Artículo

Quintá, H.R.; Galigniana, N.M.; Erlejman, A.G.; Lagadari, M.; Piwien-Pilipuk, G.; Galigniana, M.D. "Management of cytoskeleton architecture by molecular chaperones and immunophilins" (2011) Cellular Signalling. 23(12):1907-1920
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cytoskeletal structure is continually remodeled to accommodate normal cell growth and to respond to pathophysiological cues. As a consequence, several cytoskeleton-interacting proteins become involved in a variety of cellular processes such as cell growth and division, cell movement, vesicle transportation, cellular organelle location and function, localization and distribution of membrane receptors, and cell-cell communication. Molecular chaperones and immunophilins are counted among the most important proteins that interact closely with the cytoskeleton network, in particular with microtubules and microtubule-associated factors. In several situations, heat-shock proteins and immunophilins work together as a functionally active heterocomplex, although both types of proteins also show independent actions. In circumstances where homeostasis is affected by environmental stresses or due to genetic alterations, chaperone proteins help to stabilize the system. Molecular chaperones facilitate the assembly, disassembly and/or folding/refolding of cytoskeletal proteins, so they prevent aberrant protein aggregation. Nonetheless, the roles of heat-shock proteins and immunophilins are not only limited to solve abnormal situations, but they also have an active participation during the normal differentiation process of the cell and are key factors for many structural and functional rearrangements during this course of action. Cytoskeleton modifications leading to altered localization of nuclear factors may result in loss- or gain-of-function of such factors, which affects the cell cycle and cell development. Therefore, cytoskeletal components are attractive therapeutic targets, particularly microtubules, to prevent pathological situations such as rapidly dividing tumor cells or to favor the process of cell differentiation in other cases. In this review we will address some classical and novel aspects of key regulatory functions of heat-shock proteins and immunophilins as housekeeping factors of the cytoskeletal network. © 2011 Elsevier Inc.

Registro:

Documento: Artículo
Título:Management of cytoskeleton architecture by molecular chaperones and immunophilins
Autor:Quintá, H.R.; Galigniana, N.M.; Erlejman, A.G.; Lagadari, M.; Piwien-Pilipuk, G.; Galigniana, M.D.
Filiación:Instituto de Biologia y Medicina Experimental-CONICET, Vuelta de Obligado 2490, Buenos Aires (C1428ADN), Argentina
Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Univ. de Buenos Aires, Ciudad Universitaria, Buenos Aires (C1428EGA), Argentina
Palabras clave:Folding; Heat-shock protein; Intermediate filament; Microfilament; Microtubule; Stress; actin; apoptotic protease activating factor 1; benzyloxycarbonylleucylleucylleucinal; chaperone; chaperonin; colchicine; fk 506 binding protein; fk 506 binding protein 51; fk 506 binding protein 52; gamma tubulin; glial fibrillary acidic protein; heat shock protein 100; heat shock protein 25; heat shock protein 27; heat shock protein 40; heat shock protein 60; heat shock protein 70; heat shock protein 90; immunophilin; isothiocyanic acid derivative; paclitaxel; protein p23; resveratrol; survivin; tanespimycin; tau protein; tubulin; unclassified drug; unindexed drug; vimentin; vincristine; antineoplastic activity; cell communication; cell cycle; cell division; cell growth; cell maturation; cell motion; cell organelle; cell vacuole; complex formation; cytoskeleton; drug potentiation; drug protein binding; drug resistance; heat stress; human; intermediate filament; microtubule; nerve cell differentiation; nonhuman; priority journal; protein aggregation; protein assembly; protein expression; protein folding; protein function; protein localization; protein processing; review; Animals; Cell Differentiation; Cytoskeleton; Glycoproteins; Humans; Immunophilins; Inhibitor of Apoptosis Proteins; Molecular Chaperones; Multiprotein Complexes; Neurons; Protein Binding; Protein Multimerization; Protein Processing, Post-Translational; Protein Structure, Tertiary; tau Proteins
Año:2011
Volumen:23
Número:12
Página de inicio:1907
Página de fin:1920
DOI: http://dx.doi.org/10.1016/j.cellsig.2011.07.023
Título revista:Cellular Signalling
Título revista abreviado:Cell. Signal.
ISSN:08986568
CODEN:CESIE
CAS:apoptotic protease activating factor 1, 215953-91-6; benzyloxycarbonylleucylleucylleucinal, 133407-82-6; colchicine, 64-86-8; gamma tubulin, 138757-07-0; paclitaxel, 33069-62-4; resveratrol, 501-36-0; survivin, 195263-98-0; tanespimycin, 75747-14-7; vincristine, 57-22-7; Glycoproteins; Immunophilins, 5.2.1.8; Inhibitor of Apoptosis Proteins; Molecular Chaperones; Multiprotein Complexes; tau Proteins; tissue-factor-pathway inhibitor 2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08986568_v23_n12_p1907_Quinta

Referencias:

  • Erickson, H.P., (2007) Bioessays, 29 (7), pp. 668-677
  • Shih, Y.L., Rothfield, L., (2006) Microbiol. Mol. Biol. Rev., 70 (3), pp. 729-754
  • Wade, R.H., (2009) Mol. Biotechnol., 43 (2), pp. 177-191
  • Vogel, J., Drapkin, B., Oomen, J., Beach, D., Bloom, K., Snyder, M., (2001) Dev. Cell., 1 (5), pp. 621-631
  • Mogilner, A., Oster, G., (2003) Curr. Biol., 13 (18), pp. R721-R733
  • Defeu Soufo, H.J., Graumann, P.L., (2004) EMBO Rep., 5 (8), pp. 789-794
  • Wiesner, S., Helfer, E., Didry, D., Ducouret, G., Lafuma, F., Carlier, M.F., Pantaloni, D., (2003) J. Cell. Biol., 160 (3), pp. 387-398
  • Khatau, S.B., Kim, D.H., Hale, C.M., Bloom, R.J., Wirtz, D., (2010) Nucleus, 1 (4), pp. 337-342
  • Wirtz, D., Khatau, S.B., (2010) Nat. Mater., 9 (10), pp. 788-790
  • Toivola, D.M., Tao, G.Z., Habtezion, A., Liao, J., Omary, M.B., (2005) Trends Cell. Biol., 15 (11), pp. 608-617
  • Capetanaki, Y., Bloch, R.J., Kouloumenta, A., Mavroidis, M., Psarras, S., (2007) Exp. Cell. Res., 313 (10), pp. 2063-2076
  • Szeverenyi, I., Cassidy, A.J., Chung, C.W., Lee, B.T., Common, J.E., Ogg, S.C., Chen, H., Lane, E.B., (2008) Hum. Mutat., 29 (3), pp. 351-360
  • Ehler, E., Perriard, J.C., (2000) Heart Fail Rev., 5 (3), pp. 259-269
  • Dutsch-Wicherek, M., (2010) J. Am. Reprod. Immunol., 63, pp. 181-188
  • Sarria, A.J., Panini, S.R., Evans, R.M., (1992) J. Biol. Chem., 267, pp. 19455-19463
  • Gilyarov, A.V., (2008) Neurosci. Behav. Physiol., 38, pp. 165-169
  • Herrmann, H., Strelkov, S.V., Burkhard, P., Aebi, U., (2009) J. Clin. Invest., 119 (7), pp. 1772-1783
  • Omary, M.B., (2009) J. Clin. Invest., 119 (7), pp. 1756-1762
  • Toivola, D.M., Strnad, P., Habtezion, A., Omary, M.B., (2010) Trends Cell. Biol., 20 (2), pp. 79-91
  • Green, K.J., Bohringer, M., Gocken, T., Jones, J.C., (2005) Adv. Protein Chem., 70, pp. 143-202
  • Pallari, H.M., Eriksson, J.E., (2006) Sci. STKE, 2006 (366), pp. pe53
  • Cabeen, M.T., Jacobs-Wagner, C., (2010) Annu. Rev. Genet., 44, pp. 365-392
  • Aylett, C.H., Wang, Q., Michie, K.A., Amos, L.A., Lowe, J., (2010) Proc. Natl. Acad. Sci. U. S. A., 107 (46), pp. 19766-19771
  • Michie, K.A., Lowe, J., (2006) Annu. Rev. Biochem., 75, pp. 467-492
  • Bork, P., Sander, C., Valencia, A., (1992) Proc. Natl. Acad. Sci. U. S. A., 89 (16), pp. 7290-7294
  • Aravind, L., Koonin, E.V., (1999) J. Mol. Biol., 287 (5), pp. 1023-1040
  • Ellis, R.J., (1996) Cell. Stress Chaperones, 111, pp. 155-160
  • Jakob, U., Muse, W., Eser, M., Bardwell, J.C., (1999) Cell, 96 (3), pp. 341-352
  • Mayer, M.P., (2010) Mol. Cell., 39 (3), pp. 321-331
  • Richter, K., Haslbeck, M., Buchner, J., (2010) Mol. Cell., 40 (2), pp. 253-266
  • Trepel, J., Mollapour, M., Giaccone, G., Neckers, L., (2010) Nat. Rev. Cancer, 10 (8), pp. 537-549
  • Echeverria, P.C., Picard, D., (2010) Biochim. Biophys. Acta, 1803 (6), pp. 641-649
  • Galigniana, M.D., Echeverría, P.C., Erlejman, A.G., Piwien-Pilipuk, G., (2010) Nucleus, 1, pp. 299-308
  • Pratt, W.B., Galigniana, M.D., Morishima, Y., Murphy, P.J., (2004) Essays Biochem., 40, pp. 41-58
  • Sreedhar, A.S., Kalmar, E., Csermely, P., Shen, Y.F., (2004) FEBS Lett., 562 (1-3), pp. 11-15
  • Pratt, W.B., Toft, D.O., (1997) Endocr. Rev., 18 (3), pp. 306-360
  • Luo, W., Sun, W., Taldone, T., Rodina, A., Chiosis, G., (2010) Mol. Neurodegener., 5, p. 24
  • DeZwaan, D.C., Freeman, B.C., (2010) Trends Biochem. Sci., 35 (7), pp. 384-391
  • Kadota, Y., Shirasu, K., Guerois, R., (2010) Trends Biochem. Sci., 35 (4), pp. 199-207
  • Galigniana, M.D., (1998) Biochem. J., 333 (PART 3), pp. 555-563
  • Vicent, G.P., Pecci, A., Ghini, A., Piwien-Pilipuk, G., Galigniana, M.D., (2002) Exp. Cell. Res., 276 (2), pp. 142-154
  • Harrell, J.M., Murphy, P.J., Morishima, Y., Chen, H., Mansfield, J.F., Galigniana, M.D., Pratt, W.B., (2004) J. Biol. Chem., 279 (52), pp. 54647-54654
  • Chadli, A., Bouhouche, I., Sullivan, W., Stensgard, B., McMahon, N., Catelli, M.G., Toft, D.O., (2000) Proc. Natl. Acad. Sci. U. S. A., 97 (23), pp. 12524-12529
  • Pratt, W.B., Toft, D.O., (2003) Exp. Biol. Med. (Maywood), 228 (2), pp. 111-133
  • Kanelakis, K.C., Murphy, P.J., Galigniana, M.D., Morishima, Y., Takayama, S., Reed, J.C., Toft, D.O., Pratt, W.B., (2000) Biochemistry, 39 (46), pp. 14314-14321
  • Karagoz, G.E., Duarte, A.M., Ippel, H., Uetrecht, C., Sinnige, T., van Rosmalen, M., Hausmann, J., Rudiger, S.G., (2011) Proc. Natl. Acad. Sci. U. S. A., 108 (2), pp. 580-585
  • Tanioka, T., Nakatani, Y., Semmyo, N., Murakami, M., Kudo, I., (2000) J. Biol. Chem., 275 (42), pp. 32775-32782
  • Grad, I., McKee, T.A., Ludwig, S.M., Hoyle, G.W., Ruiz, P., Wurst, W., Floss, T., Picard, D., (2006) Mol. Cell. Biol., 26 (23), pp. 8976-8983
  • Goldfarb, S.B., Kashlan, O.B., Watkins, J.N., Suaud, L., Yan, W., Kleyman, T.R., Rubenstein, R.C., (2006) Proc. Natl. Acad. Sci. U. S. A., 103 (15), pp. 5817-5822
  • Kampinga, H.H., Craig, E.A., (2010) Nat. Rev. Mol. Cell. Biol., 11 (8), pp. 579-592
  • Bercovich, B., Stancovski, I., Mayer, A., Blumenfeld, N., Laszlo, A., Schwartz, A.L., Ciechanover, A., (1997) J. Biol. Chem., 272 (14), pp. 9002-9010
  • Klucken, J., Shin, Y., Masliah, E., Hyman, B.T., McLean, P.J., (2004) J. Biol. Chem., 279 (24), pp. 25497-25502
  • Jana, N.R., Tanaka, M., Wang, G., Nukina, N., (2000) Hum. Mol. Genet., 9 (13), pp. 2009-2018
  • Bailey, C.K., Andriola, I.F., Kampinga, H.H., Merry, D.E., (2002) Hum. Mol. Genet., 11 (5), pp. 515-523
  • Chan, H.Y., Warrick, J.M., Gray-Board, G.L., Paulson, H.L., Bonini, N.M., (2000) Hum. Mol. Genet., 9 (19), pp. 2811-2820
  • Adachi, H., Katsuno, M., Minamiyama, M., Sang, C., Pagoulatos, G., Angelidis, C., Kusakabe, M., Sobue, G., (2003) J. Neurosci., 23 (6), pp. 2203-2211
  • Kang, C.B., Hong, Y., Dhe-Paganon, S., Yoon, H.S., (2008) Neurosignals, 16 (4), pp. 318-325
  • Davies, T.H., Sanchez, E.R., (2005) Int. J. Biochem. Cell. Biol., 37 (1), pp. 42-47
  • Galigniana, M.D., Radanyi, C., Renoir, J.M., Housley, P.R., Pratt, W.B., (2001) J. Biol. Chem., 276 (18), pp. 14884-14889
  • Galigniana, M.D., Erlejman, A.G., Monte, M., Gomez-Sanchez, C., Piwien-Pilipuk, G., (2010) Mol. Cell. Biol., 30 (5), pp. 1285-1298
  • Thomas, M., Harrell, J.M., Morishima, Y., Peng, H.M., Pratt, W.B., Lieberman, A.P., (2006) Hum. Mol. Genet., 15 (11), pp. 1876-1883
  • Galigniana, M.D., Harrell, J.M., O'Hagen, H.M., Ljungman, M., Pratt, W.B., (2004) J. Biol. Chem., 279 (21), pp. 22483-22489
  • Colo, G.P., Rubio, M.F., Nojek, I.M., Werbajh, S.E., Echeverria, P.C., Alvarado, C.V., Nahmod, V.E., Costas, M.A., (2008) Oncogene, 27 (17), pp. 2430-2444
  • Zhao, W., Zhong, L., Wu, J., Chen, L., Qing, K., Weigel-Kelley, K.A., Larsen, S.H., Srivastava, A., (2006) Virology, 353 (2), pp. 283-293
  • Galigniana, M.D., Morishima, Y., Gallay, P.A., Pratt, W.B., (2004) J. Biol. Chem., 279 (53), pp. 55754-55759
  • Galigniana, M.D., Harrell, J.M., Murphy, P.J., Chinkers, M., Radanyi, C., Renoir, J.M., Zhang, M., Pratt, W.B., (2002) Biochemistry, 41 (46), pp. 13602-13610
  • Rycyzyn, M.A., Reilly, S.C., O'Malley, K., Clevenger, C.V., (2000) Mol. Endocrinol., 14 (8), pp. 1175-1186
  • Cox, M.B., Riggs, D.L., Hessling, M., Schumacher, F., Buchner, J., Smith, D.F., (2007) Mol. Endocrinol., 21 (12), pp. 2956-2967
  • Sinars, C.R., Cheung-Flynn, J., Rimerman, R.A., Scammell, J.G., Smith, D.F., Clardy, J., (2003) Proc. Natl. Acad. Sci. U. S. A., 100 (3), pp. 868-873
  • Wu, B., Li, P., Liu, Y., Lou, Z., Ding, Y., Shu, C., Ye, S., Rao, Z., (2004) Proc. Natl. Acad. Sci. U. S. A., 101 (22), pp. 8348-8353
  • Chambraud, B., Belabes, H., Fontaine-Lenoir, V., Fellous, A., Baulieu, E.E., (2007) FASEB J., 21 (11), pp. 2787-2797
  • Czar, M.J., Owens-Grillo, J.K., Yem, A.W., Leach, K.L., Deibel, M.R., Welsh, M.J., Pratt, W.B., (1994) Mol. Endocrinol., 8 (12), pp. 1731-1741
  • Perrot-Applanat, M., Cibert, C., Geraud, G., Renoir, J.M., Baulieu, E.E., (1995) J. Cell. Sci., 108 (PART 5), pp. 2037-2051
  • Quintá, H.R., Maschi, D., Gomez-Sanchez, C., Piwien Pilipuk, G., Galigniana, M.D., (2010) J. Neurochem., 115, pp. 716-734
  • Gallo, L.I., Ghini, A.A., Pilipuk, G.P., Galigniana, M.D., (2007) Biochemistry, 46 (49), pp. 14044-14057
  • Kostenko, S., Moens, U., (2009) Cell. Mol. Life Sci., 66, pp. 3289-3307
  • Beck, F.X., Neuhofer, W., Müller, E., (2000) Am. J. Physiol. Renal. Physiol., 279, pp. F203-F215
  • Benndorf, R., Hayess, K., Ryazantsev, S., Wieske, M., Behlke, J., Lutsch, G., (1994) J. Biol. Chem., 269, pp. 20780-20784
  • Lavoie, J.N., Gingras-Breton, G., Tanguay, R.M., Landry, J., (1993) J. Biol. Chem., 268, pp. 3420-3429
  • Lavoie, J.N., Hickey, E., Weber, L.A., Landry, J., (1993) J. Biol. Chem., pp. 24210-24214
  • Horwich, A.L., Farr, G.W., Fenton, W.A., (2006) Chem. Rev., 106 (5), pp. 1917-1930
  • Dunn, A.Y., Melville, M.W., Frydman, J., (2001) J. Struct. Biol., 135 (2), pp. 176-184
  • Morimoto, R.I., (2008) Genes Dev., 22 (11), pp. 1427-1438
  • Muchowski, P.J., Wacker, J.L., (2005) Nat. Rev. Neurosci., 6 (1), pp. 11-22
  • Spiess, C., Meyer, A.S., Reissmann, S., Frydman, J., (2004) Trends Cell. Biol., 14 (11), pp. 598-604
  • Broadley, S.A., Hartl, F.U., (2009) FEBS Lett., 583 (16), pp. 2647-2653
  • Albanese, V., Yam, A.Y., Baughman, J., Parnot, C., Frydman, J., (2006) Cell, 124 (1), pp. 75-88
  • Thulasiraman, V., Yang, C.F., Frydman, J., (1999) EMBO J., 18 (1), pp. 85-95
  • Dekker, C., Stirling, P.C., McCormack, E.A., Filmore, H., Paul, A., Brost, R.L., Costanzo, M., Willison, K.R., (2008) EMBO J., 27 (13), pp. 1827-1839
  • Kaverina, I., Krylyshkina, O., Beningo, K., Anderson, K., Wang, Y.L., Small, J.V., (2002) J. Cell. Sci., 115 (PART 11), pp. 2283-2291
  • Goldbaum, O., Riedel, M., Stahnke, T., Richter-Landsberg, C., (2009) Glia, 57 (14), pp. 1566-1577
  • Bechtold, D.A., Brown, I.R., (2003) Neurochem. Res., 28 (8), pp. 1163-1173
  • Fisher, B.R., Heredia, D.J., Brown, K.M., (1996) Teratog. Carcinog. Mutagen., 16 (1), pp. 49-64
  • Fisher, B.R., Heredia, D.J., Brown, K.M., (1995) Teratology, 52 (2), pp. 90-100
  • Hartl, F.U., Hayer-Hartl, M., (2009) Nat. Struct. Mol. Biol., 16 (6), pp. 574-581
  • Cuellar, J., Martin-Benito, J., Scheres, S.H., Sousa, R., Moro, F., Lopez-Vinas, E., Gomez-Puertas, P., Valpuesta, J.M., (2008) Nat. Struct. Mol. Biol., 15 (8), pp. 858-864
  • Hut, H.M., Kampinga, H.H., Sibon, O.C., (2005) Mol. Biol. Cell., 16 (8), pp. 3776-3785
  • Lange, B.M., Bachi, A., Wilm, M., Gonzalez, C., (2000) EMBO J., 19 (6), pp. 1252-1262
  • Weis, F., Moullintraffort, L., Heichette, C., Chretien, D., Garnier, C., (2010) J. Biol. Chem., 285 (13), pp. 9525-9534
  • Zhai, Y., Kronebusch, P.J., Simon, P.M., Borisy, G.G., (1996) J. Cell. Biol., 135 (1), pp. 201-214
  • Czar, M.J., Welsh, M.J., Pratt, W.B., (1996) Eur. J. Cell. Biol., 70 (4), pp. 322-330
  • Lee, Y.C., Lai, Y.K., (1995) J. Cell. Biochem., 57 (1), pp. 150-162
  • Quinta, H.R., Maschi, D., Gomez-Sanchez, C., Piwien-Pilipuk, G., Galigniana, M.D., (2010) J. Neurochem., 115 (3), pp. 716-734
  • Donnelly, A.C., Mays, J.R., Burlison, J.A., Nelson, J.T., Vielhauer, G., Holzbeierlein, J., Blagg, B.S., (2008) J. Org. Chem., 73 (22), pp. 8901-8920
  • Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z., Nardai, G., (1998) Pharmacol. Ther., 79 (2), pp. 129-168
  • Sausville, E.A., Elsayed, Y., Monga, M., Kim, G., (2003) Annu. Rev. Pharmacol. Toxicol., 43, pp. 199-231
  • Neckers, L., (2002) Trends Mol. Med., 8 (4 SUPPL.), pp. S55-S61
  • Ding, A.H., Porteu, F., Sanchez, E., Nathan, C.F., (1990) Science, 248 (4953), pp. 370-372
  • Byrd, C.A., Bornmann, W., Erdjument-Bromage, H., Tempst, P., Pavletich, N., Rosen, N., Nathan, C.F., Ding, A., (1999) Proc. Natl. Acad. Sci. U. S. A., 96 (10), pp. 5645-5650
  • Solit, D.B., Basso, A.D., Olshen, A.B., Scher, H.I., Rosen, N., (2003) Cancer Res., 63 (9), pp. 2139-2144
  • Basso, A.D., Solit, D.B., Chiosis, G., Giri, B., Tsichlis, P., Rosen, N., (2002) J. Biol. Chem., 277 (42), pp. 39858-39866
  • Cheung, C.H., Cheng, L., Chang, K.Y., Chen, H.H., Chang, J.Y., (2011) Front. Biosci., 16, pp. 952-961
  • Fulda, S., Debatin, K.M., (2004) Oncogene, 23 (40), pp. 6702-6711
  • Cheung, C.H., Chen, H.H., Kuo, C.C., Chang, C.Y., Coumar, M.S., Hsieh, H.P., Chang, J.Y., (2009) Mol. Cancer, 8, p. 43
  • Fortugno, P., Beltrami, E., Plescia, J., Fontana, J., Pradhan, D., Marchisio, P.C., Sessa, W.C., Altieri, D.C., (2003) Proc. Natl. Acad. Sci. U. S. A., 100 (24), pp. 13791-13796
  • Cheung, C.H., Chen, H.H., Cheng, L.T., Lyu, K.W., Kanwar, J.R., Chang, J.Y., (2010) Mol. Cancer, 9, p. 77
  • Sah, N.K., Khan, Z., Khan, G.J., Bisen, P.S., (2006) Cancer Lett., 244 (2), pp. 164-171
  • Grantham, J., Brackley, K.I., Willison, K.R., (2006) Exp. Cell. Res., 312 (12), pp. 2309-2324
  • Brackley, K.I., Grantham, J., (2010) Exp. Cell. Res., 316 (4), pp. 543-553
  • Hotulainen, P., Paunola, E., Vartiainen, M.K., Lappalainen, P., (2005) Mol. Biol. Cell., 16 (2), pp. 649-664
  • Brackley, K.I., Grantham, J., (2011) Cell. Stress Chaperones, 16 (2), pp. 173-179
  • Van den Abbeele, A., De Corte, V., Van Impe, K., Bruyneel, E., Boucherie, C., Bracke, M., Vandekerckhove, J., Gettemans, J., (2007) Cancer Lett., 255 (1), pp. 57-70
  • Lin, Y.F., Tsai, W.P., Liu, H.G., Liang, P.H., (2009) Cancer Res., 69 (17), pp. 6879-6888
  • Feldman, D.E., Spiess, C., Howard, D.E., Frydman, J., (2003) Mol. Cell., 12 (5), pp. 1213-1224
  • Bivi, N., Romanello, M., Harrison, R., Clarke, I., Hoyle, D.C., Moro, L., Ortolani, F., Delneri, D., (2009) Genome Biol., 10 (9), pp. R93
  • Jo, H., Loison, F., Hattori, H., Silberstein, L.E., Yu, H., Luo, H.R., (2010) PLoS One, 5 (4), pp. e10318
  • Meierhofer, D., Wang, X., Huang, L., Kaiser, P., (2008) J. Proteome Res., 7 (10), pp. 4566-4576
  • Sellin, M.E., Holmfeldt, P., Stenmark, S., Gullberg, M., (2008) Exp. Cell. Res., 314 (6), pp. 1367-1377
  • Burke, D., Gasdaska, P., Hartwell, L., (1989) Mol. Cell. Biol., 9 (3), pp. 1049-1059
  • Tam, S., Geller, R., Spiess, C., Frydman, J., (2006) Nat. Cell. Biol., 8 (10), pp. 1155-1162
  • Kubota, S., Kubota, H., Nagata, K., (2006) Proc. Natl. Acad. Sci. U. S. A., 103 (22), pp. 8360-8365
  • Buee, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A., Hof, P.R., (2000) Brain Res. Brain Res. Rev., 33 (1), pp. 95-130
  • Salminen, A., Ojala, J., Kaarniranta, K., Hiltunen, M., Soininen, H., (2011) Prog. Neurobiol., 93 (1), pp. 99-110
  • Guillozet-Bongaarts, A.L., Garcia-Sierra, F., Reynolds, M.R., Horowitz, P.M., Fu, Y., Wang, T., Cahill, M.E., Binder, L.I., (2005) Neurobiol. Aging, 26 (7), pp. 1015-1022
  • Weaver, C.L., Espinoza, M., Kress, Y., Davies, P., (2000) Neurobiol. Aging, 21 (5), pp. 719-727
  • Chambraud, B., Sardin, E., Giustiniani, J., Dounane, O., Schumacher, M., Goedert, M., Baulieu, E.E., (2010) Proc. Natl. Acad. Sci. U. S. A., 107 (6), pp. 2658-2663
  • Jinwal, U.K., Koren, J., Borysov, S.I., Schmid, A.B., Abisambra, J.F., Blair, L.J., Johnson, A.G., Dickey, C.A., (2010) J. Neurosci., 30 (2), pp. 591-599
  • Gong, C.X., Liu, F., Wu, G., Rossie, S., Wegiel, J., Li, L., Grundke-Iqbal, I., Iqbal, K., (2004) J. Neurochem., 88 (2), pp. 298-310
  • Liu, F., Iqbal, K., Grundke-Iqbal, I., Rossie, S., Gong, C.X., (2005) J. Biol. Chem., 280 (3), pp. 1790-1796
  • Vaughan, C.K., Mollapour, M., Smith, J.R., Truman, A., Hu, B., Good, V.M., Panaretou, B., Pearl, L.H., (2008) Mol. Cell., 31 (6), pp. 886-895
  • Luo, W., Dou, F., Rodina, A., Chip, S., Kim, J., Zhao, Q., Moulick, K., Chiosis, G., (2007) Proc. Natl. Acad. Sci. U. S. A., 104 (22), pp. 9511-9516
  • Shimura, H., Miura-Shimura, Y., Kosik, K.S., (2004) J. Biol. Chem., 279 (17), pp. 17957-17962
  • Dabir, D.V., Trojanowski, J.Q., Richter-Landsberg, C., Lee, V.M., Forman, M.S., (2004) Am. J. Pathol., 164 (1), pp. 155-166
  • Bjorkdahl, C., Sjogren, M.J., Zhou, X., Concha, H., Avila, J., Winblad, B., Pei, J.J., (2008) J. Neurosci. Res., 86 (6), pp. 1343-1352
  • Sahara, N., Maeda, S., Yoshiike, Y., Mizoroki, T., Yamashita, S., Murayama, M., Park, J.M., Takashima, A., (2007) J. Neurosci. Res., 85 (14), pp. 3098-3108
  • Dou, F., Netzer, W.J., Tanemura, K., Li, F., Hartl, F.U., Takashima, A., Gouras, G.K., Xu, H., (2003) Proc. Natl. Acad. Sci. U. S. A., 100 (2), pp. 721-726
  • Elliott, E., Tsvetkov, P., Ginzburg, I., (2007) J. Biol. Chem., 282 (51), pp. 37276-37284
  • Dickey, C.A., Kamal, A., Lundgren, K., Klosak, N., Bailey, R.M., Dunmore, J., Ash, P., Petrucelli, L., (2007) J. Clin. Invest., 117 (3), pp. 648-658
  • Czar, M.J., Lyons, R.H., Welsh, M.J., Renoir, J.M., Pratt, W.B., (1995) Mol. Endocrinol., 9 (11), pp. 1549-1560
  • Silverstein, A.M., Galigniana, M.D., Kanelakis, K.C., Radanyi, C., Renoir, J.M., Pratt, W.B., (1999) J. Biol. Chem., 274 (52), pp. 36980-36986
  • Elbi, C., Walker, D.A., Lewis, M., Romero, G., Sullivan, W.P., Toft, D.O., Hager, G.L., DeFranco, D.B., (2004) Sci. STKE, 2004 (238), pp. pl10
  • Gross, K.L., Westberry, J.M., Hubler, T.R., Sadosky, P.W., Singh, R.J., Taylor, R.L., Scammell, J.G., (2008) Comp. Med., 58 (4), pp. 381-388
  • Banerjee, A., Periyasamy, S., Wolf, I.M., Hinds, T.D., Yong, W., Shou, W., Sanchez, E.R., (2008) Biochemistry, 47 (39), pp. 10471-10480
  • Gold, B.G., Villafranca, J.E., (2003) Curr. Top Med. Chem., 3 (12), pp. 1368-1375
  • Gold, B.G., Densmore, V., Shou, W., Matzuk, M.M., Gordon, H.S., (1999) J. Pharmacol. Exp. Ther., 289 (3), pp. 1202-1210
  • Wright, N.T., Cannon, B.R., Zimmer, D.B., Weber, D.J., (2009) Curr. Chem. Biol., 3 (2), pp. 138-145
  • Shimamoto, S., Kubota, Y., Tokumitsu, H., Kobayashi, R., (2010) FEBS Lett., 584 (6), pp. 1119-1125
  • Shim, S., Yuan, J.P., Kim, J.Y., Zeng, W., Huang, G., Milshteyn, A., Kern, D., Worley, P.F., (2009) Neuron, 64 (4), pp. 471-483
  • Hinds, T.D., Sanchez, E.R., (2008) Int. J. Biochem. Cell. Biol., 40 (11), pp. 2358-2362
  • Silverstein, A.M., Galigniana, M.D., Chen, M.S., Owens-Grillo, J.K., Chinkers, M., Pratt, W.B., (1997) J. Biol. Chem., 272 (26), pp. 16224-16230
  • Galigniana, M.D., Housley, P.R., DeFranco, D.B., Pratt, W.B., (1999) J. Biol. Chem., 274 (23), pp. 16222-16227
  • Galigniana, M.D., Harrell, J.M., Housley, P.R., Patterson, C., Fisher, S.K., Pratt, W.B., (2004) Brain Res. Mol. Brain Res., 123 (1-2), pp. 27-36
  • Liu, F., Grundke-Iqbal, I., Iqbal, K., Gong, C.X., (2005) Eur. J. Neurosci., 22 (8), pp. 1942-1950
  • Hammond, J.W., Cai, D., Verhey, K.J., (2008) Curr. Opin. Cell. Biol., 20 (1), pp. 71-76
  • Reed, N.A., Cai, D., Blasius, T.L., Jih, G.T., Meyhofer, E., Gaertig, J., Verhey, K.J., (2006) Curr. Biol., 16 (21), pp. 2166-2172
  • Liao, G., Gundersen, G.G., (1998) J. Biol. Chem., 273 (16), pp. 9797-9803
  • Verhey, K.J., Gaertig, J., (2007) Cell. Cycle, 6 (17), pp. 2152-2160
  • Duan, J., Gorovsky, M.A., (2002) Curr. Biol., 12 (4), pp. 313-316
  • Westermann, S., Weber, K., (2003) Nat. Rev. Mol. Cell. Biol., 4 (12), pp. 938-947
  • Zilberman, Y., Ballestrem, C., Carramusa, L., Mazitschek, R., Khochbin, S., Bershadsky, A., (2009) J. Cell. Sci., 122 (PART 19), pp. 3531-3541
  • Creppe, C., Malinouskaya, L., Volvert, M.L., Gillard, M., Close, P., Malaise, O., Laguesse, S., Nguyen, L., (2009) Cell, 136 (3), pp. 551-564
  • Kovacs, J.J., Murphy, P.J., Gaillard, S., Zhao, X., Wu, J.T., Nicchitta, C.V., Yoshida, M., Yao, T.P., (2005) Mol. Cell., 18 (5), pp. 601-607
  • Murphy, P.J., Morishima, Y., Kovacs, J.J., Yao, T.P., Pratt, W.B., (2005) J. Biol. Chem., 280 (40), pp. 33792-33799
  • Ammer, A.G., Weed, S.A., (2008) Cell. Motil Cytoskeleton, 65 (9), pp. 687-707
  • Park, S.J., Suetsugu, S., Takenawa, T., (2005) EMBO J., 24 (8), pp. 1557-1570
  • Gao, Y.S., Hubbert, C.C., Lu, J., Lee, Y.S., Lee, J.Y., Yao, T.P., (2007) Mol. Cell. Biol., 27 (24), pp. 8637-8647

Citas:

---------- APA ----------
Quintá, H.R., Galigniana, N.M., Erlejman, A.G., Lagadari, M., Piwien-Pilipuk, G. & Galigniana, M.D. (2011) . Management of cytoskeleton architecture by molecular chaperones and immunophilins. Cellular Signalling, 23(12), 1907-1920.
http://dx.doi.org/10.1016/j.cellsig.2011.07.023
---------- CHICAGO ----------
Quintá, H.R., Galigniana, N.M., Erlejman, A.G., Lagadari, M., Piwien-Pilipuk, G., Galigniana, M.D. "Management of cytoskeleton architecture by molecular chaperones and immunophilins" . Cellular Signalling 23, no. 12 (2011) : 1907-1920.
http://dx.doi.org/10.1016/j.cellsig.2011.07.023
---------- MLA ----------
Quintá, H.R., Galigniana, N.M., Erlejman, A.G., Lagadari, M., Piwien-Pilipuk, G., Galigniana, M.D. "Management of cytoskeleton architecture by molecular chaperones and immunophilins" . Cellular Signalling, vol. 23, no. 12, 2011, pp. 1907-1920.
http://dx.doi.org/10.1016/j.cellsig.2011.07.023
---------- VANCOUVER ----------
Quintá, H.R., Galigniana, N.M., Erlejman, A.G., Lagadari, M., Piwien-Pilipuk, G., Galigniana, M.D. Management of cytoskeleton architecture by molecular chaperones and immunophilins. Cell. Signal. 2011;23(12):1907-1920.
http://dx.doi.org/10.1016/j.cellsig.2011.07.023