Artículo

Lunardi, P.; Sachser, R.M.; Sierra, R.O.; Pedraza, L.K.; Medina, C.; de la Fuente, V.; Romano, A.; Quillfeldt, J.A.; de Oliveira Alvares, L. "Effects of Hippocampal LIMK Inhibition on Memory Acquisition, Consolidation, Retrieval, Reconsolidation, and Extinction" (2018) Molecular Neurobiology. 55(2):958-967
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Long-lasting changes in dendritic spines provide a physical correlate for memory formation and persistence. LIM kinase (LIMK) plays a critical role in orchestrating dendritic actin dynamics during memory processing, since it is the convergent downstream target of both the Rac1/PAK and RhoA/ROCK pathways that in turn induce cofilin phosphorylation and prevent depolymerization of actin filaments. Here, using a potent LIMK inhibitor (BMS-5), we investigated the role of LIMK activity in the dorsal hippocampus during contextual fear memory in rats. We first found that post-training administration of BMS-5 impaired memory consolidation in a dose-dependent manner. Inhibiting LIMK before training also disrupted memory acquisition. We then demonstrated that hippocampal LIMK activity seems to be critical for memory retrieval and reconsolidation, since both processes were impaired by BMS-5 treatment. Contextual fear memory extinction, however, was not sensitive to the same treatment. In conclusion, our findings demonstrate that hippocampal LIMK activity plays an important role in memory acquisition, consolidation, retrieval, and reconsolidation during contextual fear conditioning. © 2017, Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:Effects of Hippocampal LIMK Inhibition on Memory Acquisition, Consolidation, Retrieval, Reconsolidation, and Extinction
Autor:Lunardi, P.; Sachser, R.M.; Sierra, R.O.; Pedraza, L.K.; Medina, C.; de la Fuente, V.; Romano, A.; Quillfeldt, J.A.; de Oliveira Alvares, L.
Filiación:Laboratório de Neurobiologia da Memória, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, 9500, Prédio 43422, Sala 216A, Porto Alegre, Rio Grande do Sul 91501-970, Brazil
Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:BMS-5; Dorsal hippocampus; Memory; Rats; bms 5; LIM kinase; protein serine threonine kinase inhibitor; unclassified drug; enzyme inhibitor; LIM kinase; animal experiment; Article; dorsal hippocampus; enzyme activity; enzyme inhibition; fear conditioning test; male; memory; memory acquisition; memory consolidation; memory extinction; memory reconsolidation; memory retrieval; nonhuman; rat; animal; antagonists and inhibitors; conditioning; drug effect; fear; hippocampus; memory; pain threshold; reinforcement; Wistar rat; Animals; Conditioning (Psychology); Enzyme Inhibitors; Extinction, Psychological; Fear; Hippocampus; Lim Kinases; Male; Memory; Memory Consolidation; Pain Threshold; Rats; Rats, Wistar
Año:2018
Volumen:55
Número:2
Página de inicio:958
Página de fin:967
DOI: http://dx.doi.org/10.1007/s12035-016-0361-x
Título revista:Molecular Neurobiology
Título revista abreviado:Mol. Neurobiol.
ISSN:08937648
CODEN:MONBE
CAS:Enzyme Inhibitors; Lim Kinases
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08937648_v55_n2_p958_Lunardi

Referencias:

  • Fukazawa, Y., Saitoh, Y., Ozawa, F., (2003) Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo, 38, pp. 447-460
  • Kasai, H., Matsuzaki, M., Noguchi, J., Structure-stability-function relationships of dendritic spines (2003) Trends Neurosci, 26, pp. 360-368. , COI: 1:CAS:528:DC%2BD3sXlt1eiurk%3D, PID: 12850432
  • Kasai, H., Fukuda, M., Watanabe, S., Structural dynamics of dendritic spines in memory and cognition (2010) Trends Neurosci, 33, pp. 121-129. , COI: 1:CAS:528:DC%2BC3cXjt1Kgs74%3D, PID: 20138375
  • Matus, A., Brinkhaus, H., Wagner, U., Actin dynamics in dendritic spines: a form of regulated plasticity at excitatory synapses (2000) Hippocampus, 10, pp. 555-560. , COI: 1:CAS:528:DC%2BD3cXnvV2ksbs%3D, PID: 11075825
  • Yuste, R., Bonhoeffer, T., Genesis of dendritic spines: insights from ultrastructural and imaging studies (2004) Nat Rev Neurosci, 5, pp. 24-34. , COI: 1:CAS:528:DC%2BD2cXltVSmtw%3D%3D, PID: 14708001
  • Fifková, E., Actin in the nervous system (1985) Brain Res, 356, pp. 187-215. , PID: 3159464
  • Fischer, M., Kaech, S., Wagner, U., Glutamate receptors regulate actin-based plasticity in dendritic spines (2000) Nat Neurosci, 3, pp. 887-894. , COI: 1:CAS:528:DC%2BD3cXmtlCktr4%3D, PID: 10966619
  • O’Brien, R.J., Kamboj, S., Ehlers, M.D., Activity-dependent modulation of synaptic AMPA receptor accumulation (1998) Neuron, 21, pp. 1067-1078. , PID: 9856462
  • Lynch, G., Kessler, M., Halpain, S., Baudry, M., Biochemical effects of high-frequency synaptic activity studied with in vitro slices (1983) Fed Proc, 42, pp. 2886-2890. , COI: 1:CAS:528:DyaL3sXlsFGkurk%3D, PID: 6136422
  • Morris, R.G.M., Anderson, E., Lynch, G.S., Baudry, M., Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5 (1986) Nature, 319, pp. 774-776. , COI: 1:CAS:528:DyaL28XhsVaktLc%3D, PID: 2869411
  • Collingridge, G.L., Kehl, S.J., McLennan, H., Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus (1983) J Physiol, 334, pp. 33-46. , COI: 1:CAS:528:DyaL38XmtV2itLw%3D, PID: 6306230
  • Gu, J., Lee, C.W., Fan, Y., ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity (2010) Nat Neurosci, 13, pp. 1208-1215. , COI: 1:CAS:528:DC%2BC3cXhtFCnsb3E, PID: 20835250
  • Wang, Y., Dong, Q., Xu, X., Phosphorylation of cofilin regulates extinction of conditioned aversive memory via AMPAR (2013) Trafficking, 33, pp. 6423-6433. , COI: 1:CAS:528:DC%2BC3sXhtl2jtrvF
  • Hanley, J.G., Actin-dependent mechanisms in AMPA receptor trafficking (2014) Front Cell Neurosci, 8, p. 381. , PID: 25429259
  • Matsuzaki, M., Factors critical for the plasticity of dendritic spines and memory storage (2007) Neurosci Res, 57, pp. 1-9. , PID: 17070951
  • Honkura, N., Matsuzaki, M., Noguchi, J., The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines (2008) Neuron, 57, pp. 719-729. , COI: 1:CAS:528:DC%2BD1cXjslegtL8%3D, PID: 18341992
  • Chen, L.Y., Rex, C.S., Casale, M.S., Changes in synaptic morphology accompany actin signaling during LTP (2007) J Neurosci, 27, pp. 5363-5372. , COI: 1:CAS:528:DC%2BD2sXlvFGhsr0%3D, PID: 17507558
  • Bosch, M., Castro, J., Saneyoshi, T., Structural and molecular remodeling of dendritic spine substructures during long-term potentiation (2014) Neuron, 82, pp. 444-459. , COI: 1:CAS:528:DC%2BC2cXmsFCnsbg%3D, PID: 24742465
  • Zhou, Q., Homma, K.J., Poo, M.M., (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. TL - 44. Neuron 44 VN-r:749–757
  • Meng, Y., Zhang, Y., Tregoubov, V., Regulation of spine morphology and synaptic function by LIMK and the actin cytoskeleton (2003) Rev Neurosci, 14, pp. 233-240. , COI: 1:CAS:528:DC%2BD2cXitVSjs7Y%3D, PID: 14513866
  • Nakayama, A.Y., Harms, M.B., Luo, L., Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons (2000) J Neurosci, 20, pp. 5329-5338. , COI: 1:CAS:528:DC%2BD3cXlt1Wiur0%3D, PID: 10884317, 20/14/5329
  • Tashiro, A., Yuste, R., Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility (2004) Mol Cell Neurosci, 26, pp. 429-440. , COI: 1:CAS:528:DC%2BD2cXlsVSgt7w%3D, PID: 15234347
  • Rex, C.S., Chen, L.Y., Sharma, A., Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation (2009) J Cell Biol, 186, pp. 85-97. , COI: 1:CAS:528:DC%2BD1MXovVKgt7k%3D, PID: 19596849
  • Luo, L., Rho GTPases in neuronal morphogenesis (2000) Nat Rev Neurosci, 1, pp. 173-180. , COI: 1:CAS:528:DC%2BD3MXivVSjsr4%3D, PID: 11257905
  • Lamprecht, R., Farb, C.R., LeDoux, J.E., Fear memory formation involves p190 RhoGAP and ROCK proteins through a GRB2-mediated complex (2002) Neuron, 36, pp. 727-738. , COI: 1:CAS:528:DC%2BD38Xpt1Kgs7Y%3D, PID: 12441060
  • Hayashi, M.L., Choi, S.Y., Shankaranarayana Rao, B.S., Altered cortical synaptic morphology and impaired memory consolidation in forebrain-specific dominant-negative PAK transgenic mice (2004) Neuron, 42, pp. 773-787. , COI: 1:CAS:528:DC%2BD2cXlslWhur8%3D, PID: 15182717
  • Harris-white, M.E., Yang, F., Lim, G.P., Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer (2006) disease, 9, pp. 234-242
  • Ma, Q.-L., Yang, F., Frautschy, S.A., Cole, G.M., PAK in Alzheimer disease, Huntington disease and X-linked mental retardation (2012) Cell Logist, 2, pp. 117-125. , PID: 23162743
  • Jiang, L., Mao, R., Tong, J., Inhibition of Rac1 activity in the hippocampus impaired extinction of contextual fear (2016) Neuropharmacology, 109, pp. 216-222. , COI: 1:CAS:528:DC%2BC28XhtFaiurrP, PID: 27329554
  • Wu, P., Ding, Z.B., Meng, S.Q., Differential role of Rac in the basolateral amygdala and cornu ammonis 1 in the reconsolidation of auditory and contextual Pavlovian fear memory in rats (2014) Psychopharmacology, 231, pp. 2909-2919. , COI: 1:CAS:528:DC%2BC2cXivVegt70%3D, PID: 24553575
  • Murakoshi, H., Wang, H., Yasuda, R., Local, persistent activation of rho GTPases during plasticity of single dendritic spines (2011) Nature, 472, pp. 100-104. , COI: 1:CAS:528:DC%2BC3MXjsVOjs74%3D, PID: 21423166
  • Bosch, M., Hayashi, Y., Structural plasticity of dendritic spines (2012) Curr Opin Neurobiol, 22, pp. 383-388. , COI: 1:CAS:528:DC%2BC38XpvFGjs7s%3D, PID: 21963169
  • Edwards, D.C., Sanders, L.C., Bokoch, G.M., Gill, G.N., Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics (1999) Nat Cell Biol, 1, pp. 253-259. , COI: 1:CAS:528:DyaK1MXlvFChu78%3D, PID: 10559936
  • Schratt, G.M., Tuebing, F., Nigh, E.A., A brain-specific microRNA regulates dendritic spine development (2006) Nature, 439, pp. 283-289. , COI: 1:CAS:528:DC%2BD28XkvF2mtA%3D%3D, PID: 16421561
  • Carlisle, H.J., Kennedy, M.B., Spine architecture and synaptic plasticity (2005) Trends Neurosci, 28, pp. 182-187. , COI: 1:CAS:528:DC%2BD2MXivV2htro%3D, PID: 15808352
  • Yang, N., Higuchi, O., Ohashi, K., Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization (1998) Nature, 393, pp. 809-812. , COI: 1:CAS:528:DyaK1cXktl2jtbo%3D, PID: 9655398
  • Sumi, T., Matsumoto, K., Takai, Y., Nakamura, T., Cofilin phosphorylation and actin cytoskeletal dynamics regulated by rho- and Cdc42-activated LIM-kinase 2 (1999) J Cell Biol, 147, pp. 1519-1532. , COI: 1:CAS:528:DC%2BD3cXis12gtw%3D%3D, PID: 10613909
  • Meng, Y., Takahashi, H., Meng, J., (2004) Regulation of ADF / cofilin phosphorylation and synaptic function by LIM-kinase, 47, pp. 746-754
  • Toshima, J., Toshima, J.Y., Amano, T., Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation (2001) Mol Biol Cell, 12, pp. 1131-1145. , COI: 1:CAS:528:DC%2BD3MXjtVaqtr0%3D, PID: 11294912
  • Meng, Y., Zhang, Y., Tregoubov, V., Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice (2002) Neuron, 35, pp. 121-133. , COI: 1:CAS:528:DC%2BD38XlslOqsbc%3D, PID: 12123613
  • Sachser, R.M., Santana, F., Crestani, A.P., Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin (2016) Sci Rep, 6, p. 22771. , COI: 1:CAS:528:DC%2BC28XjslGrtL0%3D, PID: 26947131
  • Paxinos, G., Watson, C., (2007) The rat brain in stereotaxic coordinates, , Elsevier
  • Park, J.-B., Agnihotri, S., Golbourn, B., Transcriptional profiling of GBM invasion genes identifies effective inhibitors of the LIM kinase-Cofilin pathway (2014) Oncotarget, 5, pp. 9382-9395. , PID: 25237832
  • Wang, W., Townes-Anderson, E., LIM kinase, a newly identified regulator of presynaptic remodeling by rod photoreceptors after injury (2015) Invest Ophthalmol Vis Sci, 56, pp. 7847-7858. , COI: 1:CAS:528:DC%2BC28XitFWktLzM, PID: 26658506
  • Blanchard, R.J., Blanchard, D.C., Passive and active reactions to fear-eliciting stimuli (1969) J Comp Physiol Psychol, 68, pp. 129-135. , COI: 1:STN:280:DyaF1M3jtlyksA%3D%3D, PID: 5793861
  • Izquierdo, I., McGaugh, J.L., Behavioural pharmacology and its contribution to the molecular basis of memory consolidation (2000) Behav Pharmacol, 11, pp. 517-534. , COI: 1:CAS:528:DC%2BD3MXitFSjtg%3D%3D, PID: 11198125
  • Rudy, J.W., Variation in the persistence of memory: an interplay between actin dynamics and AMPA receptors (2015) Brain Res, 1621, pp. 29-37. , COI: 1:CAS:528:DC%2BC2cXitFOrtbrP, PID: 25511990
  • Segal, M., Dendritic spines, synaptic plasticity and neuronal survival: activity shapes dendritic spines to enhance neuronal viability (2010) Eur J Neurosci, 31, pp. 2178-2184. , PID: 20550565
  • Yang, Y., Zhou, Q., Spine modifications associated with long-term potentiation (2009) Neuroscientist, 15, pp. 464-476. , COI: 1:CAS:528:DC%2BD1MXht1yltrrJ, PID: 19826170
  • Fortin, D.A., Srivastava, T., Soderling, T.R., Structural modulation of dendritic spines during synaptic plasticity (2012) Neuroscientist, 18, pp. 326-341. , PID: 21670426
  • Bellot, A., Guivernau, B., Tajes, M., The structure and function of actin cytoskeleton in mature glutamatergic dendritic spines (2014) Brain Res, 1573, pp. 1-16. , COI: 1:CAS:528:DC%2BC2cXpslajsrc%3D, PID: 24854120
  • Mantzur, L., Joels, G., Lamprecht, R., Actin polymerization in lateral amygdala is essential for fear memory formation (2009) Neurobiol Learn Mem, 91, pp. 85-88. , COI: 1:CAS:528:DC%2BD1MXhtVGis7Y%3D, PID: 18812227
  • Motanis, H., Maroun, M., Differential involvement of protein synthesis and actin rearrangement in the reacquisition of contextual fear conditioning (2012) Hippocampus, 22, pp. 494-500. , COI: 1:CAS:528:DC%2BC38XisFaqsb0%3D, PID: 21240917
  • Lopez, J., Gamache, K., Schneider, R., Nader, K., Memory retrieval requires ongoing protein synthesis and NMDA receptor activity-mediated AMPA receptor trafficking (2015) J Neurosci, 35, pp. 2465-2475. , COI: 1:CAS:528:DC%2BC2MXhtVSqt7rM, PID: 25673841
  • Rust, M.B., Gurniak, C.B., Renner, M., Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics (2010) EMBO J, 29, pp. 1889-1902. , COI: 1:CAS:528:DC%2BC3cXkvVSht78%3D, PID: 20407421
  • Crestani, A.P., Zacouteguy Boos, F., Haubrich, J., Memory reconsolidation may be disrupted by a distractor stimulus presented during reactivation (2015) Sci Rep, 5, p. 13633. , PID: 26328547
  • Nader, K., Schafe, G.E., Le Doux, J.E., Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval (2000) Nature, 406, pp. 722-726. , COI: 1:CAS:528:DC%2BD3cXmt1Cgt7Y%3D, PID: 10963596
  • Furini, C., Myskiw, J., Izquierdo, I., The learning of fear extinction (2014) Neurosci Biobehav Rev, 47, pp. 670-683. , PID: 25452113
  • Restivo, L., Vetere, G., Bontempi, B., Ammassari-Teule, M., The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex (2009) J Neurosci, 29, pp. 8206-8214. , COI: 1:CAS:528:DC%2BD1MXotFKgurs%3D, PID: 19553460
  • Lamprecht, R., The actin cytoskeleton in memory formation (2014) Prog Neurobiol, 117, pp. 1-19. , COI: 1:CAS:528:DC%2BC2cXksFWmtbY%3D, PID: 24530292
  • Rudy, J.W., Actin dynamics and the evolution of the memory trace (2015) Brain Res, 1621, pp. 17-28. , COI: 1:CAS:528:DC%2BC2cXitFOqsrnI, PID: 25498985
  • Allison, D.W., Gelfand, V.I., Spector, I., Craig, A.M., Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors (1998) J Neurosci, 18, pp. 2423-2436. , COI: 1:CAS:528:DyaK1cXitFCjsr8%3D, PID: 9502803
  • Shipton, O.A., Paulsen, O., Paulsen, O., (2014) NMDA receptors in hippocampal plasticity
  • Morris, R.G.M., NMDA receptors and memory encoding (2013) Neuropharmacology, 74, pp. 32-40. , COI: 1:CAS:528:DC%2BC3sXnslakurs%3D, PID: 23628345
  • Kim, C.H., Lisman, J.E., A role of actin filament in synaptic transmission and long-term potentiation (1999) J Neurosci, 19, pp. 4314-4324. , COI: 1:CAS:528:DyaK1MXjsFaitbo%3D, PID: 10341235
  • Fonseca, R., Activity-dependent actin dynamics are required for the maintenance of long-term plasticity and for synaptic capture (2012) Eur J Neurosci, 35, pp. 195-206. , PID: 22250814
  • Hong, I., Kim, J., Kim, J., AMPA receptor exchange underlies transient memory destabilization on retrieval (2013) Proc Natl Acad Sci U S A, 110, pp. 8218-8223. , COI: 1:CAS:528:DC%2BC3sXhtV2ksLrO, PID: 23630279
  • Passafaro, M., Nakagawa, T., Sala, C., Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2 (2003) Nature, 424, pp. 677-681. , COI: 1:CAS:528:DC%2BD3sXmtVekurk%3D, PID: 12904794
  • Daly, R.J., Cortactin signalling and dynamic actin networks (2004) Biochem J, 382, pp. 13-25. , COI: 1:CAS:528:DC%2BD2cXmsVChsLs%3D, PID: 15186216
  • Bhatt, D.H., Zhang, S., Gan, W.-B., Dendritic spine dynamics (2009) Annu Rev Physiol, 71, pp. 261-282. , COI: 1:CAS:528:DC%2BD1MXjsValsbo%3D, PID: 19575680
  • Yang, G., Pan, F., Gan, W.-B., Stably maintained dendritic spines are associated with lifelong memories (2009) Nature, 462, pp. 920-924. , COI: 1:CAS:528:DC%2BD1MXhsVylsLvM, PID: 19946265
  • Rao-Ruiz, P., Rotaru, D.C., Van Der Loo, R.J., Retrieval-specific endocytosis of GluA2-AMPARs underlies adaptive reconsolidation of contextual fear (2011) Nat Neurosci, 14, pp. 1302-1308. , COI: 1:CAS:528:DC%2BC3MXhtFGnurvP, PID: 21909089
  • Ding, Z.B., Wu, P., Luo, Y.X., Region-specific role of Rac in nucleus accumbens core and basolateral amygdala in consolidation and reconsolidation of cocaine-associated cue memory in rats (2013) Psychopharmacology, 228, pp. 427-437. , COI: 1:CAS:528:DC%2BC3sXktVKgt7w%3D, PID: 23494234
  • Suzuki, A., Memory reconsolidation and extinction have distinct temporal and biochemical signatures (2004) J Neurosci, 24, pp. 4787-4795. , COI: 1:CAS:528:DC%2BD2cXks1yrsrg%3D, PID: 15152039
  • Lai, C.S.W., Franke, T.F., Gan, W.-B., Opposite effects of fear conditioning and extinction on dendritic spine remodelling (2012) Nature, 483, pp. 87-91. , COI: 1:CAS:528:DC%2BC38XisVKlur0%3D, PID: 22343895
  • Delorenzi, A., Maza, F.J., Suárez, L.D., Memory beyond expression (2014) J Physiol Paris, 108, pp. 307-322. , COI: 1:STN:280:DC%2BC2cbpsFKksg%3D%3D, PID: 25102126
  • Giachero, M., Bustos, S.G., Calfa, G., Molina, V.A., A BDNF sensitive mechanism is involved in the fear memory resulting from the interaction between stress and the retrieval of an established trace (2013) Learn Mem, 20, pp. 245-255. , COI: 1:CAS:528:DC%2BC3sXosVKktLo%3D, PID: 23589091
  • Maldonado, N.M., Martijena, I.D., Molina, V.A., Facilitating influence of stress on the consolidation of fear memory induced by a weak training: reversal by midazolam pretreatment (2011) Behav Brain Res, 225, pp. 77-84. , COI: 1:CAS:528:DC%2BC3MXhtFKju77M, PID: 21763355
  • Maldonado, N.M., Espejo, P.J., Martijena, I.D., Molina, V.A., Activation of ERK2 in basolateral amygdala underlies the promoting influence of stress on fear memory and anxiety: influence of midazolam pretreatment (2014) Eur Neuropsychopharmacol, 24, pp. 262-270. , COI: 1:CAS:528:DC%2BC3sXhs12lu77L, PID: 24182621
  • Fischer, A., Distinct roles of hippocampal de novo protein synthesis and actin rearrangement in extinction of contextual fear (2004) J Neurosci, 24, pp. 1962-1966. , COI: 1:CAS:528:DC%2BD2cXitVWkt7Y%3D, PID: 14985438
  • Sananbenesi, F., Fischer, A., Wang, X., A hippocampal Cdk5 pathway regulates extinction of contextual fear (2007) Nat Neurosci, 10, pp. 1012-1019. , COI: 1:CAS:528:DC%2BD2sXotFyku7w%3D, PID: 17632506

Citas:

---------- APA ----------
Lunardi, P., Sachser, R.M., Sierra, R.O., Pedraza, L.K., Medina, C., de la Fuente, V., Romano, A.,..., de Oliveira Alvares, L. (2018) . Effects of Hippocampal LIMK Inhibition on Memory Acquisition, Consolidation, Retrieval, Reconsolidation, and Extinction. Molecular Neurobiology, 55(2), 958-967.
http://dx.doi.org/10.1007/s12035-016-0361-x
---------- CHICAGO ----------
Lunardi, P., Sachser, R.M., Sierra, R.O., Pedraza, L.K., Medina, C., de la Fuente, V., et al. "Effects of Hippocampal LIMK Inhibition on Memory Acquisition, Consolidation, Retrieval, Reconsolidation, and Extinction" . Molecular Neurobiology 55, no. 2 (2018) : 958-967.
http://dx.doi.org/10.1007/s12035-016-0361-x
---------- MLA ----------
Lunardi, P., Sachser, R.M., Sierra, R.O., Pedraza, L.K., Medina, C., de la Fuente, V., et al. "Effects of Hippocampal LIMK Inhibition on Memory Acquisition, Consolidation, Retrieval, Reconsolidation, and Extinction" . Molecular Neurobiology, vol. 55, no. 2, 2018, pp. 958-967.
http://dx.doi.org/10.1007/s12035-016-0361-x
---------- VANCOUVER ----------
Lunardi, P., Sachser, R.M., Sierra, R.O., Pedraza, L.K., Medina, C., de la Fuente, V., et al. Effects of Hippocampal LIMK Inhibition on Memory Acquisition, Consolidation, Retrieval, Reconsolidation, and Extinction. Mol. Neurobiol. 2018;55(2):958-967.
http://dx.doi.org/10.1007/s12035-016-0361-x