Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work the effects of the self-assembly solvent on the structure and electrochemical behavior of redox-active polyelectrolyte-surfactant complexes cast on electrode supports from aqueous and DMF solutions are presented. The complex studied is formed by complexation of osmium complex-modified polyallylamine (OsPA) with dodecyl sulfate (DS) surfactants. The structure of the films was characterized by GISAXS, showing that films present a lamellar mesostructure. However, when they are exposed to humid environments, films cast from aqueous solutions (OsPA-DSaq) undergo a structural transition that ultimately leads to the disappearance of the mesostructural order. On the other hand, OsPA-DS films cast from DMF solutions (OsPA-DSorg) revealed no significant changes upon exposure to humid environments. Both types of films were exposed to glucose oxidase (GOx), showing similar adsorption characteristics. Notwithstanding these similarities in GOx and content, OsPA-DSaq films revealed a more sensitive bioelectrocatalytical response to glucose as compared to OsPA-DSorg films. © 2015 Elsevier B.V.

Registro:

Documento: Artículo
Título:Formation of redox-active self-assembled polyelectrolyte-surfactant complexes integrating glucose oxidase on electrodes: Influence of the self-assembly solvent on the signal generation
Autor:Cortez, M.L.; Ceolín, M.; Azzaroni, O.; Battaglini, F.
Filiación:INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, 1900, Argentina
Palabras clave:Electrochemical electrodes; Electrodes; Glucose; Glucose sensors; Polyelectrolytes; Redox reactions; Self assembly; Surface active agents; Adsorption characteristic; Electrochemical behaviors; Glucose oxidases (GOx); Humid environment; Mesostructural ordering; Polyelectrolyte-surfactant complexes; Signal generation; Structural transitions; Glucose oxidase; dodecyl sulfate; glucose; glucose oxidase; osmium; polyelectrolyte; solvent; surfactant; electrolyte; surfactant; adsorption; aqueous solution; Article; chemical structure; complex formation; composite material; concentration (parameters); contact angle; electrochemical analysis; electrode; electron transport; exposure; glucose oxidation; synthesis; chemistry; electrode; oxidation reduction reaction; Electrodes; Electrolytes; Glucose Oxidase; Oxidation-Reduction; Surface-Active Agents
Año:2015
Volumen:105
Página de inicio:117
Página de fin:122
DOI: http://dx.doi.org/10.1016/j.bioelechem.2015.06.001
Título revista:Bioelectrochemistry
Título revista abreviado:Bioelectrochemistry
ISSN:15675394
CODEN:BIOEF
CAS:dodecyl sulfate, 151-41-7; glucose, 50-99-7, 84778-64-3; glucose oxidase, 9001-37-0; osmium, 7440-04-2; Electrolytes; Glucose Oxidase; Surface-Active Agents
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15675394_v105_n_p117_Cortez

Referencias:

  • Stuart, M.A.C., Huck, W.T.S., Genzer, J., Müller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Minko, S., Emerging applications of stimuli-responsive polymer materials (2010) Nat. Mater., 9, pp. 101-113
  • Katz, E., Minko, S., Halámek, J., MacVittie, K., Yancey, K., Electrode interfaces switchable by physical and chemical signals for biosensing, biofuel, and biocomputing applications (2013) Anal. Bioanal. Chem., 405, pp. 3659-3672
  • Beitollahi, H., Sheikhshoaie, I., Selective voltammetric determination of norepinephrine in the presence of acetaminophen and folic acid at a modified carbon nanotube paste electrode (2011) J. Electroanal. Chem., 661, pp. 336-342
  • Beitollahi, H., Sheikhshoaie, I., Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode (2011) Electrochim. Acta, 56, pp. 10259-10263
  • Rubianes, M.D., Rivas, G.A., Dispersion of multi-wall carbon nanotubes in polyethylenimine: a new alternative for preparing electrochemical sensors (2007) Electrochem. Commun., 9, pp. 480-484
  • Cortez, M.L., Ceolín, M., Azzaroni, O., Battaglini, F., Electrochemical sensing platform based on polyelectrolyte-surfactant supramolecular assemblies incorporating carbon nanotubes (2011) Anal. Chem., 83, pp. 8011-8018
  • Molaakbari, E., Mostafavi, A., Beitollahi, H., Alizadeh, R., Synthesis of ZnO nanorods and their application in the construction of a nanostructure-based electrochemical sensor for determination of levodopa in the presence of carbidopa (2014) Analyst, 139, pp. 4356-4364
  • Narang, J., Malhotra, N., Singh, G., Pundir, C.S., Electrochemical impedimetric detection of anti-HIV drug taking gold nanorods as a sensing interface (2015) Biosens. Bioelectron., 66, pp. 332-337
  • Zhang, X., Zhang, F., Zhang, H., Shen, J., Han, E., Dong, X., Functionalized gold nanorod-based labels for amplified electrochemical immunoassay of E. coli as indicator bacteria relevant to the quality of dairy product (2015) Talanta, 132, pp. 600-605
  • Cortez, M.L., Marmisollé, W., Pallarola, D., Pietrasanta, L.I., Murgida, D.H., Ceolín, M., Azzaroni, O., Battaglini, F., Effect of gold nanoparticles on the structure and electron-transfer characteristics of glucose oxidase redox polyelectrolyte-surfactant complexes (2014) Chem. Eur. J., 20, pp. 13366-13374
  • Peinetti, A.S., Ceretti, H., Mizrahi, M., González, G.A., Ramírez, S.A., Requejo, F.G., Montserrat, J.M., Battaglini, F., Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors (2015) Nanoscale, 7, pp. 7763-7769
  • Yue, Z., Lisdat, F., Parak, W.J., Hickey, S.G., Tu, L., Sabir, N., Dorfs, D., Bigall, N.C., Quantum-dot-based photoelectrochemical sensors for chemical and biological detection (2013) ACS Appl. Mater. Interfaces, 5, pp. 2800-2814
  • Golub, E., Pelossof, G., Freeman, R., Zhang, H., Willner, I., Electrochemical, pho-toelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles (2009) Anal. Chem., 81, pp. 9291-9298
  • Lutkenhaus, J.L., Hammond, P.T., Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors (2007) Soft Matter, 3, pp. 804-816
  • Cortez, M.L., Pallarola, D., Ceolín, M., Azzaroni, O., Battaglini, F., Ionic self-assembly of electroactive biorecognizable units: electrical contacting of redox glycoenzymes made easy (2012) Chem. Commun., 48, pp. 10868-10870
  • Calvo, E.J., Flexer, V., Tagliazucchi, M., Scodeller, P., Effects of the nature and charge of the topmost layer in layer by layer self assembled amperometric enzyme electrodes (2010) Phys. Chem. Chem. Phys., 12, pp. 10033-10039
  • Betscha, C., Ball, V., Large distribution in the Donnan potential of hexacyanoferrate anions permeating in and partially dissolving (PAH-HA)n polyelectrolyte multilayer films (2011) Soft Matter, 7, pp. 1819-1829
  • Tagliazucchi, M., Williams, F.J., Calvo, E.J., Metal-ion responsive redox polyelectrolyte multilayers (2010) Chem. Commun., 46, pp. 9004-9006
  • Massafera, M.P., de Torresi, S.I.C., Urea amperometric biosensors based on nanostructured polypyrrole (2011) Electroanalysis, 23, pp. 2534-2540
  • Hasan, K., Patil, S.A., Górecki, K., Leech, D., Hägerhäll, C., Gorton, L., Electrochemical communication between heterotrophically grown Rhodobacter capsulatus with electrodes mediated by an osmium redox polymer (2013) Bioelectrochemistry, 93, pp. 30-36
  • Mano, N., Mao, F., Heller, A., A miniature biofuel cell operating in a physiological buffer (2002) J. Am. Chem. Soc., 124, pp. 12962-12963
  • Taylor, A.D., Michel, M., Sekol, R.C., Kizuka, J.M., Kotov, N.A., Thompson, L.T., Fuel cell membrane electrode assemblies fabricated by layer-by-layer electrostatic self-assembly techniques (2008) Adv. Funct. Mater., 18, pp. 3003-3009
  • Koodlur, L.S., Layer-by-layer self assembly of a water-soluble phthalocyanine on gold. Application to the electrochemical determination of hydrogen peroxide (2013) Bioelectrochemistry, 91, pp. 21-27
  • Wu, B.Y., Hou, S.H., Yin, F., Zhao, Z.X., Wang, Y.Y., Wang, X.S., Chen, Q., Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode (2007) Biosens. Bioelectron., 22, pp. 2854-2860
  • Iost, R.M., Crespilho, F.N., Layer-by-layer self-assembly and electrochemistry: applications in biosensing and bioelectronics (2012) Biosens. Bioelectron., 31, pp. 1-10
  • Heller, A., Feldman, B., Electrochemistry in diabetes management (2010) Acc. Chem. Res., 43, pp. 963-973
  • Merchant, S.A., Glatzhofer, D.T., Schmidtke, D.W., Effects of electrolyte and pH on the behavior of cross-linked films of ferrocene-modified poly(ethylenimine) (2007) Langmuir, 23, pp. 11295-11302
  • Cortez, M.L., González, G.A., Battaglini, F., An electroactive versatile matrix for the construction of sensors (2011) Electroanalysis, 23, pp. 156-160
  • Cortez, M.L., Pallarola, D., Ceolín, M., Azzaroni, O., Battaglini, F., Electron transfer properties of dual self-assembled architectures based on specific recognition and electrostatic driving forces: its application to control substrate inhibition in horseradish peroxidase-based sensors (2013) Anal. Chem., 85, pp. 2414-2422
  • Peinetti, A.S., Méndez De Leo, L.P., González, G.A., Battaglini, F., A polyelectrolyte-surfactant complex as support layer for membrane functionalization (2012) J. Colloid Interface Sci., 386, pp. 44-50
  • Bazylińska, U., Skrzela, R., Piotrowski, M., Szczepanowicz, K., Warszyński, P., Wilk, K.A., Influence of dicephalic ionic surfactant interactions with oppositely charged polyelectrolyte upon the in vitro dye release from oil core nanocapsules (2012) Bioelectrochemistry, 87, pp. 147-153
  • Liu, J.Y., Wang, J.G., Li, N., Zhao, H., Zhou, H.J., Sun, P.C., Chen, T.H., Polyelectrolyte-surfactant complex as a template for the synthesis of zeolites with intracrystalline mesopores (2012) Langmuir, 28, pp. 8600-8607
  • Cortez, M.L., González, G.A., Ceolín, M., Azzaroni, O., Battaglini, F., Self-assembled redox polyelectrolyte-surfactant complexes: nanostructure and electron transfer characteristics of supramolecular films with built-in electroactive chemical functions (2014) Electrochim. Acta, 118, pp. 124-129
  • Danilowicz, C., Corton, E., Battaglini, F., Osmium complexes bearing functional groups: building blocks for integrated chemical systems (1998) J. Electroanal. Chem., 445, pp. 89-94
  • Cortez, M.L., Cukierman, A.L., Battaglini, F., Surfactant presence in a multilayer polyelectrolyte-enzyme system improves its catalytic response (2009) Electrochem. Commun., 11, pp. 990-993
  • Flexer, V., Forzani, E.S., Calvo, E.J., Ludueña, S.J., Pietrasanta, L.I., Structure and thickness dependence of "molecular wiring" in nanostructured enzyme multilayers (2006) Anal. Chem., 78, pp. 399-407
  • Zafar, M.N., Wang, X., Sygmund, C., Ludwig, R., Leech, D., Gorton, L., Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials (2012) Anal. Chem., 84, pp. 334-341
  • Ó Conghaile, P., Pöller, S., MacAodha, D., Schuhmann, W., Leech, D., Coupling osmium complexes to epoxy-functionalised polymers to provide mediated enzyme electrodes for glucose oxidation (2013) Biosens. Bioelectron., 43, pp. 30-37
  • Mao, F., Mano, N., Heller, A., Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme "wiring" hydrogels (2003) J. Am. Chem. Soc., 125, pp. 4951-4957
  • Jones, M.N., Manley, P., Wilkinson, A., The dissociation of glucose oxidase by sodium n-dodecyl sulphate (1982) Biochem. J., 203, pp. 285-291

Citas:

---------- APA ----------
Cortez, M.L., Ceolín, M., Azzaroni, O. & Battaglini, F. (2015) . Formation of redox-active self-assembled polyelectrolyte-surfactant complexes integrating glucose oxidase on electrodes: Influence of the self-assembly solvent on the signal generation. Bioelectrochemistry, 105, 117-122.
http://dx.doi.org/10.1016/j.bioelechem.2015.06.001
---------- CHICAGO ----------
Cortez, M.L., Ceolín, M., Azzaroni, O., Battaglini, F. "Formation of redox-active self-assembled polyelectrolyte-surfactant complexes integrating glucose oxidase on electrodes: Influence of the self-assembly solvent on the signal generation" . Bioelectrochemistry 105 (2015) : 117-122.
http://dx.doi.org/10.1016/j.bioelechem.2015.06.001
---------- MLA ----------
Cortez, M.L., Ceolín, M., Azzaroni, O., Battaglini, F. "Formation of redox-active self-assembled polyelectrolyte-surfactant complexes integrating glucose oxidase on electrodes: Influence of the self-assembly solvent on the signal generation" . Bioelectrochemistry, vol. 105, 2015, pp. 117-122.
http://dx.doi.org/10.1016/j.bioelechem.2015.06.001
---------- VANCOUVER ----------
Cortez, M.L., Ceolín, M., Azzaroni, O., Battaglini, F. Formation of redox-active self-assembled polyelectrolyte-surfactant complexes integrating glucose oxidase on electrodes: Influence of the self-assembly solvent on the signal generation. Bioelectrochemistry. 2015;105:117-122.
http://dx.doi.org/10.1016/j.bioelechem.2015.06.001