Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Immune checkpoints, a plethora of inhibitory pathways aimed at maintaining immune cell homeostasis, may be co-opted by cancer cells to evade immune destruction. Therapies targeting immune checkpoints have reached a momentum yielding significant clinical benefits in patients with various malignancies by unleashing anti-tumor immunity. Galectins, a family of glycan-binding proteins, have emerged as novel regulatory checkpoints that promote immune evasive programs by inducing T-cell exhaustion, limiting T-cell survival, favoring expansion of regulatory T cells, de-activating natural killer cells and polarizing myeloid cells toward an immunosuppressive phenotype. Concomitantly, galectins can trigger vascular signaling programs, serving as bifunctional messengers that couple tumor immunity and angiogenesis. Thus, targeting galectin–glycan interactions may halt tumor progression by simultaneously augmenting antitumor immunity and suppressing aberrant angiogenesis. © 2017 Elsevier Ltd

Registro:

Documento: Artículo
Título:Galectins: emerging regulatory checkpoints linking tumor immunity and angiogenesis
Autor:Méndez-Huergo, S.P.; Blidner, A.G.; Rabinovich, G.A.
Filiación:Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428, Argentina
Palabras clave:galectin; glycan; galectin; bone marrow cell; carcinogenesis; CD4+ T lymphocyte; cell differentiation; gene expression profiling; glioblastoma; glycosylation; human; immunomodulation; immunoregulation; internalization; Kaposi sarcoma; natural killer cell; oligomerization; protein binding; protein domain; protein protein interaction; regulatory T lymphocyte; Review; signal transduction; T lymphocyte; tumor associated leukocyte; tumor immunity; animal; immunology; neoplasm; neovascularization (pathology); pathology; vascularization; Animals; Galectins; Humans; Killer Cells, Natural; Neoplasms; Neovascularization, Pathologic; T-Lymphocytes
Año:2017
Volumen:45
Página de inicio:8
Página de fin:15
DOI: http://dx.doi.org/10.1016/j.coi.2016.12.003
Título revista:Current Opinion in Immunology
Título revista abreviado:Curr. Opin. Immunol.
ISSN:09527915
CODEN:COPIE
CAS:Galectins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09527915_v45_n_p8_MendezHuergo

Referencias:

  • Topalian, S.L., Drake, C.G., Pardoll, D.M., Immune checkpoint blockade: a common denominator approach to cancer therapy (2015) Cancer Cell, 27, pp. 450-461
  • Sharma, P., Allison, J.P., Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential (2015) Cell, 161, pp. 205-214
  • Anderson, A.C., Joller, N., Kuchroo, V.K., Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation (2016) Immunity, 44, pp. 989-1004
  • Thiemann, S., Baum, L.G., Galectins and immune responses-just how do they do those things they do? (2016) Annu Rev Immunol, 34, pp. 243-264
  • Rabinovich, G.A., Conejo-Garcia, J.R., Shaping the immune landscape in cancer by galectin-driven regulatory pathways (2016) J Mol Biol, 428, pp. 3266-3281
  • Rabinovich, G.A., Croci, D.O., Regulatory circuits mediated by lectin–glycan interactions in autoimmunity and cancer (2012) Immunity, 36, pp. 322-335
  • Dimitroff, C.J., Galectin-binding O-glycosylations as regulators of malignancy (2015) Cancer Res, 75, pp. 3195-3202
  • Lau, K.S., Partridge, E.A., Grigorian, A., Silvescu, C.I., Reinhold, V.N., Demetriou, M., Dennis, J.W., Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation (2007) Cell, 129, pp. 123-134
  • Kouo, T., Huang, L., Pucsek, A.B., Cao, M., Solt, S., Armstrong, T., Jaffee, E., Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells (2015) Cancer Immunol Res, 3, pp. 412-423. , This study reports the role of galectin-3 as a potent suppressor of CD8+ antitumor T cell responses via direct interaction with the checkpoint molecule LAG-3
  • Stillman, B.N., Hsu, D.K., Pang, M., Brewer, C.F., Johnson, P., Liu, F.T., Baum, L.G., Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death (2006) J Immunol, 176, pp. 778-789
  • Starossom, S.C., Mascanfroni, I.D., Imitola, J., Cao, L., Raddassi, K., Hernandez, S.F., Bassil, R., Delacour, D., Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration (2012) Immunity, 37, pp. 249-263
  • de la Fuente, H., Cruz-Adalia, A., Martinez Del Hoyo, G., Cibrian-Vera, D., Bonay, P., Perez-Hernandez, D., Vazquez, J., Ramirez-Huesca, M., The leukocyte activation receptor CD69 controls T cell differentiation through its interaction with galectin-1 (2014) Mol Cell Biol, 34, pp. 2479-2487
  • Bonzi, J., Bornet, O., Betzi, S., Kasper, B.T., Mahal, L.K., Mancini, S.J., Schiff, C., Elantak, L., Pre-B cell receptor binding to galectin-1 modifies galectin-1/carbohydrate affinity to modulate specific galectin-1/glycan lattice interactions (2015) Nat Commun, 6, p. 6194
  • Zhu, C., Anderson, A.C., Schubart, A., Xiong, H., Imitola, J., Khoury, S.J., Zheng, X.X., Kuchroo, V.K., The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity (2005) Nat Immunol, 6, pp. 1245-1252
  • Wu, C., Thalhamer, T., Franca, R.F., Xiao, S., Wang, C., Hotta, C., Zhu, C., Kuchroo, V.K., Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells (2014) Immunity, 41, pp. 270-282. , The authors demonstrate the relevance of galectin-9 in the differentiation and stability of inducible regulatory T cells through mechanisms involving formation of CD44-TGF-βRI complexes
  • Ilarregui, J.M., Croci, D.O., Bianco, G.A., Toscano, M.A., Salatino, M., Vermeulen, M.E., Geffner, J.R., Rabinovich, G.A., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat Immunol, 10, pp. 981-991
  • Poncini, C.V., Ilarregui, J.M., Batalla, E.I., Engels, S., Cerliani, J.P., Cucher, M.A., van Kooyk, Y., Rabinovich, G.A., Trypanosoma cruzi infection imparts a regulatory program in dendritic cells and T cells via galectin-1-dependent mechanisms (2015) J Immunol, 195, pp. 3311-3324
  • Tesone, A.J., Rutkowski, M.R., Brencicova, E., Svoronos, N., Perales-Puchalt, A., Stephen, T.L., Allegrezza, M.J., Wickramasinghe, J., Satb1 overexpression drives tumor-promoting activities in cancer-associated dendritic cells (2016) Cell Rep, 14, pp. 1774-1786
  • Garin, M.I., Chu, C.C., Golshayan, D., Cernuda-Morollon, E., Wait, R., Lechler, R.I., Galectin-1: a key effector of regulation mediated by CD4 + CD25+ T cells (2007) Blood, 109, pp. 2058-2065
  • Rubinstein, N., Alvarez, M., Zwirner, N.W., Toscano, M.A., Ilarregui, J.M., Bravo, A., Mordoh, J., Rabinovich, G.A., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; a potential mechanism of tumor-immune privilege (2004) Cancer Cell, 5, pp. 241-251
  • Juszczynski, P., Ouyang, J., Monti, S., Rodig, S.J., Takeyama, K., Abramson, J., Chen, W., Shipp, M.A., The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma (2007) Proc Natl Acad Sci U S A, 104, pp. 13134-13139
  • Kuo, P.L., Huang, M.S., Cheng, D.E., Hung, J.Y., Yang, C.J., Chou, S.H., Lung cancer-derived galectin-1 enhances tumorigenic potentiation of tumor-associated dendritic cells by expressing heparin-binding EGF-like growth factor (2012) J Biol Chem, 287, pp. 9753-9764
  • Hsu, Y.L., Hung, J.Y., Chiang, S.Y., Jian, S.F., Wu, C.Y., Lin, Y.S., Tsai, Y.M., Kuo, P.L., Lung cancer-derived galectin-1 contributes to cancer associated fibroblast-mediated cancer progression and immune suppression through TDO2/kynurenine axis (2016) Oncotarget, 7, pp. 27584-27598
  • Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Mendez-Huergo, S.P., Mascanfroni, I.D., Dergan-Dylon, S., Toscano, M.A., Ouyang, J., Glycosylation-dependent lectin–receptor interactions preserve angiogenesis in anti-VEGF refractory tumors (2014) Cell, 156, pp. 744-758. , This study defines a glycosylation-based mechanism mediated by galectin–receptor interactions that links tumor hypoxia to VEGFR2 signaling and preserves angiogenesis in settings of VEGF blockade
  • Dalotto-Moreno, T., Croci, D.O., Cerliani, J.P., Martinez-Allo, V.C., Dergan-Dylon, S., Mendez-Huergo, S.P., Stupirski, J.C., Toscano, M.A., Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease (2013) Cancer Res, 73, pp. 1107-1117
  • Soldati, R., Berger, E., Zenclussen, A.C., Jorch, G., Lode, H.N., Salatino, M., Rabinovich, G.A., Fest, S., Neuroblastoma triggers an immunoevasive program involving galectin-1-dependent modulation of T cell and dendritic cell compartments (2012) Int J Cancer, 131, pp. 1131-1141
  • Baker, G.J., Chockley, P., Zamler, D., Castro, M.G., Lowenstein, P.R., Natural killer cells require monocytic Gr-1(+)/CD11b(+) myeloid cells to eradicate orthotopically engrafted glioma cells (2016) Oncoimmunology, 5, p. e1163461
  • Rutkowski, M.R., Stephen, T.L., Svoronos, N., Allegrezza, M.J., Tesone, A.J., Perales-Puchalt, A., Brencicova, E., Cadungog, M.G., Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation (2015) Cancer Cell, 27, pp. 27-40. , This study identifies a regulatory circuit mediated by IL-6 and galectin-1 that links commensal microbiota, TLR5-driven systemic inflammation, immunosuppression and distal tumor growth
  • Cedeno-Laurent, F., Watanabe, R., Teague, J.E., Kupper, T.S., Clark, R.A., Dimitroff, C.J., Galectin-1 inhibits the viability, proliferation, and Th1 cytokine production of nonmalignant T cells in patients with leukemic cutaneous T-cell lymphoma (2012) Blood, 119, pp. 3534-3538
  • Martinez-Bosch, N., Fernandez-Barrena, M.G., Moreno, M., Ortiz-Zapater, E., Munne-Collado, J., Iglesias, M., Andre, S., Poirier, F., Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and Hedgehog signaling activation (2014) Cancer Res, 74, pp. 3512-3524. , This study explores the relevance of galectin-1 in tumor–stromal interactions within the complex microenvironment of pancreatic ductal adenocarcinoma
  • Demotte, N., Wieers, G., Van Der Smissen, P., Moser, M., Schmidt, C., Thielemans, K., Squifflet, J.L., Lurquin, C., A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice (2010) Cancer Res, 70, pp. 7476-7488
  • Petit, A.E., Demotte, N., Scheid, B., Wildmann, C., Bigirimana, R., Gordon-Alonso, M., Carrasco, J., van der Bruggen, P., A major secretory defect of tumour-infiltrating T lymphocytes due to galectin impairing LFA-1-mediated synapse completion (2016) Nat Commun, 7, p. 12242. , The authors demonstrate a galectin-3-driven immune evasive mechanism leading to defects in cytokine secretion, lack of completion of secretory synapses and impaired adhesion of tumor-infiltrating lymphocytes to their targets
  • Dardalhon, V., Anderson, A.C., Karman, J., Apetoh, L., Chandwaskar, R., Lee, D.H., Cornejo, M., Quintana, F.J., Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b + Ly-6G+ myeloid cells (2010) J Immunol, 185, pp. 1383-1392
  • Thijssen, V.L., Barkan, B., Shoji, H., Aries, I.M., Mathieu, V., Deltour, L., Hackeng, T.M., Poirier, F., Tumor cells secrete galectin-1 to enhance endothelial cell activity (2010) Cancer Res, 70, pp. 6216-6224
  • Markowska, A.I., Jefferies, K.C., Panjwani, N., Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells (2011) J Biol Chem, 286, pp. 29913-29921
  • Laderach, D.J., Gentilini, L.D., Giribaldi, L., Delgado, V.C., Nugnes, L., Croci, D.O., Al Nakouzi, N., Mazza, O., A unique galectin signature in human prostate cancer progression suggests galectin-1 as a key target for treatment of advanced disease (2013) Cancer Res, 73, pp. 86-96
  • Croci, D.O., Salatino, M., Rubinstein, N., Cerliani, J.P., Cavallin, L.E., Leung, H.J., Ouyang, J., Domaica, C.I., Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi's sarcoma (2012) J Exp Med, 209, pp. 1985-2000
  • Liu, S.D., Tomassian, T., Bruhn, K.W., Miller, J.F., Poirier, F., Miceli, M.C., Galectin-1 tunes TCR binding and signal transduction to regulate CD8 burst size (2009) J Immunol, 182, pp. 5283-5295
  • Demetriou, M., Granovsky, M., Quaggin, S., Dennis, J.W., Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation (2001) Nature, 409, pp. 733-739
  • Chen, I.J., Chen, H.L., Demetriou, M., Lateral compartmentalization of T cell receptor versus CD45 by galectin-N-glycan binding and microfilaments coordinate basal and activation signaling (2007) J Biol Chem, 282, pp. 35361-35372
  • Demotte, N., Stroobant, V., Courtoy, P.J., Van Der Smissen, P., Colau, D., Luescher, I.F., Hivroz, C., Mourad, M., Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes (2008) Immunity, 28, pp. 414-424
  • Chen, H.Y., Fermin, A., Vardhana, S., Weng, I.C., Lo, K.F., Chang, E.Y., Maverakis, E., Dustin, M.L., Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse (2009) Proc Natl Acad Sci U S A, 106, pp. 14496-14501
  • Rangachari, M., Zhu, C., Sakuishi, K., Xiao, S., Karman, J., Chen, A., Angin, M., Sobel, R.A., Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion (2012) Nat Med, 18, pp. 1394-1400
  • Matarrese, P., Tinari, A., Mormone, E., Bianco, G.A., Toscano, M.A., Ascione, B., Rabinovich, G.A., Malorni, W., Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission (2005) J Biol Chem, 280, pp. 6969-6985
  • Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Croci, D.O., Correale, J., Hernandez, J.D., Zwirner, N.W., Baum, L.G., Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death (2007) Nat Immunol, 8, pp. 825-834
  • Oomizu, S., Arikawa, T., Niki, T., Kadowaki, T., Ueno, M., Nishi, N., Yamauchi, A., Hirashima, M., Galectin-9 suppresses Th17 cell development in an IL-2-dependent but Tim-3-independent manner (2012) Clin Immunol, 143, pp. 51-58
  • Kang, C.W., Dutta, A., Chang, L.Y., Mahalingam, J., Lin, Y.C., Chiang, J.M., Hsu, C.Y., Chu, Y.Y., Apoptosis of tumor infiltrating effector TIM-3 + CD8+ T cells in colon cancer (2015) Sci Rep, 5, p. 15659
  • Su, E.W., Bi, S., Kane, L.P., Galectin-9 regulates T helper cell function independently of Tim-3 (2011) Glycobiology, 21, pp. 1258-1265
  • Deak, M., Hornung, A., Novak, J., Demydenko, D., Szabo, E., Czibula, A., Fajka-Boja, R., Kovacs, L., Novel role for galectin-1 in T-cells under physiological and pathological conditions (2015) Immunobiology, 220, pp. 483-489
  • Yang, R.Y., Hsu, D.K., Liu, F.T., Expression of galectin-3 modulates T-cell growth and apoptosis (1996) Proc Natl Acad Sci U S A, 93, pp. 6737-6742
  • Kubach, J., Lutter, P., Bopp, T., Stoll, S., Becker, C., Huter, E., Richter, C., Knop, J., Human CD4 + CD25+ regulatory T cells: proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function (2007) Blood, 110, pp. 1550-1558
  • Toscano, M.A., Commodaro, A.G., Ilarregui, J.M., Bianco, G.A., Liberman, A., Serra, H.M., Hirabayashi, J., Rabinovich, G.A., Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses (2006) J Immunol, 176, pp. 6323-6332
  • Blois, S.M., Ilarregui, J.M., Tometten, M., Garcia, M., Orsal, A.S., Cordo-Russo, R., Toscano, M.A., Handjiski, B., A pivotal role for galectin-1 in fetomaternal tolerance (2007) Nat Med, 13, pp. 1450-1457
  • Cedeno-Laurent, F., Opperman, M., Barthel, S.R., Kuchroo, V.K., Dimitroff, C.J., Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression (2012) J Immunol, 188, pp. 3127-3137
  • Sampson, J.F., Suryawanshi, A., Chen, W.S., Rabinovich, G.A., Panjwani, N., Galectin-8 promotes regulatory T-cell differentiation by modulating IL-2 and TGFbeta signaling (2016) Immunol Cell Biol, 94, pp. 213-219
  • Jiang, H.R., Al Rasebi, Z., Mensah-Brown, E., Shahin, A., Xu, D., Goodyear, C.S., Fukada, S.Y., Lukic, M.L., Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis (2009) J Immunol, 182, pp. 1167-1173
  • Fermino, M.L., Dias, F.C., Lopes, C.D., Souza, M.A., Cruz, A.K., Liu, F.T., Chammas, R., Bernardes, E.S., Galectin-3 negatively regulates the frequency and function of CD4(+) CD25(+) Foxp3(+) regulatory T cells and influences the course of Leishmania major infection (2013) Eur J Immunol, 43, pp. 1806-1817
  • Mari, E.R., Rasouli, J., Ciric, B., Moore, J.N., Conejo-Garcia, J.R., Rajasagi, N., Zhang, G.X., Rostami, A., Galectin-1 is essential for the induction of MOG35-55-based intravenous tolerance in experimental autoimmune encephalomyelitis (2016) Eur J Immunol, 46, pp. 1783-1796
  • Thiemann, S., Man, J.H., Chang, M.H., Lee, B., Baum, L.G., Galectin-1 regulates tissue exit of specific dendritic cell populations (2015) J Biol Chem, 290, pp. 22662-22677. , The authors report a glycosylation-based mechanism by which galectin-1 selectively inhibits tissue emigration of immunogenic, but not tolerogenic, dendritic cells
  • Barrionuevo, P., Beigier-Bompadre, M., Ilarregui, J.M., Toscano, M.A., Bianco, G.A., Isturiz, M.A., Rabinovich, G.A., A novel function for galectin-1 at the crossroad of innate and adaptive immunity: galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway (2007) J Immunol, 178, pp. 436-445
  • Rostoker, R., Yaseen, H., Schif-Zuck, S., Lichtenstein, R.G., Rabinovich, G.A., Ariel, A., Galectin-1 induces 12/15-lipoxygenase expression in murine macrophages and favors their conversion toward a pro-resolving phenotype (2013) Prostaglandins Other Lipid Mediat, 107, pp. 85-94
  • Verschuere, T., Toelen, J., Maes, W., Poirier, F., Boon, L., Tousseyn, T., Mathivet, T., Kiss, R., Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity (2014) Int J Cancer, 134, pp. 873-884
  • Partridge, E.A., Le Roy, C., Di Guglielmo, G.M., Pawling, J., Cheung, P., Granovsky, M., Nabi, I.R., Dennis, J.W., Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis (2004) Science, 306, pp. 120-124
  • Tsuboi, S., Sutoh, M., Hatakeyama, S., Hiraoka, N., Habuchi, T., Horikawa, Y., Hashimoto, Y., Koie, T., A novel strategy for evasion of NK cell immunity by tumours expressing core2 O-glycans (2011) EMBO J, 30, pp. 3173-3185
  • Wang, W., Guo, H., Geng, J., Zheng, X., Wei, H., Sun, R., Tian, Z., Tumor-released Galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack (2014) J Biol Chem, 289, pp. 33311-33319
  • Golden-Mason, L., McMahan, R.H., Strong, M., Reisdorph, R., Mahaffey, S., Palmer, B.E., Cheng, L., Niki, T., Galectin-9 functionally impairs natural killer cells in humans and mice (2013) J Virol, 87, pp. 4835-4845
  • Motz, G.T., Coukos, G., The parallel lives of angiogenesis and immunosuppression: cancer and other tales (2011) Nat Rev Immunol, 11, pp. 702-711
  • Corzo, C.A., Condamine, T., Lu, L., Cotter, M.J., Youn, J.I., Cheng, P., Cho, H.I., Padhya, T., HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment (2010) J Exp Med, 207, pp. 2439-2453
  • Bax, M., Garcia-Vallejo, J.J., Jang-Lee, J., North, S.J., Gilmartin, T.J., Hernandez, G., Crocker, P.R., Haslam, S.M., Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins (2007) J Immunol, 179, pp. 8216-8224
  • Markowska, A.I., Liu, F.T., Panjwani, N., Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response (2010) J Exp Med, 207, pp. 1981-1993
  • Machado, C.M., Andrade, L.N., Teixeira, V.R., Costa, F.F., Melo, C.M., dos Santos, S.N., Nonogaki, S., Camargo, A.A., Galectin-3 disruption impaired tumoral angiogenesis by reducing VEGF secretion from TGFbeta1-induced macrophages (2014) Cancer Med, 3, pp. 201-214
  • Delgado, V.M., Nugnes, L.G., Colombo, L.L., Troncoso, M.F., Fernandez, M.M., Malchiodi, E.L., Frahm, I., Rabinovich, G.A., Modulation of endothelial cell migration and angiogenesis: a novel function for the tandem-repeat lectin galectin-8 (2011) FASEB J, 25, pp. 242-254
  • Chen, W.S., Cao, Z., Sugaya, S., Lopez, M.J., Sendra, V.G., Laver, N., Leffler, H., Song, J., Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3 (2016) Nat Commun, 7, p. 11302. , The authors report a galectin-8-driven pathway that controls lymphangiogenesis and links VEGF-C, podoplanin and α1β1 and α5β1 integrins
  • Heusschen, R., Schulkens, I.A., van Beijnum, J., Griffioen, A.W., Thijssen, V.L., Endothelial LGALS9 splice variant expression in endothelial cell biology and angiogenesis (2014) Biochim Biophys Acta, 1842, pp. 284-292
  • Lykken, J.M., Horikawa, M., Minard-Colin, V., Kamata, M., Miyagaki, T., Poe, J.C., Tedder, T.F., Galectin-1 drives lymphoma CD20 immunotherapy resistance: validation of a preclinical system to identify resistance mechanisms (2016) Blood, 127, pp. 1886-1895. , This study highlights the role of galectin-1 as a mechanism of resistance to anti-CD20 (rituximab) immunotherapy via regulation of antibody-mediated lymphoma phagocytosis
  • Luo, W., Song, L., Chen, X.L., Zeng, X.F., Wu, J.Z., Zhu, C.R., Huang, T., Yang, Q., Identification of galectin-1 as a novel mediator for chemoresistance in chronic myeloid leukemia cells (2016) Oncotarget, 7, pp. 26709-26723
  • Kuo, P., Bratman, S.V., Shultz, D.B., von Eyben, R., Chan, C., Wang, Z., Say, C., Giaccia, A.J., Galectin-1 mediates radiation-related lymphopenia and attenuates NSCLC radiation response (2014) Clin Cancer Res, 20, pp. 5558-5569
  • Yamamoto-Sugitani, M., Kuroda, J., Ashihara, E., Nagoshi, H., Kobayashi, T., Matsumoto, Y., Sasaki, N., Nakayama, R., Galectin-3 (Gal-3) induced by leukemia microenvironment promotes drug resistance and bone marrow lodgment in chronic myelogenous leukemia (2011) Proc Natl Acad Sci U S A, 108, pp. 17468-17473
  • Harazono, Y., Kho, D.H., Balan, V., Nakajima, K., Hogan, V., Raz, A., Extracellular galectin-3 programs multidrug resistance through Na+/K+-ATPase and P-glycoprotein signaling (2015) Oncotarget, 6, pp. 19592-19604
  • Cagnoni, A.J., Perez Saez, J.M., Rabinovich, G.A., Marino, K.V., Turning-off signaling by siglecs selectins, and galectins: chemical inhibition of glycan-dependent interactions in cancer (2016) Front Oncol, 6, p. 109

Citas:

---------- APA ----------
Méndez-Huergo, S.P., Blidner, A.G. & Rabinovich, G.A. (2017) . Galectins: emerging regulatory checkpoints linking tumor immunity and angiogenesis. Current Opinion in Immunology, 45, 8-15.
http://dx.doi.org/10.1016/j.coi.2016.12.003
---------- CHICAGO ----------
Méndez-Huergo, S.P., Blidner, A.G., Rabinovich, G.A. "Galectins: emerging regulatory checkpoints linking tumor immunity and angiogenesis" . Current Opinion in Immunology 45 (2017) : 8-15.
http://dx.doi.org/10.1016/j.coi.2016.12.003
---------- MLA ----------
Méndez-Huergo, S.P., Blidner, A.G., Rabinovich, G.A. "Galectins: emerging regulatory checkpoints linking tumor immunity and angiogenesis" . Current Opinion in Immunology, vol. 45, 2017, pp. 8-15.
http://dx.doi.org/10.1016/j.coi.2016.12.003
---------- VANCOUVER ----------
Méndez-Huergo, S.P., Blidner, A.G., Rabinovich, G.A. Galectins: emerging regulatory checkpoints linking tumor immunity and angiogenesis. Curr. Opin. Immunol. 2017;45:8-15.
http://dx.doi.org/10.1016/j.coi.2016.12.003