Artículo

Sabatini, S.E.; Chaufan, G.; Juárez, Á.B.; Coalova, I.; Bianchi, L.; Eppis, M.R.; Ríos de Molina, M.d.C. "Dietary copper effects in the estuarine crab, Neohelice (Chasmagnathus) granulata, maintained at two different salinities" (2009) Comparative Biochemistry and Physiology - C Toxicology and Pharmacology. 150(4):521-527
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We analyzed the dietary copper effects in the estuarine crab Neohelice (Chasmagnathus) granulata and its interaction with water salinity. Crabs were maintained at 2‰ and 30‰ salinity for 5 weeks and they were fed with commercial food supplemented with the green alga Scenedesmus vacuolatus previously exposed to copper. No mortalities were observed, but crabs maintained at 2‰ salinity accumulated on average 40% more copper compared to animals maintained at 30‰ salinity. At 2‰ salinity, superoxide dismutase (SOD) activity and reduced glutathione (GSH) levels were increased at the first and second weeks, respectively, while lipid peroxidation and protein oxidation were evident after 4 weeks of copper exposure. At 30‰ salinity, all measured variables increased progressively but were significantly higher only at the end of the assay (5th week), except for protein oxidation that remained unchanged throughout the experiment. The hepatosomatic index (HSI) was significantly decreased in response to copper exposure, but only in crabs acclimated to 2‰. These findings have suggested that dietary copper exposure induces greater metal accumulation and larger oxidative stress responses in crabs maintained at 2‰ salinity. © 2009 Elsevier Inc. All rights reserved.

Registro:

Documento: Artículo
Título:Dietary copper effects in the estuarine crab, Neohelice (Chasmagnathus) granulata, maintained at two different salinities
Autor:Sabatini, S.E.; Chaufan, G.; Juárez, Á.B.; Coalova, I.; Bianchi, L.; Eppis, M.R.; Ríos de Molina, M.d.C.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia, 1917 Buenos Aires, Argentina
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
U. A. Combustibles Nucleares, C.A.C. Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650, Pcia, Buenos Aires, Argentina
Palabras clave:Dietary copper uptake; Neohelice (Chasmagnathus) granulata; Oxidative stress; Salinity; Scenedesmus vacuolatus; Trophic chain; copper; glutathione; superoxide dismutase; alga; article; controlled study; crab; dietary intake; environmental exposure; enzyme activity; estuarine species; lipid peroxidation; metal tolerance; Neohelice granulata; nonhuman; oxidation; oxidative stress; priority journal; salinity; water contamination; water quality; Acclimatization; Animals; Brachyura; Copper; Dose-Response Relationship, Drug; Glutathione; Hepatopancreas; Lipid Peroxidation; Male; Oxidation-Reduction; Oxidative Stress; Proteins; Reference Standards; Rivers; Salinity; Sodium Chloride; Solubility; Superoxide Dismutase; Time Factors; Animalia; Chasmagnathus; Chlorophyta; Decapoda (Crustacea); Scenedesmus vacuolatus
Año:2009
Volumen:150
Número:4
Página de inicio:521
Página de fin:527
DOI: http://dx.doi.org/10.1016/j.cbpc.2009.07.006
Título revista:Comparative Biochemistry and Physiology - C Toxicology and Pharmacology
Título revista abreviado:Comp. Biochem. Physiol. C Toxicol. Pharmacol.
ISSN:15320456
CODEN:CBPPF
CAS:copper, 15158-11-9, 7440-50-8; glutathione, 70-18-8; superoxide dismutase, 37294-21-6, 9016-01-7, 9054-89-1; Copper, 7440-50-8; Glutathione, 70-18-8; Proteins; Sodium Chloride, 7647-14-5; Superoxide Dismutase, 1.15.1.1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15320456_v150_n4_p521_Sabatini

Referencias:

  • Anderson, M.E., Determination of glutathione and glutathione disulfide in biological samples (1985) Meths. Enzymol., 113, pp. 548-553
  • Baker, R.T.M., Handy, R.D., Daviesa, S.J., Snooka, J.C., Chronic dietary exposure to copper affects growth, tissue lipid peroxidation, and metal composition of the grey mullet, Chelon labrosus (1998) Mar. Environ. Res., 45, pp. 357-365
  • Barkács, K., Varga, A., Gál-Solymosc, K., Záray, G., Direct determination of metal concentrations in freshwater algae by total reflection X-ray fluorescence spectrometry (1999) J. Anal. Atom. Spectrom., 14, pp. 577-581
  • Beauchamp, C., Fridovich, I., Superoxide dismutase: improved assays and an assay applicable to polyacrylamide gels (1971) Anal. Biochem., 44, pp. 276-286
  • Beuge, J.A., Aust, S.D., Microsomal lipid peroxidation (1978) Meths. Enzymol., 52, pp. 302-310
  • Bischoff, H.W., Bold, H.C., Some soil algae from Enchanted Rock and related algae species (1963) Phycol. Stud., 6318, pp. 1-95
  • Boschi, E., Los crustáceos decápodos brachyura del litoral bonaerense (1964) Boletín Inst. Biol. Marina, Mar del Plata, 164, pp. 1-34
  • Bradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding (1976) Anal. Biochem., 72, pp. 248-254
  • Brouwer, M., Brouwer-Hoexum, T., Interaction of copper-metallothionein from the American lobster, Homarus americanus, with glutathione (1991) Arch. Biochem. Biophys., 290 (1), pp. 207-213
  • Brouwer, M., Brouwer, T.H., Biochemical defense mechanisms against copper-induced oxidative damage in the Blue crab, Callinectes sapidus (1998) Arch. Biochem. Biophys., 351, pp. 257-264
  • Chang, S., Reinfelder, J., Relative importance of disolved versus trophic bioaccumulation of copper in marine copepods (2002) Mar. Ecol. Prog. Series, 231, pp. 179-186
  • Chaufan, G., Juárez, A.B., Basack, S., Iturralde, E., Sabatini, S.E., Genovese, G., Onet o, M.L., Ríos de Molina, M.C., Toxicity of hexachlorobenzene and its transference from microalgae (Chlorella kessleri) to crabs (Chasmagnathus granulatus) (2006) Toxicology, 227, pp. 262-270
  • Colombo, J.C., Barreda, A., Cappelleti, N., Migoya, C., Skorupka, C., (2003) Contaminantes orgánicos en aguas y sedimentos de afluentes del litoral argentino, , http://www.freplata.org/documentos/otros.asp, http://www.freplata.org/documentos/otros.asp
  • Cowey, C.B., Degener, E., Tacon, A.G.J., Youngston, A., Bell, J.G., Effect of vitamin E and oxidised fish oil on the nutrition of rainbow trout (Salmo gairdneri), growth at natural varying water temperature (1984) Br. J. Nutr., 51, pp. 443-451
  • De Mora, S., Fowler, S.W., Wyse, E., Azemard, S., Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman (2004) Mar. Pollut. Bull., 49, pp. 410-424
  • De Schamphelaere, K.A.C., Janssen, C.R., A biotic ligand model predicting copper toxicity for Daphnia magna: the effect of calcium, magnesium, sodium, potassium and pH (2002) Environ. Sci. Technol., 36, pp. 48-54
  • De Wit, M., Blust, R., Determination of metals in saline and biological matrices by axial inductively coupled plasma atomic emission spectrometry using microconcentric nebulization (1998) J. Anal. Atom. Spectrom., 13, pp. 515-520
  • Di Toro, D.M., Allen, H.E., Bergman, H., Meyer, J.S., Paquin, P.R., Santore, C.S., Biotic ligand model of the acute toxicity of metals: 1. Technical basis (2001) Environ. Toxicol. Chem., 20, pp. 2383-2396
  • Drach, P., Tchernigovtzeff, C., Sur la méthode de détermination des stades d'intermue et son application générale aux crustacés (1967) Vie Milieu, 18, pp. 597-607
  • Elumalai, M., Antunes, C., Guilhermino, I., Alterations of reproductive parameters in the crab Carcinus maenas after exposure to metals (2005) Water Air Soil Pollut., 160, pp. 245-258
  • Fisk, A.T., de Wit, C.A., Wayland, M., Kuzyk, Z.Z., An assessment of the toxicological significance of anthropogenic contaminants in Canadian arctic wildlife (2005) Sci. Total. Environ., 351-352, pp. 57-93
  • Freedman, J.H., Ciriolo, M.R., Peisach, J., The role of glutathione in copper metabolism and toxicity (1989) J. Biol. Chem., 264, pp. 5598-5605
  • Gagneten, A., Vila, I., Effects of Cu+2 on the fitness of Ceriodaphnia dubia (Richard, 1894) (Crustacea, Cladócera) in microcosm experiments (2001) Environ. Toxicol., 16, pp. 428-438
  • Green, D.R., Reed, J.C., Mitochondria and apoptosis (1998) Science, 281, pp. 1309-1312
  • Grosell, M., Wood, C.M., Copper uptake across rainbow trout gills: mechanisms of apical entry (2002) J. Exp. Biol., 205, pp. 1179-1188
  • Hanna, P.M., Chamulitrat, W., Mason, R.P., When are metal ion-dependent hydroxyl and alkoxyl radical adducts of 5,5-dimethyl-1-pyrroline N-oxide artifacts? (1992) Arch. Biochem. Biophys., 296, pp. 640-644
  • Hyun, S., Lee, T., Lee, C.H., Park, Y.H., The effects of metal distribution and anthropogenic effluents on the benthic environment of Gwangyang Bay, Korea (2006) Mar. Pollut. Bull., 52, pp. 113-120
  • Klockenkämper, R., Total-reflection X-ray fluorescence analysis (1997) Chemical Analysis, 140, pp. 87-105. , John Wiley and Sons, Inc
  • Leonard, S.S., Harris, G.K., Shi, X., Metal-induced oxidative stress and signal transduction (2004) Free Radic. Biol. Med., 37, pp. 1921-1942
  • Maciel, F.E., Rosa, C.E., Santos, E.A., Monserrat, J.M., Nery, L.E.M., Daily variations in oxygen consumption, antioxidant defenses, and lipid peroxidation in the gills and hepatopancreas of an estuarine crab (2004) Can. J. Zool., 82, pp. 1871-1877
  • Maddock, D.M., Burton, M.P., Gross and histological of ovarian development and related condition changes in American plaice (1998) J. Fish Biol., 53, pp. 928-944
  • Manduzio, H., Rocher, B., Durand, F., Galap, C., Leboulenger, F., The point about oxidative stress in mollusks (2005) ISJ, 2, pp. 91-104
  • Marcos, A., Fisher, A., Rea, G., Hill, S.J., Preliminary study using trace element concentrations and a chemometrics approach to determine the geographical origin of tea (1998) J. Anal. Atom. Spectrom., 13, pp. 521-525
  • Medesani, D.A., López Greco, L.S., Rodríguez, E.M., Interferente of cadmiun and copper with the endocrine control of ovarian growth, in the estuarine crab Chasmagnathus granulata (2004) Aquat. Toxicol., 69, pp. 165-174
  • Meister, A., Glutathione metabolism and its selective modification (1988) J. Biol. Chem., 263, pp. 7205-7208
  • Moreno Sanchez, R., Devars, S., Abundancia de los metales pesados en la biosfera (1999) Contaminación Ambiental por Metales Pesados, pp. 1-10. , Cervantes C., and Moreno-Sanchez R. (Eds), AGT Editor, Mexico
  • Niyogi, S., Wood, C.M., Effects of chronic waterborne and dietary metal exposure on gill metal-binding: implications for the biotic ligand model (2003) Hum. Ecol. Risk Assess., 9, pp. 813-846
  • Paez-Osuna, F., Guerrero-Galvan, S.R., Ruis-Fernandez, A.C., The environmental impact of shrimp aquaculture and the coastal pollution in Mexico (1998) Marine Pollut. Bull., 36, pp. 65-75
  • Pipe, R.K., Colesm, J.A., Carissan, F.M.M., Ramanathan, K., Copper induced immunomodulation in marine mussel. Mytilus edulis (1999) Aquat. Toxicol., 46, pp. 43-54
  • Prange, A., Schwenke, H., Trace element analysis using total-reflection X-ray fluorescence spectrometry (1992) Adv. X-Ray Anal., 35, pp. 899-923
  • Rabestein, D.L., Guevremont, R., Evans, C.A., Glutathione and its metal-complexes (1985) Metal Ions in Biological Systems, pp. 104-141. , Siegal H. (Ed), Marcel Dekker, New York
  • Resnick, A.Z., Packer, L., Oxidative damage to proteins: Spectrophotometric method for carbonyl assay (1994) Meths. Enzymol., 233, pp. 357-363
  • Rodríguez, E.M., Bigi, R., Medesani, D.A., Stella, V.S., Greco, L.S.L., Moreno, P.A.R., Monserrat, J.M., Ansaldo, M., Acute and chronic effects of cadmium on blood homeostasis of an estuarine crab, Chasmagnathus granulata, and the modifying effect of salinity (2001) Braz. J. Med. Biol. Res., 34, pp. 509-518
  • Sabatini, S.E., Juárez, A.B., Eppis, M.R., Bianchi, L., Luquet, C.M., Ríos de Molina, M.C., Oxidative stress and antioxidant defenses in two green microalgae exposed to copper (2009) Ecotoxicol. Environ. Saf., 72, pp. 1200-1206
  • Santore, R.C., Di Toro, D.M., Paquin, P.R., Allen, H.E., Meyer, J.S., Biotic ligand model of the acute toxicity of metals: 2. Application to acute copper toxicity in freshwater fish and Daphnia (2001) Environ. Toxicol. Chem., 20, pp. 2397-2402
  • Sies, H., Strategies of antioxidant defense (1993) Eur. J. Biochem., 215, pp. 213-219
  • Sokal, R.R., Rohlf, F.J., (1999) Introducción a la Bioestadística, , Reverté, Barcelona, Spain
  • Stadtman, E.R., Oxidation of proteins by mixed-function oxidation systems: implication in protein turnover, aging and neutrophil function (1986) Trends Biochem. Sci., 11, pp. 11-12
  • Tania, Y.T.Ng., Wood, C.M., Trophic transfer and dietary toxicity of Cd from the oligochaete to the rainbow trout (2008) Aquat. Toxicol., 87, pp. 47-59
  • Venugopal, N.B.R.K., Ramesh, T.V.D.D., Reddy, D.S., Reddy, S.L.N., Effect of cadmium on antioxidant enzyme activities and lipid peroxidation in a freshwater field crab, Barytelphusa guerini (1997) Bull. Environ. Contam. Toxicol., 59, pp. 132-138
  • Verslycke, T., Vangheluwe, M., Heijerick, D., De Schamphelaere, K., Van Sprang, P., Janssen, C.R., The toxicity of metal mixtures to the estuarine mysid Neomysis integer (Crustacea: Mysidacea) under changing salinity (2003) Aquat. Toxicol., 64, pp. 307-315
  • Wallace, W.G., Lee, B.G., Luoma, S.N., Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM) (2003) Mar. Ecol. Prog. Ser., 249, pp. 183-197
  • Wang, X., Yu, R., Trace metals assimilation and release budget in Daphnia magna (2002) Limnol. Oceanogr., 47, pp. 495-504
  • Welz, B., Xu, S., Sperling, M., Flame atomic absorption spectrometric determination of cadmium, cobalt and nickel in biological samples using a flow injection system with on-line preconcentration by coprecipitation without filtration (1991) Appl. Spectrosc., 45, pp. 1433-1443
  • Ying, W., Ahsanullah, M., Batley, G., Accumulation and regulation of heavy metals by the intertidal snail Polonices sordidus (1993) Mar. Biol., 116, pp. 417-422
  • Zaunders, I.P., Rojas, W.E., Salinity effects on cadmium accumulation in various tissues of the tropical fiddler crab Uca rapax (1996) Environ. Pollut., 94, pp. 293-299

Citas:

---------- APA ----------
Sabatini, S.E., Chaufan, G., Juárez, Á.B., Coalova, I., Bianchi, L., Eppis, M.R. & Ríos de Molina, M.d.C. (2009) . Dietary copper effects in the estuarine crab, Neohelice (Chasmagnathus) granulata, maintained at two different salinities. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 150(4), 521-527.
http://dx.doi.org/10.1016/j.cbpc.2009.07.006
---------- CHICAGO ----------
Sabatini, S.E., Chaufan, G., Juárez, Á.B., Coalova, I., Bianchi, L., Eppis, M.R., et al. "Dietary copper effects in the estuarine crab, Neohelice (Chasmagnathus) granulata, maintained at two different salinities" . Comparative Biochemistry and Physiology - C Toxicology and Pharmacology 150, no. 4 (2009) : 521-527.
http://dx.doi.org/10.1016/j.cbpc.2009.07.006
---------- MLA ----------
Sabatini, S.E., Chaufan, G., Juárez, Á.B., Coalova, I., Bianchi, L., Eppis, M.R., et al. "Dietary copper effects in the estuarine crab, Neohelice (Chasmagnathus) granulata, maintained at two different salinities" . Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, vol. 150, no. 4, 2009, pp. 521-527.
http://dx.doi.org/10.1016/j.cbpc.2009.07.006
---------- VANCOUVER ----------
Sabatini, S.E., Chaufan, G., Juárez, Á.B., Coalova, I., Bianchi, L., Eppis, M.R., et al. Dietary copper effects in the estuarine crab, Neohelice (Chasmagnathus) granulata, maintained at two different salinities. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009;150(4):521-527.
http://dx.doi.org/10.1016/j.cbpc.2009.07.006