Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Polyhydroxyalkanoates (PHAs) are highly reduced bacterial storage compounds that increase fitness in changing environments. It has previously shown that polyhydroxybutyrate (PHB) accumulation is essential during the growth under cold conditions. In this work, the relationship between PHB accumulation and biofilm development at low temperature was investigated. P. extremaustralis, an Antarctic strain able to accumulate PHB, and its phaC mutant, impaired in the synthesis of this polymer, were used to analyze microaerobic growth, biofilm development, EPS content and motility. PHB accumulation increased motility and survival of planktonic cells in the biofilms developed by P. extremaustralis under cold conditions. Microaerobic conditions rescued the cold growth defect of the mutant strain. The PHB accumulation capability could constitute an adaptative advantage for the colonization of new ecological niches in stressful environments. © 2011 Springer.

Registro:

Documento: Artículo
Título:Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions
Autor:Tribelli, P.M.; López, N.I.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina
Palabras clave:Biofilms; Cold; Motility; Polyhydroxybutyrate; Pseudomonas; hydroxybutyric acid; poly(3 hydroxybutyric acid); poly-beta-hydroxybutyrate; polyester; adaptation; Antarctica; article; biofilm; cold; growth, development and aging; metabolism; mutation; physiology; Pseudomonas; Adaptation, Physiological; Antarctic Regions; Biofilms; Cold Temperature; Hydroxybutyrates; Mutation; Polyesters; Pseudomonas; Bacteria (microorganisms); Pseudomonas
Año:2011
Volumen:15
Número:5
Página de inicio:541
Página de fin:547
DOI: http://dx.doi.org/10.1007/s00792-011-0384-1
Título revista:Extremophiles
Título revista abreviado:Extremophiles
ISSN:14310651
CODEN:EXTRF
CAS:hydroxybutyric acid, 1320-61-2, 35054-79-6; poly(3 hydroxybutyric acid), 26063-00-3; Hydroxybutyrates; Polyesters; poly-beta-hydroxybutyrate, 26063-00-3
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14310651_v15_n5_p541_Tribelli

Referencias:

  • Albesa, I., Becerra, M.C., Battan, P.C., Paez, P.L., Oxidative stress involved in the antibacterial action of different antibiotics (2004) Biochem Biophys Res Commun, 317, pp. 605-609
  • Ayub, N.D., Pettinari, M.J., Méndez, B.S., López, N.I., Impaired polyhydroxybutyrate biosynthesis from glucose in Pseudomonas sp. 14-3 is due to a defective beta-ketothiolase gene (2006) FEMS Microbiol Lett, 264, pp. 25-131
  • Ayub, N.D., Pettinari, M.J., Méndez, B.S., López, N.I., The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island (2007) Plasmid, 58, pp. 240-248
  • Ayub, N.D., Tribelli, P.M., López, N.I., Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation (2009) Extremophiles, 13, pp. 59-66
  • Branda, S.S., Ashild, V., Friedman, L., Kolter, R., Biofilms: the matrix revisited (2005) Trends Microbiol, 13, pp. 20-26
  • Bylund, J., Burgess, L.A., Cescutti, P., Ernst, R.K., Speert, D.P., Exopolysaccharides from Burkholderia cenocepacia inhibit neutrophil chemotaxis and scavenge reactive oxygen species (2006) J Biol Chem, 281, pp. 2526-2532
  • Caiazza, N.C., Merritt, H.J., Brothers, J.M., O'Toole, G.A., Inverse Regulation of Biofilm Formation and Swarming Motility by Pseudomonas aeruginosa PA14 (2007) J Bacteriol, 189, pp. 3603-3612
  • Chang, W.S., Li, X., Halverson, L.J., Influence of water limitation on endogenous oxidative stress and cell death within unsaturated Pseudomonas putida biofilms (2009) Environ Microbiol, 11, pp. 1482-1492
  • Chattopadhyay, M.K., Raghu, G., Sharma, Y.V., Biju, A.R., Rajasekharan, M.V., Shivaji, S., Increase in oxidative stress at low temperature in an Antarctic Bacterium (2011) Curr Microbiol, 62, pp. 544-546
  • Chesson, P., Gebauer, R.L., Schwinning, S., Huntly, N., Wiegand, K., Ernest, M.S., Sher, A., Weltzin, J.F., Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments (2004) Oecologia, 141, pp. 236-253
  • Cochran, W.L., McFeters, G.A., Stewart, P.S., Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine (2001) J Appl Microbiol, 88, pp. 22-30
  • Costerton, J., Lewandowski, Z., Caldwell, D., Korber, D., Lappin-Scot, H., Microbial biofilms (1995) Annu Rev Microbiol, 49, pp. 711-745
  • D'Amico, S., Collins, T., Marx, J.C., Feller, G., Gerday, C., Psychrophilic microorganisms: challenges for life (2006) EMBO Rep, 7, pp. 385-389
  • Decho, A.W., Microbial biofilms in intertidal systems: an overview (2000) Cont Shelf Res, 20, pp. 1257-1273
  • Donlan, G., Biofilms: microbial life on surfaces (2002) Emerg Infec Dis, 8, pp. 881-890
  • Hazer, B., Steinbüchel, A., Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications (2007) Appl Microbiol Biotechnol, 74, pp. 1-12
  • Kadouri, D., Jurkevitch, E., Okon, Y., Castro-Sowinski, S., Ecological and agricultural significance of bacterial polyhydroxyalkanoates (2005) Crit Rev Microbiol, 31, pp. 55-67
  • Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jørgensen, A., Molin, S., Tolker-Nielsen, T., Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants (2003) Mol Microbiol, 48, pp. 1511-1524
  • Kohler, T., Curty, L.K., Barja, F., van Delden, C., Pechere, J.C., Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signalling and requires flagella and pili (2000) J Bacteriol, 182, pp. 5990-5996
  • Lapaglia, C., Hartzell, P.L., Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus (1997) Appl Environ Microbiol, 63, pp. 3158-3163
  • López, N.I., Floccari, M.E., Garcia, A.F., Steinbüchel, A., Mendez, B.S., Effect of poly-3-hydroxybutyrate content on the starvation survival of bacteria in natural waters (1995) FEMS Microbiol Ecol, 16, pp. 95-101
  • López, N.I., Pettinari, M.J., Stackebrandt, E., Tribelli, P.M., Pötter, M., Steinbüchel, A., Méndez, B.S., Pseudomonas extremaustralis sp. nov. A poly(3-hydroxybutyrate) producer isolated from an Antarctic environment (2009) Curr Microbiol, 59, pp. 514-519
  • Lüthi, E., Mercenier, A., Haas, D., The arcABC operon required for fermentative growth of Pseudomonas aeruginosa on arginine: TnS-751-assisted cloning and localization of structural genes (1986) J Gen Microbiol, 132, pp. 2667-2675
  • Mah, T.F., O'Toole, G.A., Mechanisms of biofilm resistance to antimicrobial agents (2001) Trends Microbiol, 9, pp. 34-39
  • Martinez, P., Guzman, J., Espin, G., A mutation impairing alginate production increased accumulation of poly-β-hydroxybutyrate in Azotobacter vinelandii (1997) Biotech Lett, 19, pp. 909-912
  • Matz, C., Kjelleberg, S., Off the hook-how bacteria survive protozoan grazing (2005) Trends Microbiol, 13, pp. 302-307
  • Ostle, A., Holt, J.G., Nile Blue A as a fluorescent stain for polyhydroxybutyrate (1982) Appl Environ Microbial, 44, pp. 238-241
  • O'Toole, G.A., Kolter, R., Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development (1998) Mol Microbiol, 30, pp. 295-304
  • Pessi, G., Haas, D., Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa (2000) J Bacteriol, 182, pp. 6940-6949
  • Pham, T.H., Webb, J.S., Rehm, B.H.A., The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation (2004) Microbiology, 150, pp. 3405-3413
  • Pratt, L.A., Kolter, R., Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili (1998) Mol Microbiol, 30, pp. 285-293
  • Quelas, J.I., López-García, S.L., Casabuono, A., Althabegoiti, M.J., Mongiardini, E.J., Pérez-Giménez, J., Couto, A., Lodeiro, A.R., Effects of N-starvation and C-source on Bradyrhizobium japonicum exopolysaccharide production and composition, and bacterial infectivity to soybean roots (2006) Arch Microbiol, 186, pp. 119-128
  • Ren, Q., de Roo, G., Witholt, B., Zinn, M., Thöny-Meyer, L., Influence of growth stage on activities of polyhydroxyalkanoate (PHA) polymerase and PHA depolymerase in Pseudomonas putida U (2010) BMC Microbiol, 10, p. 254
  • Sauer, K., Camper, A.K., Ehrlich, G., Costerton, J.W., Davies, D.G., Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm (2002) J Bacteriol, 184, pp. 1140-1154
  • Shrout, J.D., Chopp, D.L., Just, C.L., Hentzer, M., Givskov, M., Parsek, M., The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional (2006) Mol Microbiol, 62, pp. 1264-1277
  • Simpson, J.A., Smith, S.E., Dean, R.T., Scavenging by alginate of free radicals released by macrophages (1989) Free Radical Biol Med, 6, pp. 347-353
  • Strocchi, M., Ferrer, M., Timmis, K.N., Golyshin, P.N., Low temperature-induced systems failure in Escherichia coli: insights from rescue by cold-adapted chaperones (2006) Proteomics, 6, pp. 193-206
  • Trevelyan, W.E., Harrison, J.S., Studies on yeast metabolism. Fractionation and microdetermination of cell carbohydrates (1952) Biochem J, 50, pp. 298-303
  • Tribelli, P.M., Méndez, B.S., López, N.I., Oxygen sensitive global regulator, Anr, is involved in biosynthesis of poly-3-hydroxybutyrate (PHB) in Pseudomonas extremaustralis (2010) J Mol Microbiol Biotech, 19, pp. 180-188
  • van Alst, N., Picardo, K., Iglewski, B., Haidaris, C., Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa (2007) Infect Immun, 75, pp. 3780-3790
  • Wai, S., Mizunoe, Y., Takade, A., Kawabata, S.I., Yoshida, S.I., Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation (1998) Appl Environ Microbiol, 64, pp. 3648-3655
  • Wang, H., Jiang, X., Mu, H., Liang, X., Guan, H., Structure and protective effect of exopolysaccharide from P. agglomerans strain KFS-9 against UV radiation (2007) Microbiol Res, 162, pp. 124-129
  • Xu, K.D., Stewart, P.S., Xia, F., Huang, C.T., McFeters, G.A., Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilms is determined by oxygen availability (1998) Appl Environ Microbiol, 64, pp. 4035-4039

Citas:

---------- APA ----------
Tribelli, P.M. & López, N.I. (2011) . Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions. Extremophiles, 15(5), 541-547.
http://dx.doi.org/10.1007/s00792-011-0384-1
---------- CHICAGO ----------
Tribelli, P.M., López, N.I. "Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions" . Extremophiles 15, no. 5 (2011) : 541-547.
http://dx.doi.org/10.1007/s00792-011-0384-1
---------- MLA ----------
Tribelli, P.M., López, N.I. "Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions" . Extremophiles, vol. 15, no. 5, 2011, pp. 541-547.
http://dx.doi.org/10.1007/s00792-011-0384-1
---------- VANCOUVER ----------
Tribelli, P.M., López, N.I. Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions. Extremophiles. 2011;15(5):541-547.
http://dx.doi.org/10.1007/s00792-011-0384-1