Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The statistical properties of the primordial density perturbations has been considered in the past decade as a powerful probe of the physical processes taking place in the early universe. Within the inflationary paradigm, the properties of the bispectrum are one of the keys that serves to discriminate among competing scenarios concerning the details of the origin of cosmological perturbations. However, all of the scenarios, based on the conventional approach to the so-called ''quantum-to-classical transition'' during inflation, lack the ability to point out the precise physical mechanism responsible for generating the inhomogeneity and anisotropy of our universe starting from and exactly homogeneous and isotropic vacuum state associated with the early inflationary regime. In past works, we have shown that the proposals involving a spontaneous dynamical reduction of the quantum state provide plausible explanations for the birth of said primordial inhomogeneities and anisotropies. In the present manuscript we show that, when considering within the context of such proposals, the characterization of the spectrum and bispectrum turn out to be quite different from those found in the traditional approach, and in particular, some of the statistical features, must be treated in a different way leading to some rather different conclusions. © 2015 IOP Publishing Ltd and Sissa Medialab srl .

Registro:

Documento: Artículo
Título:Origin of structure: Statistical characterization of the primordial density fluctuations and the collapse of the wave function
Autor:León, G.; Sudarsky, D.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria - Pab. I, Buenos Aires, 1428, Argentina
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
Palabras clave:inflation; non-gaussianity; quantum cosmology
Año:2015
Volumen:2015
Número:6
DOI: http://dx.doi.org/10.1088/1475-7516/2015/06/020
Título revista:Journal of Cosmology and Astroparticle Physics
Título revista abreviado:J. Cosmol. Astroparticle Phys.
ISSN:14757516
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14757516_v2015_n6_p_Leon

Referencias:

  • Mukhanov, V.F., Chibisov, G.V., Quantum Fluctuation and Nonsingular Universe. (1981) JETP Lett., 33, p. 532
  • Hawking, S.W., The Development of Irregularities in a Single Bubble Inflationary Universe (1982) Phys. Lett., 115, p. 295
  • Starobinsky, A.A., Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations (1982) Phys. Lett., 117, p. 175
  • Guth, A.H., Pi, S.Y., Fluctuations in the New Inflationary Universe (1982) Phys. Rev. Lett., 49, p. 1110
  • Halliwell, J.J., Hawking, S.W., The Origin of Structure in the Universe (1985) Phys. Rev., 31, p. 1777
  • Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H., Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions (1992) Phys. Rept., 215, p. 203
  • Collaboration, W., Hinshaw, G., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results (2013) Astrophys. J. Suppl., 208 (2), p. 19
  • Collaboration, S., Ahn, C.P., The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey (2012) Astrophys. J. Suppl., 203 (2), p. 21
  • Collaboration, P., Ade, P.A.R., Planck 2013 results. XXII. Constraints on inflation (2014) Astron. Astrophys., 571, p. A22
  • Albrecht, A., Ferreira, P., Joyce, M., Prokopec, T., Inflation and squeezed quantum states (1994) Phys. Rev., 50, p. 4807
  • Polarski, D., Starobinsky, A.A., Semiclassicality and decoherence of cosmological perturbations (1996) Class. Quant. Grav., 13 (3), p. 377
  • Sudarsky, D., Shortcomings in the Understanding of Why Cosmological Perturbations Look Classical (2011) Int. J. Mod. Phys., 20, p. 509
  • Perez, A., Sahlmann, H., Sudarsky, D., On the quantum origin of the seeds of cosmic structure (2006) Class. Quant. Grav., 23 (7), p. 2317
  • Padmanabhan, T., (1993) Structure Formation in the Universe
  • Mukhanov, V.F., (2005) Physical Foundations of Cosmology
  • Weinberg, S., (2008) Cosmology
  • Lyth, D.H., Liddle, A.R., (2009) The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure
  • Landau, S., León, G., Sudarsky, D., Quantum Origin of the Primordial Fluctuation Spectrum and its Statistics (2013) Phys. Rev., 88, p. 023526
  • Pearle, P.M., Dynamical Wave Function Collapse: Could It Have Cosmological Consequences?
  • Sudarsky, D., The Seeds of Cosmic structure as a door to New Physics (2007) J. Phys. Conf. Ser., 68 (1), p. 012029
  • Sudarsky, D., A Signature of quantum gravity at the source of the seeds of cosmic structure? (2007) J. Phys. Conf. Ser., 67 (1), p. 012054
  • Sudarsky, D., Can we learn something about the quantum/gravity interface from the primordial fluctuation spectrum? (2011) Int. J. Mod. Phys., 20, p. 821
  • Diosi, L., Gravitation and quantum-mechanical localization of macro-objects (1984) Phys. Lett., 105 (4-5), p. 199
  • Pearle, P.M., Reduction of the State Vector by a Nonlinear Schrödinger Equation (1976) Phys. Rev., 13, p. 857
  • Pearle, P.M., Combining Stochastic Dynamical State Vector Reduction with Spontaneous Localization (1989) Phys. Rev., 39, p. 2277
  • Ghirardi, G.C., Pearle, P.M., Rimini, A., Markov Processes in Hilbert Space and Continuous Spontaneous Localization of Systems of Identical Particles (1990) Phys. Rev., 42, p. 78
  • Ghirardi, G.C., Rimini, A., Weber, T., A Unified Dynamics for Micro and MACRO Systems (1986) Phys. Rev., 34, p. 470
  • Penrose, R., (1989) The Emperor's New Mind
  • Penrose, R., On Gravity's Role in Quantum State Reduction (1996) Gen. Relat. Grav., 28 (5), p. 581
  • Diosi, L., A Universal Master Equation for the Gravitational Violation of Quantum Mechanics (1987) Phys. Lett., 120, p. 377
  • Diosi, L., Models for universal reduction of macroscopic quantum fluctuations (1989) Phys. Lett., 40, p. 1165
  • Weinberg, S., Collapse of the State Vector (2012) Phys. Rev., 85, p. 062116
  • Bassi, A., Ghirardi, G.C., Dynamical reduction models (2003) Phys. Rept., 379, p. 257
  • Canate, P., Pearle, P., Sudarsky, D., CSL Wave Function Collapse Model As A Mechanism for the Emergence of Cosmological Asymmetries in Inflation
  • Martin, J., Vennin, V., Peter, P., Cosmological Inflation and the Quantum Measurement Problem (2012) Phys. Rev., 86, p. 103524
  • Das, S., Lochan, K., Sahu, S., Singh, T.P., Quantum to classical transition of inflationary perturbations: Continuous spontaneous localization as a possible mechanism (2013) Phys. Rev., 88, p. 085020
  • De Unanue, A., Sudarsky, D., Phenomenological analysis of quantum collapse as source of the seeds of cosmic structure (2008) Phys. Rev., 78, p. 043510
  • Landau, S.J., Scoccola, C.G., Sudarsky, D., Cosmological constraints on non-standard inflationary quantum collapse models (2012) Phys. Rev., 85, p. 123001
  • Larson, D., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-Derived Parameters (2011) Astrophys. J. Suppl., 192 (2), p. 16
  • Reid, B.A., Cosmological Constraints from the Clustering of the Sloan Digital Sky Survey DR7 Luminous Red Galaxies (2010) Mon. Not. Roy. Astron. Soc., 404, p. 60
  • Komatsu, E., Non-Gaussianity As A Probe of the Physics of the Primordial Universe and the Astrophysics of the Low Redshift Universe
  • Salopek, D.S., Bond, J.R., Nonlinear evolution of long wavelength metric fluctuations in inflationary models (1990) Phys. Rev., 42, p. 3936
  • Salopek, D.S., Bond, J.R., Stochastic inflation and nonlinear gravity (1991) Phys. Rev., 43, p. 1005
  • Falk, T., Rangarajan, R., Srednicki, M., The Angular dependence of the three point correlation function of the cosmic microwave background radiation as predicted by inflationary cosmologies (1993) Astrophys. J., 403, p. L1
  • Gangui, A., Lucchin, F., Matarrese, S., Mollerach, S., The Three point correlation function of the cosmic microwave background in inflationary models (1994) Astrophys. J., 430, p. 447
  • Acquaviva, V., Bartolo, N., Matarrese, S., Riotto, A., Second order cosmological perturbations from inflation (2003) Nucl. Phys., 667, p. 119
  • Maldacena, J.M., Non-Gaussian features of primordial fluctuations in single field inflationary models (2003) J. High Energy Phys., 2003 (5), p. 013
  • Bartolo, N., Komatsu, E., Matarrese, S., Riotto, A., Non-Gaussianity from inflation: Theory and observations (2004) Phys. Rept., 402, p. 103
  • Diez-Tejedor, A., Sudarsky, D., Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure (2012) J. Cosmol. Astropart. Phys., 2012 (7), p. 045
  • León, G., Sudarsky, D., Novel possibility of nonstandard statistics in the inflationary spectrum of primordial inhomogeneities (2012) SIGMA, 8, p. 024
  • Komatsu, E., Hunting for Primordial Non-Gaussianity in the Cosmic Microwave Background (2010) Class. Quant. Grav., 27 (12), p. 124010
  • Yadav, A.P.S., Wandelt, B.D., Primordial Non-Gaussianity in the Cosmic Microwave Background (2010) Adv. Astron., 2010, p. 565248
  • Liguori, M., Sefusatti, E., Fergusson, J.R., Shellard, E.P.S., Primordial non-Gaussianity and Bispectrum Measurements in the Cosmic Microwave Background and Large-Scale Structure (2010) Adv. Astron., 2010, p. 980523
  • Komatsu, E., The Pursuit of Non-Gaussian Fluctuations in the Cosmic Microwave Background
  • León, G., De Unanue, A., Sudarsky, D., Multiple quantum collapse of the inflaton field and its implications on the birth of cosmic structure (2011) Class. Quant. Grav., 28 (15), p. 155010
  • Diez-Tejedor, A., León, G., Sudarsky, D., The Collapse of the wave function in the joint metric-matter quantization for inflation (2012) Gen. Rel. Grav., 44, p. 2965
  • Valentini, A., Inflationary Cosmology as a Probe of Primordial Quantum Mechanics (2010) Phys. Rev., 82, p. 063513
  • Pinto-Neto, N., Santos, G., Struyve, W., Quantum-to-classical transition of primordial cosmological perturbations in de Broglie-Bohm quantum theory (2012) Phys. Rev., 85, p. 083506
  • Isham, C.J., Canonical Quantum Gravity and the Problem of Time
  • Fox, M., (2006) Quantum Optics An Introduction
  • León, G., Sudarsky, D., The Slow roll condition and the amplitude of the primordial spectrum of cosmic fluctuations: Contrasts and similarities of standard account and the 'collapse scheme' (2010) Class. Quant. Grav., 27 (22), p. 225017
  • Luo, X.-C., The Angular bispectrum of the cosmic microwave background (1994) Astrophys. J., 427, p. L71
  • Gangui, A., Martin, J., Cosmic microwave background bispectrum and slow roll inflation (2000) Mon. Not. Roy. Astron. Soc., 313, p. 323
  • Gangui, A., Martin, J., Best unbiased estimators for the three point correlators of the cosmic microwave background radiation (2000) Phys. Rev., 62, p. 103004
  • Collaboration, P., Ade, P.A.R., Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity (2014) Astron. Astrophys., 571, p. A24
  • Fergusson, J.R., Shellard, E.P.S., The shape of primordial non-Gaussianity and the CMB bispectrum (2009) Phys. Rev., 80, p. 043510
  • Weinberg, S., Quantum contributions to cosmological correlations (2005) Phys. Rev., 72, p. 043514
  • Chen, X., Primordial Non-Gaussianities from Inflation Models (2010) Adv. Astron., 2010, p. 638979
  • Chen, X., Huang, M.-X., Kachru, S., Shiu, G., Observational signatures and non-Gaussianities of general single field inflation (2007) J. Cosmol. Astropart. Phys., 2007 (1), p. 002
  • Aiola, S., Kosowsky, A., Wang, B., Gaussian Approximation of Peak Values in the Integrated Sachs-Wolfe Effect (2015) Phys. Rev., 91, p. 043510
  • Copi, C.J., Huterer, D., Schwarz, D.J., Starkman, G.D., Large angle anomalies in the CMB (2010) Adv. Astron., 2010, p. 847541
  • Collaboration, P., Ade, P.A.R., Planck 2013 results. XV. CMB power spectra and likelihood (2014) Astron. Astrophys., 571, p. A15
  • Land, K., Magueijo, J., The Axis of evil (2005) Phys. Rev. Lett., 95, p. 071301

Citas:

---------- APA ----------
León, G. & Sudarsky, D. (2015) . Origin of structure: Statistical characterization of the primordial density fluctuations and the collapse of the wave function. Journal of Cosmology and Astroparticle Physics, 2015(6).
http://dx.doi.org/10.1088/1475-7516/2015/06/020
---------- CHICAGO ----------
León, G., Sudarsky, D. "Origin of structure: Statistical characterization of the primordial density fluctuations and the collapse of the wave function" . Journal of Cosmology and Astroparticle Physics 2015, no. 6 (2015).
http://dx.doi.org/10.1088/1475-7516/2015/06/020
---------- MLA ----------
León, G., Sudarsky, D. "Origin of structure: Statistical characterization of the primordial density fluctuations and the collapse of the wave function" . Journal of Cosmology and Astroparticle Physics, vol. 2015, no. 6, 2015.
http://dx.doi.org/10.1088/1475-7516/2015/06/020
---------- VANCOUVER ----------
León, G., Sudarsky, D. Origin of structure: Statistical characterization of the primordial density fluctuations and the collapse of the wave function. J. Cosmol. Astroparticle Phys. 2015;2015(6).
http://dx.doi.org/10.1088/1475-7516/2015/06/020