Artículo

Farrugia, C.J.; Gratton, F.T.; Gnavi, G.; Matsui, H.; Torbert, R.B.; Fairfield, D.H.; Ogilvie, K.W.; Lepping, R.P.; Terasawa, T.; Mukai, T.; Saito, Y. "Magnetosheath waves under very low solar wind dynamic pressure: Wind/Geotail observations" (2005) Annales Geophysicae. 23(4):1317-1333
Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The expanded bow shock on and around "the day the solar wind almost disappeared" (11 May 1999) allowed the Geotail spacecraft to make a practically uninterrupted 54-h-long magnetosheath pass near dusk (16:30-21:11 magnetic local time) at a radial distance of 24 to 30 RE (Earth radii). During most of this period, interplanetary parameters varied gradually and in such a way as to give rise to two extreme magnetosheath structures, one dominated by magnetohydrodynamic (MHD) effects and the other by gas dynamic effects. We focus attention on unusual features of electromagnetic ion wave activity in the former magnetosheath state, and compare these features with those in the latter. Magnetic fluctuations in the gas dynamic magnetosheath were dominated by compressional mirror mode waves, and left-and right-hand polarized electromagnetic ion cyclotron (EIC) waves transverse to the background field. In contrast, the MHD magnetosheath, lasting for over one day, was devoid of mirror oscillations and permeated instead by EIC waves of weak intensity. The weak wave intensity is related to the prevailing low solar wind dynamic pressures. Left-hand polarized EIC waves were replaced by bursts of right-hand polarized waves, which remained for many hours the only ion wave activity present. This activity occurred when the magnetosheath proton temperature anisotropy (=Tp, ⊥/Tp, ∥-1) became negative. This was because the weakened bow shock exposed the magnetosheath directly to the (negative) temperature anisotropy of the solar wind. Unlike the normal case studied in the literature, these right-hand waves were not by-products of left-hand polarized waves but derived their energy source directly from the magnetosheath temperature anisotropy. Brief entries into the low latitude boundary layer (LLBL) and duskside magnetosphere occurred under such inflated conditions that the magnetospheric magnetic pressure was insufficient to maintain pressure balance. In these crossings, the inner edge of the LLBL was flowing sunward. The study extends our knowledge of magnetosheath ion wave properties to the very low solar wind dynamic pressure regime. © European Geosciences Union 2005.

Registro:

Documento: Artículo
Título:Magnetosheath waves under very low solar wind dynamic pressure: Wind/Geotail observations
Autor:Farrugia, C.J.; Gratton, F.T.; Gnavi, G.; Matsui, H.; Torbert, R.B.; Fairfield, D.H.; Ogilvie, K.W.; Lepping, R.P.; Terasawa, T.; Mukai, T.; Saito, Y.
Filiación:Space Science Center, Department of Physics, University of New Hampshire, Durham, NH, United States
Instituto de Física del Plasma, CONICET, FCEyN, Buenos Aires, Argentina
NASA Goddard Space Flight Center, Greenbelt, MD, United States
Department of Earth and Planetary Physics, University of Tokyo, Tokyo, Japan
Institute of Space and Astronautical Sciences, Kanagawa, Japan
Palabras clave:Ionosphere (Wave-particle interactions); Magnetospheric physics (Magnetosheath); Radio science (Waves in plasma); magnetosphere; solar wind
Año:2005
Volumen:23
Número:4
Página de inicio:1317
Página de fin:1333
DOI: http://dx.doi.org/10.5194/angeo-23-1317-2005
Título revista:Annales Geophysicae
Título revista abreviado:Ann. Geophys.
ISSN:09927689
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_09927689_v23_n4_p1317_Farrugia.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09927689_v23_n4_p1317_Farrugia

Referencias:

  • Abraham-Shrauner, B., Determination of magnetohydrodynamic shock normals (1972) J. Geophys. Res., 77, pp. 736-739
  • Anderson, B.J., Fuselier, S.A., Magnetic pulsations from 0.1 to 4 Hz and associated plasma properties in the Earth's subsolar magnetosheath and plasma depletion layer (1993) J. Geophys. Res., 98, pp. 1461-1480
  • Anderson, B.J., Fuselier, S.A., Murr, D., Electromagnetic ion cyclotron waves observed in the plasma depletion layer (1991) Geophys. Res. Lett., 18, pp. 1955-1958
  • Anderson, B.J., Fuselier, S.A., Gary, S.P., Denton, R.E., Magnetic spectral signatures in the Earth's magnetosheath and plasma depletion layer (1994) J. Geophys. Res., 99, pp. 5877-5892
  • Erkaev, N.V., Results of the investigation of MHD flow around the magnetosphere (1988) Geomagn. Aeron., 28, pp. 455-464
  • Fairfield, D.H., Waves in the vicinity of the magnetopause (1976) Magnetospheric Particles and Fields, pp. 67-76. , McCormac, B. M. (Ed.), D. Reidel Pub. Comp., Dordrecht, Holland
  • Fairfield, D.H., Cairns, I.A., Desch, M.D., Szabo, A., Lazarus, A.J., Aelig, M.R., The location of low Mach number bow shocks at Earth (2001) J. Geophys. Res., 106, pp. 25361-25376
  • Farrugia, C.J., Erkaev, N.V., Biernat, H.K., Burlaga, L.F., Anomalous magnetosheath properties during Earth's passage of an interplanetary magnetic cloud (1995) J. Geophys. Res., 100, pp. 19245-19258
  • Farrugia, C.J., Gratton, F.T., Gnavi, G., Ogilvie, K.W., On the possible excitation of electromagnetic ion cyclotron waves in ejecta (1998) J. Geophys. Res., 103, pp. 6543-6550
  • Farrugia, C.J., Singer, H.J., Evans, D.S., Berdichevsky, D., Scudder, J.D., Ogilvie, K.W., Fitzenreiter, R.J., Russell, C.T., Response of the equatorial and polar magnetosphere to the very tenuous solar wind on 11 May 1999 (2000) Geophys. Res. Lett., 27, pp. 3773-3776
  • Farrugia, C.J., Gratton, F.T., Contin, J., Cocheci, C.C., Arnoldy, R.A., Ogilvie, K.W., Lepping, R.P., Rostoker, G., Coordinated Wind, Interball/tail, and Ground observations of Kelvin-Helmholtz Instability and Waves in the near-tail, equatorial magnetopause at dusk: 11 January 1997 (2000) J. Geophys. Res., 105, pp. 7639-7668
  • Farrugia, C.J., Gnavi, G., Gratton, F.T., Matsui, H., Torbert, R.B., Lepping, R.P., Oieroset, M., Lin, R.P., Electromagnetic ion cyclotron waves in the subsolar region under normal dynamic pressure: Wind observations and theory (2004) J. Geophys. Res., 109, p. 109. , doi: 10.1029/2003JA010104
  • Gary, S.P., (1993) Theory of Space Plasmas Microinstabilities, , Cambridge University Press, New York
  • Gary, S.P., Lee, M.A., The ion cyclotron anisotropy instability and the inverse beta correlation between proton anisotropy and proton beta (1994) J. Geophys. Res., 99, pp. 11297-11302
  • Gary, S.P., McKean, M.E., Winske, D., Anderson, B.J., Denton, R.E., Fusilier, S.A., Proton cyclotron anistropy instability and the anisotropy/beta inverse correlation (1994) J. Geophys. Res., 99, pp. 5903-5914
  • Gnavi, G., Gratton, F.T., Farrugia, C.J., Theoretical properties of electromagnetic ion cyclotron waves in the terrestrial, dayside, low latitude plasma depletion layer under uncompressed magnetosheath conditions (2000) J. Geophys. Res., 105, pp. 20973-20988
  • Gratton, F.T., Farrugia, C.J., Electromagnetic ion cyclotron waves in the terrestrial plasma depletion layer: Effects of possible relative motion between H+ and He2+ ions (1996) J. Geophys. Res., 101, pp. 21553-21560
  • Hasegawa, A., (1975) Plasma Instabilities and Non Linear Effects, , Springer Verlag, New York
  • Hill, P., Paschmann, G., Treumann, R.A., Baumjohann, W., Sckopke, N., Plasma and magnetic field behavior across the magnetosheath near local noon (1995) J. Geophys. Res., 100, pp. 9575-9584
  • Kasaba, Y., Terasawa, T., Tsubouchi, K., Mukai, T., Saito, Y., Matsumoto, H., Magnetosheath electrons in anomalously low density solar wind observed by Geotail (2000) Geophys. Res. Lett., 27, pp. 3253-3256
  • Kivelson, M.G., Russell, C.T., (1995) Introduction to Space Physics, , (Eds) : Cambridge University Press, New York
  • Kokubun, S., Yamamoto, T., Acuna, M.H., The Geotail Magnetic Field Experiment (1994) J. Geomag. Geoelectr., 46, pp. 7-21
  • Lees, L., Interaction between the solar wind plasma and the geomagnetic cavity (1964) AAIA J., 2, pp. 1576-1582
  • Lepping, R.P., Acuna, M.H., Burlaga, L.F., The Wind Magnetic Field Investigation (1995) Space Sci. Rev., 71, pp. 207-229
  • Lucek, E.A., Dunlop, M.W., Balogh, A., Cargill, P., Baumjohann, W., Georgescu, E., Haerendel, G., Fornacon, H.-K., Identification of magnetosheath mirror modes in Equator-S magnetic field data (1999) Ann. Geophys., 17, pp. 1560-1573
  • Matsui, H., Farrugia, C.J., Torbert, R.B., Wind-ACE solar wind correlations, 1999: An approach through spectral analysis (2002) J. Geophys. Res., 107, p. 1355. , doi:10.1029/2002JA009251
  • Midgley, J.E., Davis, L., Calculation by a moment technique of the perturbation of the geomagnetic field by the solar wind (1963) J. Geophys. Res., 68, pp. 5111-5123
  • Mead, G.D., Beard, D.B., Shape of the geomagnetic field solar wind boundary (1964) J. Geophys. Res., 69, pp. 1169-1179
  • Mukai, T., Machida, S., Saito, Y., The Low-Energy Particle (LEP) Experiment onboard the Geotail satellite (1994) J. Geomag. Geoelectr., 46, pp. 669-692
  • Nakagawa, T., Nishida, A., Saito, T., Planar magnetic structures in the solar wind (1989) J. Geophys. Res., 94, pp. 11761-11775
  • Ogilvie, K.W., Chornay, D.J., Fitzenreiter, R.J., SWE, A comprehensive plasma instrument for the Wind spacecraft (1995) Space Sci. Rev., 71, pp. 55-77
  • Phan, T.-D., Paschmann, G., Baumjohann, W., Sckopke, N., Luehr, H., The magnetosheath region adjacent to the dayside magnetopause: AMPTE/IRM observations (1994) J. Geophys. Res., 99, pp. 121-142
  • Richardson, J.D., Paulerena, K.I., Plasma and magnetic field correlations in the solar wind (2001) J. Geophys. Res., 103, pp. 239-252
  • Schwartz, S.J., Burgess, D., Moses, J.J., Low-frequency waves in the Earth's magnetosheath: Present status (1996) Ann. Geophys., 14, pp. 1134-1150. , SRef-ID: 1432-0576/ag/1996-14-1134
  • Shue, J.-H., Song, P., Russell, C.T., Steinberg, J.T., Chao, J.K., Zastenker, G., Vaisberg, O.L., Kawano, H., Magnetopause location under extreme solar wind conditions (1998) J. Geophys. Res., 103 (A8), pp. 17691-17700
  • Sckopke, N., Paschmann, G., Brinca, A.L., Carlson, C.W., Luehr, H., Ion thermalization in quasi-perpendicular shocks involving reflected ions (1990) J. Geophys. Res., 95, pp. 6337-6352
  • Song, P., Russell, C.T., Thomsen, M.F., Slow mode transition in the frontside magnetosheath (1992) J. Geophys. Res., 97, pp. 8295-8305
  • Sonnerup, B.U.O., The reconnecting magnetopause (1974) Magnetospheric Physics, pp. 23-33. , (Ed) McCormac, B. M. D. Reidel, Norwell, Mass
  • Sonnerup, B.U.O., Theory of the low-latitude boundary layer (1980) J. Geophys. Res., 85, pp. 2017-2026
  • Sonnerup, B.U.O., Cahill, L.J., Magnetopause structure and attitude from Explorer 12 observations (1967) J. Geophys. Res., 72, pp. 171-183
  • Sonnerup, B.U.O., Siebert, K.D., Theory of the low-latitude boundary layer and its coupling to the ionosphere: A tutorial review (2003) Earth's Low-Latitude Boundary Layer, pp. 13-32. , (Ed) Newell, P. T., and Onsager, T., Geophys. Monograph 133, AGU
  • Spreiter, J.R., Alksne, A.Y., Plasma flow around the magnetosphere (1969) Rev. Geophys., 7, pp. 11-50
  • Spreiter, J.R., Summers, A.L., Alksne, A.Y., Hydromagnetic flow around the magnetosphere (1966) Planet. Space Sci., 14, pp. 223-253
  • Spreiter, J.R., Stahara, S., A new predictive model for determining solar wind-terrestrial planet interaction (1980) J. Geophys. Res., 85, pp. 6769-6777
  • Terasawa, T., Kasaba, Y., Tsubouchi, K., Mukai, T., Saito, Y., Frank, L.A., Geotail observations of anonalously low density solar wind in the magnetosheath (2000) Geophys. Res. Lett., 27, pp. 3781-3784
  • Treumann, R.A., Baumjohann, W., (1997) Advanced Space Plasma Physics, , Imperial College Press
  • Wang, Y.L., Raeder, J., Russell, C.T., Phan, T.D., Manapat, M., Plasma depletion layer: Event studies with a global model (2003) J. Geophys. Res., p. 108. , doi:101029/2002JA009281
  • Zwan, B.J., Wolf, R.A., Depletion of the solar wind plasma near a planetary boundary (1976) J. Geophys. Res., 81, pp. 1636-1648

Citas:

---------- APA ----------
Farrugia, C.J., Gratton, F.T., Gnavi, G., Matsui, H., Torbert, R.B., Fairfield, D.H., Ogilvie, K.W.,..., Saito, Y. (2005) . Magnetosheath waves under very low solar wind dynamic pressure: Wind/Geotail observations. Annales Geophysicae, 23(4), 1317-1333.
http://dx.doi.org/10.5194/angeo-23-1317-2005
---------- CHICAGO ----------
Farrugia, C.J., Gratton, F.T., Gnavi, G., Matsui, H., Torbert, R.B., Fairfield, D.H., et al. "Magnetosheath waves under very low solar wind dynamic pressure: Wind/Geotail observations" . Annales Geophysicae 23, no. 4 (2005) : 1317-1333.
http://dx.doi.org/10.5194/angeo-23-1317-2005
---------- MLA ----------
Farrugia, C.J., Gratton, F.T., Gnavi, G., Matsui, H., Torbert, R.B., Fairfield, D.H., et al. "Magnetosheath waves under very low solar wind dynamic pressure: Wind/Geotail observations" . Annales Geophysicae, vol. 23, no. 4, 2005, pp. 1317-1333.
http://dx.doi.org/10.5194/angeo-23-1317-2005
---------- VANCOUVER ----------
Farrugia, C.J., Gratton, F.T., Gnavi, G., Matsui, H., Torbert, R.B., Fairfield, D.H., et al. Magnetosheath waves under very low solar wind dynamic pressure: Wind/Geotail observations. Ann. Geophys. 2005;23(4):1317-1333.
http://dx.doi.org/10.5194/angeo-23-1317-2005