience, 109 (1), pp. 89-99
  • Nelson, B.K., Evidence for behavioral teratogens in humans (1991) J. Appl. Toxicol., 11 (1), pp. 33-37
  • Rodier, P., Chronology of neuron development: Animal studies and their clinical implications (1980) Dev. Med. Child Neurol., 22 (4), pp. 525-545
  • Rogue, P., Hanauer, A., Zwiller, J., Malaviya, A.N., Vincendon, G., Up-regulation of dopamine D2 receptor mRNA in rat striatum by chronic neuroleptic treatment (1991) Eur. J. Pharmacol., 207 (2), pp. 165-168
  • Rosengarten, H., Friedhoff, A.J., Enduring changes in dopamine receptor cells of pups from drug administration to pregnant and nursing rats (1979) Science, 203, pp. 1133-1135
  • Russi, G., Girotti, P., Cadoni, P., Di Chiara, G., Consolo, S., Neuroleptics increase striatal acetylcholine release by a sequential D1 and D2 receptor mechanism (1993) NeuroReport, 4, pp. 1335-1338
  • Saleh, M.I., Kostrzewa, R.M., MIF-1 attenuates spiroperidol alteration of striatal dopamine D2 receptor ontogeny (1989) Peptides, 10 (1), pp. 35-39
  • Shimohira, M., Iwakawa, Y., Kohyama, J., Rapid-eye-movement sleep in jittery infants (2002) Early Hum. Dev., 66 (1), pp. 25-31
  • Singh, K.P., Singh, M., Effect of prenatal haloperidol exposure on behavioral alteration in rats (2002) Neurotoxicol. Teratol., 24 (4), pp. 497-502
  • Soiza-Reilly, M., Fossati, M., Ibarra, G.R., Azcurra, J.M., Different dopamine D1 and D2 receptors expression after motor activity in the striatal critical period (2004) Brain Res., 1004 (12), pp. 217-221
  • Spear, L.P., The adolescent brain and age-related behavioral manifestations (2000) Neurosci. Biobehav. Rev., 24, pp. 417-463
  • Spear, L.P., File, S.E., Methodological considerations in neurobehavioral teratology (1996) Pharmacol. Biochem. Behav., 55 (4), pp. 455-477
  • Spear, L.P., Scalzo, F.M., Behavioral, psychopharmacological and neurochemical effects of chronic neuroleptic treatment during development (1986) Handbook of Behavioral Teratology, pp. 173-184. , E.P. Riley, & C.V. Vorhees. New York: Plenum. Chapter 8
  • Spigset, O., Haag, S., Excretion of psychotropic drugs into breast milk: Pharmacokinetic overview and therapeutic implications (1998) CNS Drugs, 9, pp. 111-134
  • Srivastava, L.K., Morency, M.A., Mishra, R.K., Ontogeny of dopamine D2 receptor mRNA in rat brain (1992) Eur. J. Pharmacol., 225 (2), pp. 143-150
  • Streissguth, A.P., Treder, R.P., Barr, H.M., Shepard, T.H., Bleyer, W.A., Aspirin and acetaminophen use by pregnant women and subsequent child IQ and attention decrements (1987) Teratology, 35 (2), pp. 211-219
  • Swaab, D.F., Mirmiran, M., The influence of chemicals and environment on brain development: "behavioral teratology" (1985) Prog. Clin. Biol. Res., 163, pp. 447-451
  • Tang, K.-C., Low, M.J., Grandy, D.K., Lovinger, D.M., Dopamine-dependent synaptic plasticity in striatum during in vivo development (2001) Proc. Natl. Acad. Sci. U. S. A., 98 (3), pp. 1255-1260
  • Teischer, M.H., Andersen, S.L., Hostetter Jr., J.C., Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens (1995) Dev. Brain Res., 89 (2), pp. 167-172
  • Thomas, J.D., Fleming, S.L., Riley, E.P., Administration of low doses of MK-801 during ethanol withdrawal in the developing rat pup attenuates alcohol's teratogenic effects (2002) Alcohol., Clin. Exp. Res., 26 (8), pp. 1307-1313
  • Tilson, H.A., The concern for developmental neurotoxicology: Is it justified and what is being done about it? (1995) Environ. Health Perspect., 103 (SUPPL. 6), pp. 147-151
  • Van Vulpen, E.H., Van Der Kooy, D., Striatal cholinergic interneurons: Birthdates predict compartmental localization (1998) Dev. Brain Res., 109 (1), pp. 51-58
  • Vorhees, C.V., Developmental neurotoxicity induced by therapeutic and illicit drugs (1994) Environ. Health Perspect., 102 (SUPPL. 2), pp. 145-153
  • Vorhees, C.V., Molinow, E., Behavioral teratogenesis: Long-term influences on behavior from early exposure to environmental agents (1987) Handbook of Infants Development Second Edition, pp. 913-971. , J.D. Osofsky. New York: Wiley
  • Watanabe, T., Matsuhashi, K., Takayama, S., Placental and blood-brain barrier transfer following prenatal and postnatal exposures to neuroactive drugs: Relationship with partition coefficient and behavioral teratogenesis (1990) Toxicol. Appl. Pharmacol., 105 (1), pp. 66-77
  • Williams, R., Ali, S.F., Scalzo, F.M., Soliman, K., Holson, R.R., Prenatal haloperidol exposure: Effects on brain weights and caudate neurotransmitter levels in rats (1992) Brain Res. Bull., 29 (34), pp. 449-458
  • Wolansky, M.J., Mongiat, L., Ibarra, G.R., Paratcha, G.C., Cabrera, R.J., Azcurra, J.M., Reduction of sample size per experimental group and time per agent examined in a sensitive rat model for behavioral teratology screening routines (1999) Third World Congress on Alternatives and Animal Use in the Life Sciences, Bologna, Italy, 29th August-2nd September, 1999 Alternatives to Laboratory Animals (ATLA) (Suppl.), pp. 165A
  • Xu, S.X., Monsma, F.J., Sibley, D.R., Creese, I., Regulation of D1A and D2 dopamine receptor mRNA during ontogenesis, lesion and chronic antagonist treatment (1992) Life Sci., 50 (5), pp. 383-396
  • Yanai, J., Abu-Roumi, M., Silverman, W.F., Steingart, R.A., Neural grafting as a tool for the study and reversal of neurobehavioral birth defects (1996) Pharmacol. Biochem. Behav., 55 (4), pp. 673-681
  • Yoshida, K., Smith, B., Craggs, M., Kumar, R., Neuroleptic drugs in breast-milk: A study of pharmacokinetics and of possible adverse effects in breast-fed infants (1998) Psychol. Med., 28 (1), pp. 81-91

Citas:

---------- APA ----------
Wolansky, M.J., Soiza-Reilly, M., Fossati, M. & Azcurra, J.M. (2004) . Postnatal haloperidol eliminates the deficit in circling behavior produced by prenatal exposure to the same drug. Neurotoxicology and Teratology, 26(4), 561-569.
http://dx.doi.org/10.1016/j.ntt.2004.04.006
---------- CHICAGO ----------
Wolansky, M.J., Soiza-Reilly, M., Fossati, M., Azcurra, J.M. "Postnatal haloperidol eliminates the deficit in circling behavior produced by prenatal exposure to the same drug" . Neurotoxicology and Teratology 26, no. 4 (2004) : 561-569.
http://dx.doi.org/10.1016/j.ntt.2004.04.006
---------- MLA ----------
Wolansky, M.J., Soiza-Reilly, M., Fossati, M., Azcurra, J.M. "Postnatal haloperidol eliminates the deficit in circling behavior produced by prenatal exposure to the same drug" . Neurotoxicology and Teratology, vol. 26, no. 4, 2004, pp. 561-569.
http://dx.doi.org/10.1016/j.ntt.2004.04.006
---------- VANCOUVER ----------
Wolansky, M.J., Soiza-Reilly, M., Fossati, M., Azcurra, J.M. Postnatal haloperidol eliminates the deficit in circling behavior produced by prenatal exposure to the same drug. Neurotoxicol. Teratol. 2004;26(4):561-569.
http://dx.doi.org/10.1016/j.ntt.2004.04.006