Artículo

Mendez-Huergo, S.P.; Maller, S.M.; Farez, M.F.; Mariño, K.; Correale, J.; Rabinovich, G.A. "Integration of lectin-glycan recognition systems and immune cell networks in CNS inflammation" (2014) Cytokine and Growth Factor Reviews. 25(3):247-255
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Multiple sclerosis (MS) is a progressive degenerative disorder of the central nervous system (CNS), characterized by inflammation, demyelination and axonal loss. While the majority of MS patients experience relapsing-remitting symptoms followed by a secondary progressive phase, about 10-15% patients exhibit a primary progressive disease involving continuous progression from its onset. Here we review the role of lectin-glycan recognition systems, including those concerning siglecs, C-type lectins and galectins in the pathogenesis of MS and experimental autoimmune encephalomyelitis. Particularly, we will focus on the role of galectins in the fate of T cells, dendritic cells and CNS cell populations. Understanding the regulatory circuits governed by lectin-glycan interactions and their association with disease-associated cytokine networks will contribute to develop novel therapeutic strategies in MS. © 2014 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Integration of lectin-glycan recognition systems and immune cell networks in CNS inflammation
Autor:Mendez-Huergo, S.P.; Maller, S.M.; Farez, M.F.; Mariño, K.; Correale, J.; Rabinovich, G.A.
Filiación:Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), C1428 Buenos Aires, Argentina
Departamento de Neurología, Instituto de Investigaciones Neurológicas Dr. Raúl Carrea, FLENI, C1428 Buenos Aires, Argentina
Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), C1428 Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428 Buenos Aires, Argentina
Palabras clave:C-type lectins; Galectins; Glycans; Multiple sclerosis; Siglecs; cytotoxic T lymphocyte antigen 4; galectin; interleukin 10; interleukin 13; interleukin 17; interleukin 17F; interleukin 27; interleukin 4; interleukin 5; lectin; major histocompatibility antigen; sialic acid binding immunoglobulin like lectin; sialoadhesin; cytokine; galectin; lectin; polysaccharide; allergic encephalomyelitis; astrocyte; CD4+ T lymphocyte; CD8+ T lymphocyte; cell death; cell population; cytokine production; cytokine release; dendritic cell; disease severity; experimental autoimmune encephalomyelitis; glycobiology; glycosylation; human; immune response; immunocompetent cell; immunopathogenesis; immunoregulation; macrophage; multiple sclerosis; nonhuman; oligodendroglia; phenotype; priority journal; protein expression; protein function; protein protein interaction; short survey; T lymphocyte; upregulation; animal; central nervous system; immunology; multiple sclerosis; pathology; Animals; Central Nervous System; Cytokines; Dendritic Cells; Galectins; Humans; Lectins, C-Type; Multiple Sclerosis; Polysaccharides; T-Lymphocytes
Año:2014
Volumen:25
Número:3
Página de inicio:247
Página de fin:255
DOI: http://dx.doi.org/10.1016/j.cytogfr.2014.02.003
Título revista:Cytokine and Growth Factor Reviews
Título revista abreviado:Cytokine Growth Factor Rev.
ISSN:13596101
CODEN:CGFRF
CAS:interleukin 13, 148157-34-0; Cytokines; Galectins; Lectins, C-Type; Polysaccharides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13596101_v25_n3_p247_MendezHuergo

Referencias:

  • Sospedra, M., Martin, R., Immunology of multiple sclerosis (2005) Annu Rev Immunol, 23, pp. 683-747
  • Lopez-Diego, R.S., Weiner, H.L., Novel therapeutic strategies for multiple sclerosis-a multifaceted adversary (2008) Nat Rev Drug Discov, 7, pp. 909-925
  • Dube, D.H., Bertozzi, C.R., Glycans in cancer and inflammation-potential for therapeutics and diagnostics (2005) Nat Rev Drug Discov, 4, pp. 477-488
  • Rabinovich, G.A., Croci, D.O., Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer (2012) Immunity, 36, pp. 322-335
  • Dennis, J.W., Nabi, I.R., Demetriou, M., Metabolism, cell surface organization, and disease (2009) Cell, 139, pp. 1229-1241
  • Ohtsubo, K., Marth, J.D., Glycosylation in cellular mechanisms of health and disease (2006) Cell, 126, pp. 855-867
  • Rabinovich, G.A., Toscano, M.A., Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation (2009) Nat Rev Immunol, 9, pp. 338-352
  • Kuno, A., Uchiyama, N., Koseki-Kuno, S., Ebe, Y., Takashima, S., Yamada, M., Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling (2005) Nat Methods, 2, pp. 851-856
  • Marth, J.D., Grewal, P.K., Mammalian glycosylation in immunity (2008) Nat Rev Immunol, 8, pp. 874-887
  • Mariño, K., Bones, J., Kattla, J.J., Rudd, P.M., A systematic approach to protein glycosylation analysis: a path through the maze (2010) Nat Chem Biol, 6, pp. 713-723
  • Toscano, M.A., Ilarregui, J.M., Bianco, G.A., Campagna, L., Croci, D.O., Salatino, M., Dissecting the pathophysiologic role of endogenous lectins: glycan-binding proteins with cytokine-like activity? (2007) Cytokine Growth Factor Rev, 18, pp. 57-71
  • Di Lella, S., Sundblad, V., Cerliani, J.P., Guardia, C.M., Estrin, D.A., Vasta, G.R., When galectins recognize glycans: from biochemistry to physiology and back again (2011) Biochemistry, 50, pp. 7842-7857
  • Steinman, L., Assessment of animal models for MS and demyelinating disease in the design of rational therapy (1999) Neuron, 24, pp. 511-514
  • Furlan, R., Cuomo, C., Martino, G., Animal models of multiple sclerosis (2009) Methods Mol Biol, 549, pp. 157-173
  • Mix, E., Meyer-Rienecker, H., Zettl, U.K., Animal models of multiple sclerosis for the development and validation of novel therapies-potential and limitations (2008) J Neurol, 255 (SUPPL. 6), pp. 7-14
  • Brown, A.M., McFarlin, D.E., Relapsing experimental allergic encephalomyelitis in the SJL/J mouse (1981) Lab Invest, 45, pp. 278-284
  • Krumbholz, M., Derfuss, T., Hohlfeld, R., Meinl, E., B cells and antibodies in multiple sclerosis pathogenesis and therapy (2012) Nat Rev Neurol, 8, pp. 613-623
  • Batoulis, H., Recks, M.S., Addicks, K., Kuerten, S., Experimental autoimmune encephalomyelitis-achievements and prospective advances (2011) APMIS, 119, pp. 819-830
  • Ellmerich, S., Mycko, M., Takacs, K., Waldner, H., Wahid, F.N., Boyton, R.J., High incidence of spontaneous disease in an HLA-DR15 and TCR transgenic multiple sclerosis model (2005) J Immunol, 174, pp. 1938-1946
  • Pollinger, B., Krishnamoorthy, G., Berer, K., Lassmann, H., Bosl, M.R., Dunn, R., Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells (2009) J Exp Med, 206, pp. 1303-1316
  • Hart, T.B.A., Jagessar, S.A., Haanstra, K., Verschoor, E., Laman, J.D., Kap, Y.S., The primate EAE model points at EBV-infected B cells as a preferential therapy target in multiple sclerosis (2013) Front Immunol, 4, p. 145
  • Baker, D., Gerritsen, W., Rundle, J., Amor, S., Critical appraisal of animal models of multiple sclerosis (2011) Mult Scler, 17, pp. 647-657
  • Allen, S.J., Baker, D., O'Neill, J.K., Davison, A.N., Turk, J.L., Isolation and characterization of cells infiltrating the spinal cord during the course of chronic relapsing experimental allergic encephalomyelitis in the Biozzi AB/H mouse (1993) Cell Immunol, 146, pp. 335-350
  • Bettelli, E., Building different mouse models for human MS (2007) Ann N Y Acad Sci, 1103, pp. 11-18
  • Frohman, E.M., Racke, M.K., Raine, C.S., Multiple sclerosis-the plaque and its pathogenesis (2006) N Engl J Med, 354, pp. 942-955
  • Piccio, L., Rossi, B., Scarpini, E., Laudanna, C., Giagulli, C., Issekutz, A.C., Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors (2002) J Immunol, 168, pp. 1940-1949
  • Yednock, T.A., Cannon, C., Fritz, L.C., Sanchez-Madrid, F., Steinman, L., Karin, N., Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin (1992) Nature, 356, pp. 63-66
  • Polman, C.H., O'Connor, P.W., Havrdova, E., Hutchinson, M., Kappos, L., Miller, D.H., A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis (2006) N Engl J Med, 354, pp. 899-910
  • Rudick, R.A., Stuart, W.H., Calabresi, P.A., Confavreux, C., Galetta, S.L., Radue, E.W., Natalizumab plus interferon beta-1a for relapsing multiple sclerosis (2006) N Engl J Med, 354, pp. 911-923
  • Holman, D.W., Klein, R.S., Ransohoff, R.M., The blood-brain barrier, chemokines and multiple sclerosis (2011) Biochim Biophys Acta, 1812, pp. 220-230
  • Kipp, M., Amor, S., FTY720 on the way from the base camp to the summit of the mountain: relevance for remyelination (2012) Mult Scler, 18, pp. 258-263
  • Boppana, S., Huang, H., Ito, K., Dhib-Jalbut, S., Immunologic aspects of multiple sclerosis (2011) Mt Sinai J Med, 78, pp. 207-220
  • Korn, T., Bettelli, E., Oukka, M., Kuchroo, V.K., IL-17 and Th17 cells (2009) Annu Rev Immunol, 27, pp. 485-517
  • Stromnes, I.M., Cerretti, L.M., Liggitt, D., Harris, R.A., Goverman, J.M., Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells (2008) Nat Med, 14, pp. 337-342
  • Viglietta, V., Baecher-Allan, C., Weiner, H.L., Hafler, D.A., Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis (2004) J Exp Med, 199, pp. 971-979
  • Babbe, H., Roers, A., Waisman, A., Lassmann, H., Goebels, N., Hohlfeld, R., Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction (2000) J Exp Med, 192, pp. 393-404
  • Neumann, H., Medana, I.M., Bauer, J., Lassmann, H., Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases (2002) Trends Neurosci, 25, pp. 313-319
  • Correale, J., Villa, A., Role of CD8+ CD25+ Foxp3+ regulatory T cells in multiple sclerosis (2010) Ann Neurol, 67, pp. 625-638
  • Genain, C.P., Cannella, B., Hauser, S.L., Raine, C.S., Identification of autoantibodies associated with myelin damage in multiple sclerosis (1999) Nat Med, 5, pp. 170-175
  • Magliozzi, R., Howell, O., Vora, A., Serafini, B., Nicholas, R., Puopolo, M., Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology (2007) Brain, 130, pp. 1089-1104
  • Franciotta, D., Salvetti, M., Lolli, F., Serafini, B., Aloisi, F., B cells and multiple sclerosis (2008) Lancet Neurol, 7, pp. 852-858
  • Bar-Or, A., Fawaz, L., Fan, B., Darlington, P.J., Rieger, A., Ghorayeb, C., Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? (2010) Ann Neurol, 67, pp. 452-461
  • Fillatreau, S., Sweenie, C.H., McGeachy, M.J., Gray, D., Anderton, S.M., B cells regulate autoimmunity by provision of IL-10 (2002) Nat Immunol, 3, pp. 944-950
  • Castillo-Trivino, T., Braithwaite, D., Bacchetti, P., Waubant, E., Rituximab in relapsing and progressive forms of multiple sclerosis: a systematic review (2013) PLoS ONE, 8, pp. e66308
  • Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E., Capello, E., Mancardi, G.L., Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells (2006) J Neuropathol Exp Neurol, 65, pp. 124-141
  • Greter, M., Heppner, F.L., Lemos, M.P., Odermatt, B.M., Goebels, N., Laufer, T., Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis (2005) Nat Med, 11, pp. 328-334
  • Butovsky, O., Jedrychowski, M.P., Moore, C.S., Cialic, R., Lanser, A.J., Gabriely, G., Identification of a unique TGF-beta-dependent molecular and functional signature in microglia (2014) Nat Neurosci, 17, pp. 131-143
  • Nimmerjahn, A., Kirchhoff, F., Helmchen, F., Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo (2005) Science, 308, pp. 1314-1318
  • Lassmann, H., Bruck, W., Lucchinetti, C., Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy (2001) Trends Mol Med, 7, pp. 115-121
  • Carson, M.J., Reilly, C.R., Sutcliffe, J.G., Lo, D., Mature microglia resemble immature antigen-presenting cells (1998) Glia, 22, pp. 72-85
  • Ponomarev, E.D., Maresz, K., Tan, Y., Dittel, B.N., CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells (2007) J Neurosci, 27, pp. 10714-10721
  • Kimelberg, H.K., Functions of mature mammalian astrocytes: a current view (2010) Neuroscientist, 16, pp. 79-106
  • Dong, Y., Benveniste, E.N., Immune function of astrocytes (2001) Glia, 36, pp. 180-190
  • Medana, I., Martinic, M.A., Wekerle, H., Neumann, H., Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes (2001) Am J Pathol, 159, pp. 809-815
  • Smith, K.J., Lassmann, H., The role of nitric oxide in multiple sclerosis (2002) Lancet Neurol, 1, pp. 232-241
  • Frohman, E.M., Filippi, M., Stuve, O., Waxman, S.G., Corboy, J., Phillips, J.T., Characterizing the mechanisms of progression in multiple sclerosis: evidence and new hypotheses for future directions (2005) Arch Neurol, 62, pp. 1345-1356
  • Mahad, D.J., Ziabreva, I., Campbell, G., Lax, N., White, K., Hanson, P.S., Mitochondrial changes within axons in multiple sclerosis (2009) Brain, 132, pp. 1161-1174
  • Werner, P., Pitt, D., Raine, C.S., Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage (2001) Ann Neurol, 50, pp. 169-180
  • Kihara, Y., Matsushita, T., Kita, Y., Uematsu, S., Akira, S., Kira, J., Targeted lipidomics reveals mPGES-1-PGE2 as a therapeutic target for multiple sclerosis (2009) Proc Natl Acad Sci U S A, 106, pp. 21807-21812
  • Farias, A.S., Pradella, F., Schmitt, A., Santos, L.M., Martins-de-Souza, D., Ten years of proteomics in multiple sclerosis (2013) Proteomics
  • van Kooyk, Y., Kalay, H., Garcia-Vallejo, J.J., Analytical tools for the study of cellular glycosylation in the immune system (2013) Front Immunol, 4
  • Demetriou, M., Granovsky, M., Quaggin, S., Dennis, J.W., Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation (2001) Nature, 409, pp. 733-739
  • Chen, I.J., Chen, H.L., Demetriou, M., Lateral compartmentalization of T cell receptor versus CD45 by galectin-N-glycan binding and microfilaments coordinate basal and activation signaling (2007) J Biol Chem, 282, pp. 35361-35372
  • Grigorian, A., Araujo, L., Naidu, N.N., Place, D.J., Choudhury, B., Demetriou, M., N-acetylglucosamine inhibits T-helper 1 (Th1)/T-helper 17 (Th17) cell responses and treats experimental autoimmune encephalomyelitis (2011) J Biol Chem, 286, pp. 40133-40141
  • Mkhikian, H., Grigorian, A., Li, C.F., Chen, H.L., Newton, B., Zhou, R.W., Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis (2011) Nat Commun, 2, p. 334
  • Kanekiyo, K., Inamori, K., Kitazume, S., Sato, K., Maeda, J., Higuchi, M., Loss of branched O-mannosyl glycans in astrocytes accelerates remyelination (2013) J Neurosci, 33, pp. 10037-10047
  • Crocker, P.R., Paulson, J.C., Varki, A., Siglecs and their roles in the immune system (2007) Nat Rev Immunol, 7, pp. 255-266
  • Malhotra, S., Castillo, J., Bustamante, M., Vidal-Jordana, A., Castro, Z., Montalban, X., SIGLEC1 and SIGLEC7 expression in circulating monocytes of patients with multiple sclerosis (2013) Mult Scler, 19, pp. 524-531
  • Revilla, C., Poderoso, T., Martinez, P., Alvarez, B., Lopez-Fuertes, L., Alonso, F., Targeting to porcine sialoadhesin receptor improves antigen presentation to T cells (2009) Vet Res, 40, p. 14
  • Wu, C., Rauch, U., Korpos, E., Song, J., Loser, K., Crocker, P.R., Sialoadhesin-positive macrophages bind regulatory T cells, negatively controlling their expansion and autoimmune disease progression (2009) J Immunol, 182, pp. 6508-6516
  • Claude, J., Linnartz-Gerlach, B., Kudin, A.P., Kunz, W.S., Neumann, H., Microglial CD33-related Siglec-E inhibits neurotoxicity by preventing the phagocytosis-associated oxidative burst (2013) J Neurosci, 33, pp. 18270-18276
  • Blasius, A.L., Colonna, M., Sampling and signaling in plasmacytoid dendritic cells: the potential roles of Siglec-H (2006) Trends Immunol, 27, pp. 255-260
  • Loschko, J., Heink, S., Hackl, D., Dudziak, D., Reindl, W., Korn, T., Antigen targeting to plasmacytoid dendritic cells via Siglec-H inhibits Th cell-dependent autoimmunity (2011) J Immunol, 187, pp. 6346-6356
  • Li, M., Shibata, A., Li, C., Braun, P.E., McKerracher, L., Roder, J., Myelin-associated glycoprotein inhibits neurite/axon growth and causes growth cone collapse (1996) J Neurosci Res, 46, pp. 404-414
  • Kluft, C., Jie, A.F., Los, P., de Wit, E., Havekes, L., Functional analogy between lipoprotein(a) and plasminogen in the binding to the kringle 4 binding protein, tetranectin (1989) Biochem Biophys Res Commun, 161, pp. 427-433
  • Borregaard, N., Christensen, L., Bejerrum, O.W., Birgens, H.S., Clemmensen, I., Identification of a highly mobilizable subset of human neutrophil intracellular vesicles that contains tetranectin and latent alkaline phosphatase (1990) J Clin Invest, 85, pp. 408-416
  • Stoevring, B., Jaliashvili, I., Thougaard, A.V., Ensinger, C., Hogdall, C.K., Rasmussen, L.S., Tetranectin in cerebrospinal fluid of patients with multiple sclerosis (2006) Scand J Clin Lab Invest, 66, pp. 577-583
  • Hammack, B.N., Fung, K.Y., Hunsucker, S.W., Duncan, M.W., Burgoon, M.P., Owens, G.P., Proteomic analysis of multiple sclerosis cerebrospinal fluid (2004) Mult Scler, 10, pp. 245-260
  • Leikfoss, I.S., Mero, I.L., Dahle, M.K., Lie, B.A., Harbo, H.F., Spurkland, A., Multiple sclerosis-associated single-nucleotide polymorphisms in CLEC16A correlate with reduced SOCS1 and DEXI expression in the thymus (2013) Genes Immun, 14, pp. 62-66
  • Wu, X., Li, J., Chen, C., Yan, Y., Jiang, S., Shao, B., Involvement of CLEC16A in activation of astrocytes after LPS treated (2012) Neurochem Res, 37, pp. 5-14
  • Kel, J., Oldenampsen, J., Luca, M., Drijfhout, J.W., Koning, F., Nagelkerken, L., Soluble mannosylated myelin peptide inhibits the encephalitogenicity of autoreactive T cells during experimental autoimmune encephalomyelitis (2007) Am J Pathol, 170, pp. 272-280
  • Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Oligosaccharide specificity of galectins: a search by frontal affinity chromatography (2002) Biochim Biophys Acta, 1572, pp. 232-254
  • Thijssen, V., Rabinovich, G., Griffioen, A., Vascular galectins: regulators of tumor progression and targets for cancer therapy (2013) Cytokine Growth Factor Rev, 24, pp. 547-558
  • Stancic, M., van Horssen, J., Thijssen, V.L., Gabius, H.J., van der Valk, P., Hoekstra, D., Increased expression of distinct galectins in multiple sclerosis lesions (2011) Neuropathol Appl Neurobiol, 37, pp. 654-671
  • Ilarregui, J.M., Croci, D.O., Bianco, G.A., Toscano, M.A., Salatino, M., Vermeulen, M.E., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat Immunol, 10, pp. 981-991
  • Offner, H., Celnik, B., Bringman, T.S., Casentini-Borocz, D., Nedwin, G.E., Vandenbark, A.A., Recombinant human beta-galactoside binding lectin suppresses clinical and histological signs of experimental autoimmune encephalomyelitis (1990) J Neuroimmunol, 28, pp. 177-184
  • Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Croci, D.O., Correale, J., Hernandez, J.D., Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death (2007) Nat Immunol, 8, pp. 825-834
  • Lee, S.U., Grigorian, A., Pawling, J., Chen, I.J., Gao, G., Mozaffar, T., N-glycan processing deficiency promotes spontaneous inflammatory demyelination and neurodegeneration (2007) J Biol Chem, 282, pp. 33725-33734
  • Wang, J., Lu, Z.H., Gabius, H.J., Rohowsky-Kochan, C., Ledeen, R.W., Wu, G., Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis (2009) J Immunol, 182, pp. 4036-4045
  • Zhu, C., Anderson, A.C., Schubart, A., Xiong, H., Imitola, J., Khoury, S.J., The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity (2005) Nat Immunol, 6, pp. 1245-1252
  • Steelman, A.J., Smith, R., Welsh, C.J., Li, J., Galectin-9 protein is up-regulated in astrocytes by tumor necrosis factor and promotes encephalitogenic T-cell apoptosis (2013) J Biol Chem, 288, pp. 23776-23787
  • Jiang, H.R., Al Rasebi, Z., Mensah-Brown, E., Shahin, A., Xu, D., Goodyear, C.S., Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis (2009) J Immunol, 182, pp. 1167-1173
  • Starossom, S.C., Mascanfroni, I.D., Imitola, J., Cao, L., Raddassi, K., Hernandez, S.F., Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration (2012) Immunity, 37, pp. 249-263
  • Anderson, A.C., Anderson, D.E., Bregoli, L., Hastings, W.D., Kassam, N., Lei, C., Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells (2007) Science, 318, pp. 1141-1143
  • Pasquini, L.A., Millet, V., Hoyos, H.C., Giannoni, J.P., Croci, D.O., Marder, M., Galectin-3 drives oligodendrocyte differentiation to control myelin integrity and function (2011) Cell Death Differ, 18, pp. 1746-1756
  • Hoyos, H.C., Rinaldi, M., Mendez-Huergo, S.P., Marder, M., Rabinovich, G.A., Pasquini, J.M., Galectin-3 controls the response of microglial cells to limit cuprizone-induced demyelination (2014) Neurobiol Dis, 62, pp. 441-455
  • Stancic, M., Slijepcevic, D., Nomden, A., Vos, M.J., de Jonge, J.C., Sikkema, A.H., Galectin-4, a novel neuronal regulator of myelination (2012) Glia, 60, pp. 919-935
  • Partridge, E.A., Le Roy, C., Di Guglielmo, G.M., Pawling, J., Cheung, P., Granovsky, M., Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis (2004) Science, 306, pp. 120-124
  • Lau, K.S., Partridge, E.A., Grigorian, A., Silvescu, C.I., Reinhold, V.N., Demetriou, M., Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation (2007) Cell, 129, pp. 123-134
  • Li, C.F., Zhou, R.W., Mkhikian, H., Newton, B.L., Yu, Z., Demetriou, M., Hypomorphic MGAT5 polymorphisms promote multiple sclerosis cooperatively with MGAT1 and interleukin-2 and 7 receptor variants (2013) J Neuroimmunol, 256, pp. 71-76

Citas:

---------- APA ----------
Mendez-Huergo, S.P., Maller, S.M., Farez, M.F., Mariño, K., Correale, J. & Rabinovich, G.A. (2014) . Integration of lectin-glycan recognition systems and immune cell networks in CNS inflammation. Cytokine and Growth Factor Reviews, 25(3), 247-255.
http://dx.doi.org/10.1016/j.cytogfr.2014.02.003
---------- CHICAGO ----------
Mendez-Huergo, S.P., Maller, S.M., Farez, M.F., Mariño, K., Correale, J., Rabinovich, G.A. "Integration of lectin-glycan recognition systems and immune cell networks in CNS inflammation" . Cytokine and Growth Factor Reviews 25, no. 3 (2014) : 247-255.
http://dx.doi.org/10.1016/j.cytogfr.2014.02.003
---------- MLA ----------
Mendez-Huergo, S.P., Maller, S.M., Farez, M.F., Mariño, K., Correale, J., Rabinovich, G.A. "Integration of lectin-glycan recognition systems and immune cell networks in CNS inflammation" . Cytokine and Growth Factor Reviews, vol. 25, no. 3, 2014, pp. 247-255.
http://dx.doi.org/10.1016/j.cytogfr.2014.02.003
---------- VANCOUVER ----------
Mendez-Huergo, S.P., Maller, S.M., Farez, M.F., Mariño, K., Correale, J., Rabinovich, G.A. Integration of lectin-glycan recognition systems and immune cell networks in CNS inflammation. Cytokine Growth Factor Rev. 2014;25(3):247-255.
http://dx.doi.org/10.1016/j.cytogfr.2014.02.003