Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Conjugation with polyethylene glycol (PEG), known as PEGylation, has been widely used to improve the bioavailability of proteins and low molecular weight drugs. The covalent conjugation of PEG to the carbohydrate moiety of a protein has been mainly used to enhance the pharmacokinetic properties of the attached protein while yielding a more defined product. Thus, glycoPEGylation was successfully applied to the introduction of a PEGylated sialic acid to a preexisting or enzymatically linked glycan in a protein. Carbohydrates are now recognized as playing an important role in host-pathogen interactions in protozoal, bacterial and viral infections and are consequently candidates for chemotherapy. The short in vivo half-life of low molecular weight glycans hampered their use but methods for the covalent attachment of PEG have been less exploited. In this review, information on the preparation and application of PEG-carbohydrates, in particular multiarm PEGylation, is presented. © 2014 Giorgi et al.

Registro:

Documento: Artículo
Título:Carbohydrate PEGylation, an approach to improve pharmacological potency
Autor:Giorgi, M.E.; Agusti, R.; De Lederkremer, R.M.
Filiación:CIHIDECAR-CONICET, Departamento de Química Orgánica, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Bioavailability; Carbohydrates; Conjugates; Glycopegylation; Multivalent glycosystems; Multivalent PEGylation
Año:2014
Volumen:10
Página de inicio:1433
Página de fin:1444
DOI: http://dx.doi.org/10.3762/bjoc.10.147
Título revista:Beilstein Journal of Organic Chemistry
Título revista abreviado:Beilstein J. Org. Chem.
ISSN:18605397
CODEN:BJOCB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18605397_v10_n_p1433_Giorgi

Referencias:

  • Fishburn, C.S., (2008) J. Pharm. Sci., 97, pp. 4167-4183. , doi:10.1002/jps.21278
  • Veronese, F.M., Pasut, G., (2008) Drug Discovery Today, 5, pp. e57-e64. , doi:10.1016/j.ddtec.2009.02.002
  • Jevševar, S., Kunstelj, M., Porekar, V.G., (2010) Biotechnol. J., 5, pp. 113-128. , doi:10.1002/biot.200900218
  • Greenwald, R.B., PEG drugs: An overview (2001) Journal of Controlled Release, 74 (1-3), pp. 159-171. , DOI 10.1016/S0168-3659(01)00331-5, PII S0168365901003315
  • Wonganan, P., Croyle, M.A., (2010) Viruses, 2, pp. 468-502. , doi:10.3390/v2020468
  • Chapman, A.P., PEGylated antibodies and antibody fragments for improved therapy: A review (2002) Advanced Drug Delivery Reviews, 54 (4), pp. 531-545. , DOI 10.1016/S0169-409X(02)00026-1, PII S0169409X02000261
  • Morpurgo, M., Monfardini, C., Hofland, L.J., Sergi, M., Orsolini, P., Dumont, J.M., Veronese, F.M., Selective alkylation and acylation of α and ∈ amino groups with PEG in a somatostatin analogue: Tailored chemistry for optimized bioconjugates (2002) Bioconjugate Chemistry, 13 (6), pp. 1238-1243. , DOI 10.1021/bc0100511
  • Greenwald, R.B., Pendri, A., Conover, C.D., Lee, C., Choe, Y.H., Gilbert, C., Martinez, A., Hsue, M.-M., Camptothecin-20-PEG ester transport forms: The effect of spacer groups on antitumor activity (1998) Bioorganic and Medicinal Chemistry, 6 (5), pp. 551-562. , DOI 10.1016/S0968-0896(98)00005-4, PII S0968089698000054
  • Marcus, Y., Sasson, K., Fridkin, M., Shechter, Y., Turning low-molecular-weight drugs into prolonged acting prodrugs by reversible pegylation: A study with gentamicin (2008) Journal of Medicinal Chemistry, 51 (14), pp. 4300-4305. , DOI 10.1021/jm8002558
  • Dixit, V., Van Den Bossche, J., Sherman, D.M., Thompson, D.H., Andres, R.P., Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells (2006) Bioconjugate Chemistry, 17 (3), pp. 603-609. , DOI 10.1021/bc050335b
  • Liu, X.-M., Quan, L.-D., Tian, J., Laquer, F.C., Coborowski, P., Wang, D., (2010) Biomacromolecules, 11, pp. 2621-2628. , doi:10.1021/bm100578c
  • Clementi, C., Miller, K., Mero, A., Satchi-Fainaro, R., Pasut, G., (2011) Mol. Pharmaceutics, 8, pp. 1063-1072. , doi:10.1021/mp2001445
  • Mero, A., Schiavon, M., Veronese, F.M., Pasut, G., (2011) J. Controlled Release, 154, pp. 27-34. , doi:10.1016/j.jconrel.2011.04.024
  • Song, X., Heimburg-Molinaro, J., Cummings, R.D., Smith, D.F., (2014) Curr. Opin. Chem. Biol., 18, pp. 70-77. , doi:10.1016/j.cbpa.2014.01.001
  • Kawasaki, N., Itoh, S., Hashii, N., Takakura, D., Qin, Y., Huang, X., Yamaguchi, T., (2009) Biol. Pharm. Bull., 32, pp. 796-800. , doi:10.1248/bpb.32.796
  • Kitov, P.I., Sadowska, J.M., Mulvey, G., Armstrong, G.D., Ling, H., Pannu, N.S., Read, R.J., Bundle, D.R., Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands (2000) Nature, 403 (6770), pp. 669-672. , DOI 10.1038/35001095
  • Bernardi, A., Jiménez-Barbero, J., Casnati, A., De Castro, C., Darbre, T., Fieschi, F., Finne, J., Imberty, A., (2013) Chem. Soc. Rev., 42, pp. 4709-4727. , doi:10.1039/c2cs35408j
  • Pasut, G., Veronese, F.M., (2012) J. Controlled Release, 161, pp. 461-472. , doi:10.1016/j.jconrel.2011.10.037
  • Joralemon, M.J., McRae, S., Emrick, T., (2010) Chem. Commun., 46, pp. 1377-1393. , doi:10.1039/b920570p
  • Banerjee, S.S., Aher, N., Patil, R., Khandare, J.J., (2012) Drug Delivery, 2012. , No. 103973. doi:10.1155/2012/103973
  • Li, W., Zhan, P., De Clercq, E., Lou, H., Liu, X., (2013) Prog. Polym. Sci., 38, pp. 421-444. , doi:10.1016/j.progpolymsci.2012.07.006
  • Casettari, L., Vllasaliu, D., Castagnino, E., Stolnik, S., Howdle, S., Illum, L., (2012) Prog. Polym. Sci., 37, pp. 659-685. , doi:10.1016/j.progpolymsci.2011.10.001
  • Chabre, Y.M., Design, R.R., And creativity in synthesis of multivalent neoglycoconjugates (2010) Adv. Carbohydr. Chem. Biochem., 63, pp. 165-165. , Horton, D., Ed.; Academic Press. Elsevier: Amsterdam, The Netherlands
  • Veronese, F.M., Caliceti, P., Schiavon, O., Sartore, L., Preparation and properties of monomethoxypoly(ethylene glycol)-modified enzymes for therapeutic applications (1992) Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications, pp. 127-137. , Milton Harris, J., Ed.; Topics in Applied Chemistry; Plenum Press: New York, NY, USA. doi:10.1007/978-1-4899-0703-5-9
  • Price, J.L., Powers, E.T., Kelly, J.W., (2011) ACS Chem. Biol., 6, pp. 1188-1192. , doi:10.1021/cb200277u
  • Sato, H., Enzymatic procedure for site-specific pegylation of proteins (2002) Advanced Drug Delivery Reviews, 54 (4), pp. 487-504. , DOI 10.1016/S0169-409X(02)00024-8, PII S0169409X02000248
  • Tsutsumi, Y., Onda, M., Nagata, S., Lee, B., Kreitman, R.J., Pastan, I., Site-specific chemical modification with polyethylene glycol of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) improves antitumor activity and reduces animal toxicity and immunogenicity (2000) Proceedings of the National Academy of Sciences of the United States of America, 97 (15), pp. 8548-8553. , DOI 10.1073/pnas.140210597
  • Kuan, C., Wang, Q., Pastan, I., (1994) J. Biol. Chem., 269, pp. 7610-7610
  • Peschke, B., Zundel, M., Bak, S., Clausen, T.R., Blume, N., Pedersen, A., Zaragoza, F., Madsen, K., C-Terminally PEGylated hGH-derivatives (2007) Bioorganic and Medicinal Chemistry, 15 (13), pp. 4382-4395. , DOI 10.1016/j.bmc.2007.04.037, PII S0968089607003550
  • Deiters, A., Cropp, T.A., Summerer, D., Mukherji, M., Schultz, P.G., Site-specific PEGylation of proteins containing unnatural amino acids (2004) Bioorganic and Medicinal Chemistry Letters, 14 (23), pp. 5743-5745. , DOI 10.1016/j.bmcl.2004.09.059, PII S0960894X04011813
  • DeFrees, S., Wang, Z.-G., Xing, R., Scott, A.E., Wang, J., Zopf, D., Gouty, D.L., Panneerselvam, K., GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli (2006) Glycobiology, 16 (9), pp. 833-843. , DOI 10.1093/glycob/cwl004
  • Defrees, S., Zopf, D., Bayer, R.J., Bowe, C., Hakes, D., Chen, X., (2004) GlycoPEGylation Methods And Protein/peptides Produced By The Methods, , U.S. Patent 2004/0132640 A1, July 8
  • Defrees, S., Felo, M., (2007) Nucleotide Sugar Purification Using Membranes, , U.S. Patent WO2007056191 A2, May 18
  • Salmaso, S., Semenzato, A., Bersani, S., Mastrotto, F., Scomparin, A., Caliceti, P., (2008) Eur. Polym. J., 44, pp. 1378-1389. , doi:10.1016/j.eurpolymj.2008.02.021
  • Østergaad, H., Bjelke, J.R., Hansen, L., Petersen, L.C., Pedersen, A.A., Elm, T., Møller, F., Tranholm, M., (2011) Blood, 118, pp. 2333-2341. , doi:10.1182/blood-2011-02-336172
  • Stennicke, H.R., Østergaad, H., Bayer, R.J., Kalo, M.S., Kinealy, K., Holm, P.K., Sørensen, B.B., Bjørn, S.E., (2008) Thromb. Haemostasis, 100, pp. 920-928. , doi:10.1160/TH08-04-0268
  • Stennicke, H.R., Kjalke, M., Karpf, D.M., Balling, K.W., Johasen, P.B., Elm, T., Øvlisen, K., Bjørn, S.E., (2013) Blood, 121, pp. 2108-2116. , doi:10.1182/blood-2012-01-407494
  • Park, A., Honey, D.M., Hou, L., Bird, J.J., Zarazinski, C., Searles, M., Braithwaite, C., Pan, C.Q., (2013) Endocrinology, 154, pp. 1373-1383. , doi:10.1210/en.2012-2010
  • Youn, Y.S., Na, D.H., Yoo, S.D., Song, S.-C., Lee, K.C., (2005) Int. J. Biochem. Cell Biol., 37, pp. 1525-1533. , doi:10.1016/j.biocel.2005.01.014
  • Ritter, D.W., Roberts, J.R., McShane, M.J., (2013) Enzyme Microb. Technol., 52, pp. 279-285. , doi:10.1016/j.enzmictec.2013.01.004
  • Bhatia, S., Mohr, A., Mathur, D., Parmar, V.S., Haag, R., Prasad, A.K., (2011) Biomacromolecules, 12, pp. 3487-3498. , doi:10.1021/bm200647a
  • Popielarski, S.R., Pun, S.H., Davis, M.E., A nanoparticle-based model delivery system to guide the rational design of gene delivery to the liver. 1. Synthesis and characterization (2005) Bioconjugate Chemistry, 16 (5), pp. 1063-1070. , DOI 10.1021/bc050113d
  • Medina, S.H., Tiruchinapally, G., Chevliakov, M.V., Yuksel Durmaz, Y., Stender, R.N., Ensminger, W.D., Shewach, D.S., Elsayed, M.E.H., (2013) Adv. Healthcare Mater., 2, pp. 1337-1350. , doi:10.1002/adhm.201200406
  • Kim, N., Jiang, D., Jacobi, A.M., Lennox, K.A., Rose, S.D., Behlke, M.A., Salem, A.K., (2012) Int. J. Pharm., 427, pp. 123-133. , doi:10.1016/j.ijpharm.2011.08.014
  • Freichels, H., Alaimo, D., Auzély-Velty, R., Jérôme, C., (2012) Bioconjugate Chem., 23, pp. 1740-1752. , doi:10.1021/bc200650n
  • Richards, S., Fullam, E., Besra, G.S., Gibson, M.I., (2014) J. Mater. Chem. B, 2, pp. 1490-1498. , doi:10.1039/c3tb21821j
  • Fernandez-Megia, E., Correa, J., Riguera, R., Clickable PEG - Dendritic block copolymers (2006) Biomacromolecules, 7 (11), pp. 3104-3111. , DOI 10.1021/bm060580d
  • Agusti, R., Paris, G., Ratier, L., Frasch, A.C.C., De Lederkremer, R.M., Lactose derivatives are inhibitors of Trypanosoma cruzi trans-sialidase activity toward conventional substrates in vitro and in vivo (2004) Glycobiology, 14 (7), pp. 659-670. , DOI 10.1093/glycob/cwh079
  • Frasch, A.C.C., Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi (2000) Parasitology Today, 16 (7), pp. 282-286. , DOI 10.1016/S0169-4758(00)01698-7, PII S0169475800016987
  • Tomlinson, S., Pontes De Carvalho, L.C., Vandekerckhove, F., Nussenzweig, V., (1994) J. Immunol., 153, pp. 3141-3141
  • Pereira-Chioccola, V.L., Acosta-Serrano, A., Correira De Almeida, I., Ferguson, M.A., Souto-Padron, T., Rodrigues, M.M., Travassos, L.R., Schenkman, S.J., (2000) Cell Sci., 113, pp. 1299-1299
  • Mucci, J., Risso, M.G., Leguizamon, M.S., Frasch, A.C.C., Campetella, O., The trans-sialidase from Trypanosoma cruzi triggers apoptosis by target cell sialylation (2006) Cellular Microbiology, 8 (7), pp. 1086-1095. , DOI 10.1111/j.1462-5822.2006.00689.x
  • Giorgi, M.E., Ratier, L., Agusti, R., Frasch, A.C., De Lederkremer, R.M., (2010) Glycoconjugate J., 27, pp. 549-559. , doi:10.1007/s10719-010-9300-7
  • Giorgi, M.E., Ratier, L., Agusti, R., Frasch, A.C., De Lederkremer, R.M., (2012) Glycobiology, 22, pp. 1363-1373. , doi:10.1093/glycob/cws091
  • Harris, J.M., Struck, E.C., Case, M.G., Paley, S., Van Alstine, J.M., Brooks, D.E., (1984) J. Polym. Sci., Polym. Chem. Ed., 22, pp. 341-352. , doi:10.1002/pol.1984.170220207
  • Gorochovceva, N., Makuška, R., (2004) Eur. Polym. J., 40, pp. 685-691. , doi:10.1016/j.eurpolymj.2003.12.005
  • Makuska, R., Gorochovceva, N., Regioselective grafting of poly(ethylene glycol) onto chitosan through C-6 position of glucosamine units (2006) Carbohydrate Polymers, 64 (2), pp. 319-327. , DOI 10.1016/j.carbpol.2005.12.006, PII S0144861705006314
  • Shantha, K.L., Harding, D.R.K., Synthesis and characterisation of chemically modified chitosan microspheres (2002) Carbohydrate Polymers, 48 (3), pp. 247-253. , DOI 10.1016/S0144-8617(01)00244-2, PII S0144861701002442
  • Kong, X., Li, X., Wang, X., Liu, T., Gu, Y., Guo, G., Luo, F., Qian, Z., (2010) Carbohydr. Polym., 79, pp. 170-175. , doi:10.1016/j.carbpol.2009.07.037
  • Kulbokaite, R., Ciuta, G., Netopilik, M., Makuska, R., (2009) React. Funct. Polym., 69, pp. 771-778. , doi:10.1016/j.reactfunctpolym.2009.06.010
  • Park, I.K., Kim, T.H., Park, Y.H., Shin, B.A., Choi, E.S., Chowdhury, E.H., Akaike, T., Cho, C.S., Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier (2001) Journal of Controlled Release, 76 (3), pp. 349-362. , DOI 10.1016/S0168-3659(01)00448-5, PII S0168365901004485
  • Fernandez-Megia, E., Novoa-Carballal, R., Quinoa, E., Riguera, R., Conjugation of bioactive ligands to PEG-grafted chitosan at the distal end of PEG (2007) Biomacromolecules, 8 (3), pp. 833-842. , DOI 10.1021/bm060889x
  • Sun, G., Lin, X., Wang, Z., Feng, Y., Xu, D., Shen, L.J., (2011) J. Biomater. Sci., Polym. Ed., 22, pp. 429-441. , doi:10.1163/092050610X487729
  • Lin, X., Wang, S., Jiang, Y., Wang, Z.-J., Sun, G.-I., Xu, D.-S., Feng, Y., Shen, L., (2010) Eur. J. Pharm. Biopharm., 76, pp. 230-237. , doi:10.1016/j.ejpb.2010.07.003
  • Huh, K.M., Ooya, T., Lee, W.K., Sasaki, S., Kwon, I.C., Jeong, S.Y., Yui, N., Supramolecular-structured hydrogels showing a reversible phase transition by inclusion complexation between poly(ethylene glycol) grafted dextran and α-cyclodextrin (2001) Macromolecules, 34 (25), pp. 8657-8662. , DOI 10.1021/ma0106649

Citas:

---------- APA ----------
Giorgi, M.E., Agusti, R. & De Lederkremer, R.M. (2014) . Carbohydrate PEGylation, an approach to improve pharmacological potency. Beilstein Journal of Organic Chemistry, 10, 1433-1444.
http://dx.doi.org/10.3762/bjoc.10.147
---------- CHICAGO ----------
Giorgi, M.E., Agusti, R., De Lederkremer, R.M. "Carbohydrate PEGylation, an approach to improve pharmacological potency" . Beilstein Journal of Organic Chemistry 10 (2014) : 1433-1444.
http://dx.doi.org/10.3762/bjoc.10.147
---------- MLA ----------
Giorgi, M.E., Agusti, R., De Lederkremer, R.M. "Carbohydrate PEGylation, an approach to improve pharmacological potency" . Beilstein Journal of Organic Chemistry, vol. 10, 2014, pp. 1433-1444.
http://dx.doi.org/10.3762/bjoc.10.147
---------- VANCOUVER ----------
Giorgi, M.E., Agusti, R., De Lederkremer, R.M. Carbohydrate PEGylation, an approach to improve pharmacological potency. Beilstein J. Org. Chem. 2014;10:1433-1444.
http://dx.doi.org/10.3762/bjoc.10.147