Artículo

Pozzi, B.; Mammi, P.; Bragado, L.; Giono, L.E.; Srebrow, A. "When SUMO met splicing" (2018) RNA Biology. 15(6):689-695
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Spliceosomal proteins have been revealed as SUMO conjugation targets. Moreover, we have reported that many of these are in a SUMO-conjugated form when bound to a pre-mRNA substrate during a splicing reaction. We demonstrated that SUMOylation of Prp3 (PRPF3), a component of the U4/U6 di-snRNP, is required for U4/U6•U5 tri-snRNP formation and/or recruitment to active spliceosomes. Expanding upon our previous results, we have shown that the splicing factor SRSF1 stimulates SUMO conjugation to several spliceosomal proteins. Given the relevance of the splicing process, as well as the complex and dynamic nature of its governing machinery, the spliceosome, the molecular mechanisms that modulate its function represent an attractive topic of research. We posit that SUMO conjugation could represent a way of modulating spliceosome assembly and thus, splicing efficiency. How cycles of SUMOylation/de-SUMOylation of spliceosomal proteins become integrated throughout the highly choreographed spliceosomal cycle awaits further investigation. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.

Registro:

Documento: Artículo
Título:When SUMO met splicing
Autor:Pozzi, B.; Mammi, P.; Bragado, L.; Giono, L.E.; Srebrow, A.
Filiación:Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA- CONICET); Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:post-translational modifications; spliceosome; Splicing; SR proteins; SRSF1; SUMO conjugation; SUMO protein; nuclear protein; PRPF3 protein, human; RNA splicing factor; small nuclear ribonucleoprotein; SUMO 1 protein; Article; conjugation; human; protein processing; RNA splicing; spliceosome; animal; genetics; metabolism; physiology; RNA splicing; sumoylation; Animals; Humans; Nuclear Proteins; Ribonucleoprotein, U4-U6 Small Nuclear; RNA Splicing; RNA Splicing Factors; SUMO-1 Protein; Sumoylation
Año:2018
Volumen:15
Número:6
Página de inicio:689
Página de fin:695
DOI: http://dx.doi.org/10.1080/15476286.2018.1457936
Título revista:RNA Biology
Título revista abreviado:RNA Biol.
ISSN:15476286
CAS:SUMO 1 protein, 182213-10-1; Nuclear Proteins; PRPF3 protein, human; Ribonucleoprotein, U4-U6 Small Nuclear; RNA Splicing Factors; SUMO-1 Protein
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15476286_v15_n6_p689_Pozzi

Referencias:

  • Will, C.L., Lührmann, R., Spliceosome structure and function (2011) Cold Spring Harb Perspect Biol, 3, pp. 1-2
  • Matera, A.G., Wang, Z., A day in the life of the spliceosome (2014) Nat Rev Mol Cell Biol, 15, pp. 108-121
  • Chen, W., Moore, M.J., The spliceosome: Disorder and dynamics defined (2014) Curr Opin Struct Biol, 24, pp. 141-149
  • Papasaikas, P., Valcárcel, J., The Spliceosome: The Ultimate RNA Chaperone and Sculptor (2016) Trends Biochem Sci, 41, pp. 33-45
  • Taliaferro, J.M., Lambert, N.J., Sudmant, P.H., RNA Sequence Context Effects Measured In Vitro Predict In Vivo Protein Binding and Regulation (2016) Mol Cell, 64, pp. 294-306. , et al
  • Busch, A., Hertel, K.J., Evolution of SR protein and hnRNP splicing regulatory factors (2012) Wiley Interdiscip Rev RNA, 3 (1), pp. 1-12
  • Long, J.C., Caceres, J.F., The SR protein family of splicing factors : master regulators of gene expression (2009) Biochem J, 417 (1), pp. 15-27
  • Twyffels, L., Gueydan, C., Kruys, V., Shuttling SR proteins: More than splicing factors (2011) FEBS J, 278, pp. 3246-3255
  • Geuens, T., Bouhy, D., Timmerman, V., The hnRNP family : insights into their role in health and disease (2016) Hum Genet, 135, pp. 851-867
  • Dvinge, H., Kim, E., Abdel-wahab, O., RNA splicing factors as oncoproteins and tumour suppressors (2016) Nat Rev Can, 16, pp. 413-430. , et al
  • Li, X., Manley, J.L., Inactivation of the SR Protein Splicing Factor ASF / SF2 Results in Genomic Instability (2005) Cell, 122, pp. 365-378
  • Lin, S., Coutinho-mansfield, G., Wang, D., The splicing factor SC35 has an active role in transcriptional elongation (2008) Nat Str & Mol Biol, 15, pp. 819-826. , et al
  • Wu, H., Sun, S., Tu, K., Article A Splicing-Independent Function of SF2 / ASF in MicroRNA Processing (2010) Mol Cell, 38, pp. 67-77. , et al
  • Huang, Y., Gattoni, R., Stévenin, J., SR splicing factors as Adapter Proteins for TAP-Dependent mRNA Export (2003) Mol Cell, 11, pp. 837-843. , et al
  • Zhang, Z., Krainer, A.R., Involvement of SR Proteins in mRNA Surveillance (2004) Mol Cell, 16, pp. 597-607
  • Michlewski, G., Sanford, J.R., Cáceres, J.F., The Splicing Factor SF2/ASF Regulates Translation Initiation by Enhancing Phosphorylation of 4E-BP1 (2008) Mol Cell, 30, pp. 179-189
  • Pelisch, F., Gerez, J., Druker, J., The serine/arginine-rich protein SF2/ASF regulates protein sumoylation (2010) Proc Natl Acad Sci U S A, 107, pp. 16119-16124. , et al
  • Zhong, X., Wang, P., Han, J., SR Proteins in Vertical Integration of Gene Expression from Transcription to RNA Processing to Translation (2009) Mol Cell, 35, pp. 1-10. , et al
  • Shin, C., Kleiman, F.E., Manley, J.L., Multiple Properties of the Splicing Repressor SRp38 Distinguish It from Typical SR Proteins (2005) Mol Cell Biol, 25, pp. 8334-8343
  • Denegri, M., Chiodi, I., Corioni, M., Stress-induced nuclear bodies are sites of accumulation of pre-mRNA processing factors (2001) Mol Biol Cell, 12, pp. 3502-3514. , et al
  • Bedard, K.M., Daijogo, S., Semler, B.L., A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation (2007) EMBO J, 26, pp. 459-467
  • Swanson, C.M., Sherer, N.M., Malim, M.H., SRp40 and SRp55 Promote the Translation of Unspliced Human Immunodeficiency Virus Type 1 RNA (2010) J Virol, 84, pp. 6748-6759
  • Auyeung, V.C., Ulitsky, I., McGeary, S.E., Beyond secondary structure: Primary-sequence determinants license Pri-miRNA hairpins for processing (2013) Cell, 152, pp. 844-858. , et al
  • Sanford, J.R., Ellis, J.D., Cazalla, D., Reversible phosphorylation differentially affects nuclear and cytoplasmic functions of splicing factor 2/alternative splicing factor (2005) Proc Natl Acad Sci U S A, 102, pp. 15042-15047. , et al
  • Botti, V., McNicoll, F., Steiner, M.C., Cellular differentiation state modulates the mRNA export activity of SR proteins (2017) J Cell Biol, 216, pp. 1993-2009. , et al
  • Hochstrasser, M., Origin and function of ubiquitin-like proteins (2009) Nature, 458, pp. 422-429
  • Jentsch, S., Psakhye, I., Control of nuclear activities by substrate-selective and protein-group SUMOylation (2013) Annu Rev Genet, 47, pp. 167-186
  • Liang, Y., Lee, C., Yao, Y., SUMO5, a Novel Poly-SUMO Isoform, Regulates PML Nuclear Bodies (2016) Sci Rep, 6, pp. 1-15. , et al
  • Guo, D., Li, M., Zhang, Y., A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes (2004) Nat Genet, 36, pp. 837-841. , et al
  • Vassileva, M.T., Matunis, M.J., SUMO modification of heterogeneous nuclear ribonucleoproteins (2004) Mol Cell Biol, 24, pp. 3623-3632
  • Villarroya-Beltri, C., Gutiérrez-Vázquez, C., Sánchez-Cabo, F., Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs (2013) Nat Commun, 4, p. 2980. , et al
  • Misteli, T., Cáceres, J.F., Clement, J.Q., Serine phosphorylation of SR proteins is required for their recruitment to sites of transcription in vivo (1998) J Cell Biol, 143, pp. 297-307. , et al
  • Soret, J., Gabut, M., Dupon, C., Altered Serine/Arginine-Rich Protein Phosphorylation and Exonic Enhancer-Dependent Splicing in Mammalian Cells Lacking Topoisomerase I (2003) Cancer Res, 63, pp. 8203-8211. , et al
  • Ngo, J.C.K., Chakrabarti, S., Ding, J.H., Interplay between SRPK and Clk/Sty kinases in phosphorylation of the splicing factor ASF/SF2 is regulated by a docking motif in ASF/SF2 (2005) Mol Cell, 20, pp. 77-89. , et al
  • Wang, H.Y., Lin, W., Dyck, J.A., SRPK2: A differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells (1998) J Cell Biol, 140, pp. 737-750. , et al
  • Xiao, S.H., Manley, J.L., Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing (1997) Genes Dev, 11, pp. 334-344
  • Shin, C., Feng, Y., Manley, J.L., Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock (2004) Nature, 427, pp. 553-558
  • Shi, Y., Reddy, B., Manley, J.L., PP1/PP2A Phosphatases Are Required for the Second Step of Pre-mRNA Splicing and Target Specific snRNP Proteins (2006) Mol Cell, 23, pp. 819-829
  • Mathew, R., Hartmuth, K., Möhlmann, S., Phosphorylation of human PRP28 by SRPK2 is required for integration of the U4/U6-U5 tri-snRNP into the spliceosome (2008) Nat Struct Mol Biol, 15, pp. 435-443. , et al
  • Choudhary, C., Kumar, C., Gnad, F., Lysine acetylation targets protein complexes and co-regulates major cellular functions (2009) Science, 325, pp. 834-840. , et al
  • Kuhn, A.N., van Santen, M.A., Schwienhorst, A., Stalling of spliceosome assembly at distinct stages by small-molecule inhibitors of protein acetylation and deacetylation (2009) RNA, 15, pp. 153-175. , et al
  • Gunderson, F.Q., Merkhofer, E.C., Johnson, T.L., Dynamic histone acetylation is critical for cotranscriptional spliceosome assembly and spliceosomal rearrangements (2011) Proc Natl Acad Sci U S A, 108, pp. 2004-2009
  • Meister, G., Eggert, C., Bühler, D., Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln (2001) Curr Biol, 11, pp. 1990-1994. , et al
  • Boisvert, F.M., Côté, J., Boulanger, M.C., Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing (2002) J Cell Biol, 159, pp. 957-969. , et al
  • Boisvert, F.-M., Côté, J., Boulanger, M.-C., A Proteomic Analysis of Arginine-methylated Protein Complexes (2003) Mol Cell Proteomics, 2, pp. 1319-1330. , et al
  • Sinha, R., Allemand, E., Zhang, Z., Arginine Methylation Controls the Subcellular Localization and Functions of the Oncoprotein Splicing Factor SF2/ASF (2010) Mol Cell Biol, 30, pp. 2762-2774. , et al
  • Nichols, R.C., Wang, X.W., Tang, J., The RGG domain in hnRNP A2 affects subcellular localization (2000) Exp Cell Res, 256, pp. 522-532. , et al
  • Passos, D.O., Quaresma, A.J.C., Kobarg, J., The methylation of the C-terminal region of hnRNPQ (NSAP1) is important for its nuclear localization (2006) Biochem Biophys Res Commun, 346, pp. 517-525
  • Yu, M.C., The Role of Protein Arginine Methylation in mRNP Dynamics (2011) Mol Biol Int, 2011, p. 163827
  • Milligan, L., Sayou, C., Tuck, A., RNA polymerase II stalling at pre-mRNA splice sites is enforced by ubiquitination of the catalytic subunit (2017) Elife, 6, pp. 1-27. , et al
  • Bellare, P., Small, E.C., Huang, X., A role for ubiquitin in the spliceosome assembly pathway (2008) Nat Struct Mol Biol, 15, pp. 444-451. , et al
  • Bellare, P., Kutach, A.K., Rines, A.K., Ubiquitin binding by a variant Jab1/MPN domain in the essential pre-mRNA splicing factor Prp8p (2006) RNA, 12, pp. 292-302. , et al
  • Song, E.J., Werner, S.L., Neubauer, J., The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome (2010) Genes Dev, 24, pp. 1434-1447. , et al
  • Hendriks, I.A., Vertegaal, A.C.O., A comprehensive compilation of SUMO proteomics (2016) Nat Rev Mol Cell Biol, 17, pp. 581-595
  • Richard, P., Vethantham, V., Manley, J.L., Roles of sumoylation in mRNA processing and metabolism (2017) Adv Exp Med Biol, 963, pp. 15-33
  • Vethantham, V., Rao, N., Manley, J.L., Sumoylation modulates the assembly and activity of the pre-mRNA 3’ processing complex (2007) Mol Cell Biol, 27, pp. 8848-8858
  • Desterro, J.M.P., Keegan, L.P., Jaffray, E., SUMO-1 modification alters ADAR1 editing activity (2005) Mol Biol Cell, 16, pp. 5115-5126. , et al
  • Bretes, H., Rouviere, J.O., Leger, T., Sumoylation of the THO complex regulates the biogenesis of a subset of mRNPs (2014) Nucleic Acids Res, 42, pp. 5043-5058. , et al
  • Rappsilber, J., Ryder, U., Lamond, A.I., Large-scale proteomic analysis of the human spliceosome (2003) Genome Res, 13, pp. 1231-1245. , et al
  • Hutten, S., Chachami, G., Winter, U., A role for the Cajal-body-associated SUMO isopeptidase USPL1 in snRNA transcription mediated by RNA polymerase II (2014) J Cell Sci, 127, pp. 1065-1078. , et al
  • Navascues, J., Bengoechea, R., Tapia, O., SUMO-1 transiently localizes to Cajal bodies in mammalian neurons (2008) J Struct Biol, 163, pp. 137-146. , et al
  • Ihara, M., Stein, P., Schultz, R.M., UBE2I (UBC9), a SUMO-conjugating enzyme, localizes to nuclear speckles and stimulates transcription in mouse oocytes (2008) Biol Reprod, 79, pp. 906-913
  • Pozzi, B., Bragado, L., Will, C.L., SUMO conjugation to spliceosomal proteins is required for efficient pre-mRNA splicing (2017) Nucleic Acids Res, 45, pp. 6729-6745. , et al
  • Rouvière, J.O., Geoffroy, M.C., Palancade, B., Multiple crosstalks between mRNA biogenesis and SUMO (2013) Chromosoma, 122, pp. 387-399
  • Li, M., Pokharel, S., Wang, J.T., RECQ5-dependent SUMOylation of DNA topoisomerase I prevents transcription-associated genome instability (2015) Nat Commun, 8 (6), p. 6720. , et al
  • Pawellek, A., Ryder, U., Tammsalu, T., Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP (2017) Elife, 6, pp. 1-36. , et al
  • Wahl, M.C., Will, C.L., Lührmann, R., The Spliceosome: Design Principles of a Dynamic RNP Machine (2009) Cell, 136, pp. 701-718
  • Flotho, A., Melchior, F., Sumoylation: a regulatory protein modification in health and disease (2013) Annu Rev Biochem, 82, pp. 357-385
  • Daguenet, E., Dujardin, G., Valcárcel, J., The pathogenicity of splicing defects: mechanistic insights into pre‐mRNA processing inform novel therapeutic approaches (2015) EMBO Rep, 16, p. 1655
  • Scotti, M.M., Swanson, M.S., RNA mis-splicing in disease (2016) Nat Rev Genet, 17, pp. 19-32
  • Krausová, M., Staněk, D., snRNP proteins in health and disease (2017) Semin Cell Dev Biol
  • Wahl, M.C., Lührmann, R., SnapShot: Spliceosome Dynamics III (2015) Cell, 162, p. 690
  • Cvitkovic, I., Jurica, M.S., Spliceosome database: A tool for tracking components of the spliceosome (2013) Nucleic Acids Res, 41, pp. D132-D141

Citas:

---------- APA ----------
Pozzi, B., Mammi, P., Bragado, L., Giono, L.E. & Srebrow, A. (2018) . When SUMO met splicing. RNA Biology, 15(6), 689-695.
http://dx.doi.org/10.1080/15476286.2018.1457936
---------- CHICAGO ----------
Pozzi, B., Mammi, P., Bragado, L., Giono, L.E., Srebrow, A. "When SUMO met splicing" . RNA Biology 15, no. 6 (2018) : 689-695.
http://dx.doi.org/10.1080/15476286.2018.1457936
---------- MLA ----------
Pozzi, B., Mammi, P., Bragado, L., Giono, L.E., Srebrow, A. "When SUMO met splicing" . RNA Biology, vol. 15, no. 6, 2018, pp. 689-695.
http://dx.doi.org/10.1080/15476286.2018.1457936
---------- VANCOUVER ----------
Pozzi, B., Mammi, P., Bragado, L., Giono, L.E., Srebrow, A. When SUMO met splicing. RNA Biol. 2018;15(6):689-695.
http://dx.doi.org/10.1080/15476286.2018.1457936