Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The present study describes the behavior of a natural phenanthrene-degrading consortium (CON), a synthetic consortium (constructed with isolated strains from CON) and an isolated strain form CON (Sphingobium sp. AM) in phenanthrene cultures to understand the interactions among the microorganisms present in the natural consortium during phenanthrene degradation as a sole carbon and energy source in liquid cultures. In the contaminant degradation assay, the defined consortium not only achieved a major phenanthrene degradation percentage (> 95%) but also showed a more efficient elimination of the intermediate metabolite. The opposite behavior occurred in the CON culture where the lowest phenanthrene degradation and the highest HNA accumulation were observed, which suggests the presence of positive and also negative interaction in CON. To consider the uncultured bacteria present in CON, a metagenomic library was constructed with total CON DNA. One of the resulting scaffolds (S1P3) was affiliated with the Betaproteobacteria class and resulted in a significant similarity with a genome fragment from Burkholderia sp. HB1 chromosome 1. A complete gene cluster, which is related to one of the lower pathways (meta-cleavage of catechol) involved in PAH degradation (ORF 31–43), mobile genetic elements and associated proteins, was found. These results suggest the presence of at least one other microorganism in CON besides Sphingobium sp. AM, which is capable of degrading PAH through the meta-cleavage pathway. Burkholderiales order was further found, along with Sphingomonadales order, by a metaproteomic approach, which indicated that both orders were metabolically active in CON. Our results show the presence of negative interactions between bacterial populations found in a natural consortium selected by enrichment techniques; moreover, the synthetic syntrophic processing chain with only one microorganism with the capability of degrading phenanthrene was more efficient in contaminant and intermediate metabolite degradation than a generalist strain (Sphingobium sp. AM). © 2017 Festa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Registro:

Documento: Artículo
Título:Assigning ecological roles to the populations belonging to a phenanthrene-degrading bacterial consortium using omic approaches
Autor:Festa, S.; Coppotelli, B.M.; Madueño, L.; Loviso, C.L.; Macchi, M.; Neme Tauil, R.M.; Valacco, M.P.; Morelli, I.S.
Filiación:Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), La Plata, Argentina
Centro Nacional Patagónico (CENPAT-CONICET), Puerto Madryn, Chubut, Argentina
Centro de Estudios Químicos y Biológicos por Espectrometría de Masa- CEQUIBIEM, Facultad de Ciencias Exactas y Naturales, UBA, IQUIBICEN, CONICET, La Plata, Argentina
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
Palabras clave:bacterial DNA; carbon; catechol; phenanthrene; polycyclic aromatic hydrocarbon; bacterial DNA; phenanthrene derivative; Article; bacterial genome; bacterium culture; bacterium isolation; Betaproteobacteria; biodegradation; Burkholderia; carbon source; controlled study; ecology; energy resource; gene cluster; genetic similarity; metagenomics; microbial consortium; nonhuman; omics; open reading frame; organismal interaction; proteomics; Sphingobium; Sphingomonadales; bacterial gene; bacterium; bioremediation; classification; DNA sequence; gene order; genetics; metabolism; metagenome; microbiology; phylogeny; procedures; Bacteria; Biodegradation, Environmental; DNA, Bacterial; Gene Order; Genes, Bacterial; Metagenome; Metagenomics; Microbial Consortia; Phenanthrenes; Phylogeny; Proteomics; Sequence Analysis, DNA; Soil Microbiology
Año:2017
Volumen:12
Número:9
DOI: http://dx.doi.org/10.1371/journal.pone.0184505
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
CAS:carbon, 7440-44-0; catechol, 120-80-9; phenanthrene, 85-01-8; DNA, Bacterial; Phenanthrenes
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v12_n9_p_Festa

Referencias:

  • Alvarez, A., Polti, M.A., (2014) Bioremediation in Latin America: Current Research and Perspectives, 308p. , Springer
  • Viñas, M., Sabaté, J., Espuny, M.J., Anna, M., Vin, M., Bacterial Community Dynamics and Polycyclic Aromatic Hydrocarbon Degradation during Bioremediation of Heavily Creosote-Contaminated Soil Bacterial Community Dynamics and Polycyclic Aromatic Hydrocarbon Degradation during Bioremediation of Heavily Creosote (2005) Appl Environ Microbiol, 71 (11), pp. 7008-7018. , https://doi.org/10.1128/AEM.71.11.7008-7018.2005, PMID: 16269736
  • Tao, X.-Q., Lu, G.-N., Dang, Z., Yang, C., Yi, X.-Y., A phenanthrene-degrading strain Sphingomonas sp. GY2B isolated from contaminated soils (2007) Process Biochem, 42 (3), pp. 401-408
  • Tiwari, J.N., Reddy, M.M.K., Patel, D.K., Jain, S.K., Murthy, R.C., Manickam, N., Isolation of pyrene degrading Achromobacter xylooxidans and characterization of metabolic product (2010) World J Microbiol Biotechnol, 26 (10), pp. 1727-1733
  • Janbandhu, A., Fulekar, M.H., Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment (2011) J Hazard Mater, 187 (1-3), pp. 333-340. , https://doi.org/10.1016/j.jhazmat.2011.01.034, PMID: 21281999
  • Wang, C., Dong, D., Wang, H., Müller, K., Qin, Y., Wang, H., Metagenomic analysis of microbial consortia enriched from compost: New insights into the role of Actinobacteria in lignocellulose decomposition (2016) Biotechnol Biofuels, 9, pp. 1-17. , BioMed Central
  • Escalante, A.E., Rebolleda-Gómez, M., Bení-Tez, M., Travisano, M., Ecological perspectives on synthetic biology: Insights from microbial population biology (2015) Front Microbiol, 6 (February), pp. 1-10
  • Chaffron, S., Rehrauer, H., Pernthaler, J., Mering, C., A global network of coexisting microbes from\\nenvironmental and whole-genome sequence data (2010) Genome Res., 2010 (20), pp. 947-959
  • Gieg, L.M., Fowler, S.J., Berdugo-Clavijo, C., Syntrophic biodegradation of hydrocarbon contaminants (2014) Curr Opin Biotechnol, 27, pp. 21-29. , Elsevier Ltd
  • Martiny, J.B.H., Bohannan, B.J.M., Brown, J.H., Colwell, R.K., Fuhrman, J.A., Green, J.L., Microbial biogeography: Putting microorganisms on the map (2006) Nat Rev Microbiol, 4 (2), pp. 102-112. , https://doi.org/10.1038/nrmicro1341, PMID: 16415926
  • De Roy, K., Marzorati, M., Van Den Abbeele, P., Van De Wiele, T., Boon, N., Synthetic microbial ecosystems: An exciting tool to understand and apply microbial communities (2014) Environ Microbiol, 16 (6), pp. 1472-1481. , https://doi.org/10.1111/1462-2920.12343, PMID: 24274586
  • Wongwilaiwalin, S., Laothanachareon, T., Mhuantong, W., Tangphatsornruang, S., Eurwilaichitr, L., Igarashi, Y., Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia (2013) Appl Microbiol Biotechnol, 97 (20), pp. 8941-8954. , https://doi.org/10.1007/s00253-013-4699-y, PMID: 23381385
  • Sharma, P., Kumari, H., Kumar, M., Verma, M., Kumari, K., Malhotra, S., From bacterial genomics to metagenomics: Concept, tools and recent advances (2008) Indian J Microbiol, 48 (2), pp. 173-194. , https://doi.org/10.1007/s12088-008-0031-4, PMID: 23100712
  • Chistoserdova, L., Is metagenomics resolving identification of functions in microbial communities? (2014) Microb Biotechnol, 7 (1), pp. 1-4. , https://doi.org/10.1111/1751-7915.12077, PMID: 23945370
  • Desai, C., Pathak, H., Madamwar, D., Advances in molecular and “-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites (2010) Bioresour Technol, 101 (6), pp. 1558-1569. , Elsevier Ltd
  • Kim, S., Kweon, O., Cerniglia, C., Proteomic applications to elucidate bacterial aromatic hydrocarbon metabolic pathways (2009) Curr Opin Microbiol, 12 (3), pp. 301-309. , https://doi.org/10.1016/j.mib.2009.03.006, PMID: 19414279
  • Festa, S., Coppotelli, B.M., Morelli, I.S., Bacterial diversity and functional interactions between bacterial strains from a phenanthrene-degrading consortium obtained from a chronically contaminated-soil (2013) Int Biodeterior Biodegradation, 85, pp. 42-51. , Elsevier Ltd
  • Festa, S., Coppotelli, B.M., Morelli, I.S., Comparative bioaugmentation with a consortium and a single strain in a phenanthrene-contaminated soil: Impact on the bacterial community and biodegradation (2016) Appl Soil Ecol, 98, pp. 8-19. , Elsevier BV
  • Festa, S., Macchi, M., Cortés, F., Morelli, I., Coppotelli, B., Monitoring the impact of bioaugmentation with a PAH-degrading strain on different soil microbiomes using pyrosequencing (2016) FEMS Microbiol Ecol, 92 (8), p. fiw125
  • Reasoner, D.J., Geldreich, E.E., A new medium for the enumeration and subculture of bacteria from potable water (1985) Appl Environ Microbiol, 49 (1), pp. 1-7. , Jan; PMID: 3883894
  • Wrenn, B.A., Venosa, A.D., Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure (1996) Can J Microbiol, 42 (3), pp. 252-258. , PMID: 8868232
  • Entcheva, P., Liebl, W., Johann, A., Hartsch, T., Streit, W.R., Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia (2001) Appl Environ Microbiol, 67 (1), pp. 89-99. , https://doi.org/10.1128/AEM.67.1.89-99.2001, PMID: 11133432
  • Nelson, M.J.K., Montgomery, S.O., Mahaffey, W.R., Pritchard, P.H., Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway (1987) Appl Environ Microbiol, 53 (5), pp. 949-954. , PMID: 3606099
  • Ren, H.-J., Lu, Y., Zhou, R., Dai, C.-Y., Wang, Y., Zhang, L.-Y., Molecular cloning and characterization of a new cold-active extradiol dioxygenase from a metagenomic library derived from polychlorinated biphenyl-contaminated soil (2012) Chem Res Chinese Univ, 28 (4), pp. 666-671
  • Patil, K., Roune, L., McHardy, A., The PhyloPythiaS web server for taxonomic assignment of metagenome sequences (2012) Plos One, 7 (6)
  • Pallejà, A., Harrington, E.D., Bork, P., Large gene overlaps in prokaryotic genomes: Result of functional constraints or mispredictions? (2008) BMC Genomics, 9 (1), p. 335. , BioMed Central
  • Chakraborty, J., Jana, T., Saha, S., Dutta, T.K., Ring-hydroxylating oxygenase database: A database of bacterial aromatic ring-hydroxylating oxygenases in the management of bioremediation and biocatalysis of aromatic compounds (2014) Environ Microbiol Rep, 6 (5), pp. 519-523. , PMID: 25646545
  • Goldschmidt, F., (2016) The Role of Metabolic Interactions in Spatial Self- Organization and Diversity of Expanding Microbial Communities, (23447)
  • Chen, Y., Wang, J., Ji, G., Tian, J., Dong, H., Yu, L., Synergistic Effect of the Microbial Consortium Degrading Polycyclic Aromatic Hydrocarbons (2010) 2010 Asia-pacific Power Energy Eng Conf., pp. 1-4
  • Wang, J., Xu, H., Guo, S., Isolation and characteristics of a microbial consortium for effectively degrading phenanthrene (2008) Pet Sci, 4 (3), pp. 68-75. , http://link.springer.com/10.1007/s12182-007-0012-y, Internet
  • Stump, S.M., Klausmeier, C.A., Competition and coexistence between a syntrophic consortium and a metabolic generalist, and its effect on productivity (2016) J Theor Biol, 404, pp. 348-360. , Elsevier
  • Atllas, R., Bartha, R., (1998) Microbial Ecology, Fundamentals and Applications, 693p. , Cuarta edi. Fogel L, Wong G, editors
  • Jiang, H.-L., Maszenan, A.M., Tay, J.-H., Bioaugmentation and coexistence of two functionally similar bacterial strains in aerobic granules (2007) Appl Microbiol Biotechnol, 75 (5), pp. 1191-1200. , https://doi.org/10.1007/s00253-007-0917-9, PMID: 17370069
  • Celiker, H., Gore, J., Competition between species can stabilize public-goods cooperation within a species (2012) Mol Syst Biol, 8 (1), p. 621
  • Ohtsubo, Y., Moriya, A., Kato, H., Ogawa, N., Nagata, Y., Tsuda, M., Complete Genome Sequence of a Phenanthrene Degrader, Burkholderia sp. HB-1 (NBRC 110738) (2015) Genome Announc, 3 (6). , http://www.ncbi.nlm.nih.gov/pubmed/26543118, [Internet]. American Society for Microbiology (ASM); Nov 5 [cited 2017 Feb 22]
  • Waigi, M.G., Kang, F., Goikavi, C., Ling, W., Gao, Y., Phenanthrene biodegradation by sphingomonads and its application in the contaminated soils and sediments: A review (2015) Int Biodeterior Biodegradation, 104, pp. 333-349. , Elsevier Ltd
  • Huang, X., Tian, Y., Luo, Y.R., Liu, H.J., Zheng, W., Zheng, T.L., Modified sublimation to isolate phenanthrene-degrading bacteria of the genera Sphingomonas and Burkholderia from Xiamen oil port (2008) Mar Pollut Bull, 57 (6-12), pp. 538-543. , https://doi.org/10.1016/j.marpolbul.2007.12.013, PMID: 18502449
  • Tauler, M., Vila, J., Nieto, J.M., Grifoll, M., Key high molecular weight PAH-degrading bacteria in a soil consortium enriched using a sand-in-liquid microcosm system (2015) Appl Microbiol Biotechnol, 100 (7), pp. 3321-3336. , https://doi.org/10.1007/s00253-015-7195-8, PMID: 26637425
  • Joshi, V.V., Prewitt, M.L., Ma, D.-P., Borazjani, H., Enhanced Remediation of Pentachlorophenol (PCP)Contaminated Groundwater by Bioaugmentation with Known PCP-Degrading Bacteria (2015) Bioremediat J, 19 (2), pp. 160-170
  • Fuentes, M.S., Briceño, G.E., Saez, J.M., Benimeli, C.S., Diez, M.C., Amoroso, M.J., Enhanced removal of a pesticides mixture by single cultures and consortia of free and immobilized streptomyces strains (2013) Biomed Res Int, 2013
  • Kang, H., Hwang, S.Y., Kim, Y.M., Kim, E., Kim, Y.S., Kim, S.K., Degradation of phenanthrene and naphthalene by a Burkholderia species strain (2003) Can J Microbiol, 49 (2), pp. 139-144. , PMID: 12718402
  • Coenye, T., Vandamme, P., (2007) Burkholderia: Molecular Microbiology and Genomics, , Horizon Scientific Press
  • Seo, J.S., Keum, Y.S., Hu, Y., Lee, S.E., Li, Q.X., Degradation of phenanthrene by Burkholderia sp. C3: Initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol (2007) Biodegradation, 18 (1), pp. 123-131. , https://doi.org/10.1007/s10532-006-9048-8, PMID: 16491303
  • Ghevariya, C.M., Bhatt, J.K., Dave, B.P., Enhanced chrysene degradation by halotolerant Achromobacter xylosoxidans using Response Surface Methodology (2011) Bioresour Technol, 102 (20), pp. 9668-9674. , Elsevier Ltd
  • Salles, J.F., De Souza, F.A., Van Elsas, J.D., Molecular Method To Assess the Diversity of Burkholderia Species in Environmental Samples (2002) Appl Environ Microbiol, 68 (4), pp. 1595-1603. , https://doi.org/10.1128/AEM.68.4.1595-1603.2002, PMID: 11916673
  • Pérez-Pantoja, D., Donoso, R., Agulló, L., Córdova, M., Seeger, M., Pieper, D.H., Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales (2012) Environ Microbiol, 14 (5), pp. 1091-1117. , https://doi.org/10.1111/j.1462-2920.2011.02613.x, PMID: 22026719
  • Suenaga, H., Koyama, Y., Miyakoshi, M., Miyazaki, R., Yano, H., Sota, M., Novel organization of aromatic degradation pathway genes in a microbial community as revealed by metagenomic analysis (2009) ISME J, 3 (12)
  • Kunze, M., Zerlin, K.F., Retzlaff, A., Pohl, J.O., Schmidt, E., Janssen, D.B., Degradation of chloroaromatics by Pseudomonas putida GJ31: Assembled route for chlorobenzene degradation encoded by clusters on plasmid pKW1 and the chromosome (2009) Microbiology, 155 (12), pp. 4069-4083
  • Khara, P., Roy, M., Chakraborty, J., Ghosal, D., Dutta, T.K., Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB (2014) FEBS Open Bio, 4, pp. 290-300. , https://doi.org/10.1016/j.fob.2014.03.001, PMID: 24918041
  • Chakraborty, R., Wu, C.H., Hazen, T.C., Systems biology approach to bioremediation (2012) Curr Opin Biotechnol, 23 (3), pp. 483-490. , Elsevier Ltd
  • Laurie, A.D., Lloyd-Jones, G., (1999) The Phn Genes of Burkholderia sp. strain RP007 Constitute a Divergent Gene Cluster for Polycyclic Aromatic Hydrocarbon Catabolism, 181 (2), pp. 531-540. , The phn Genes of Burkholderia sp. Strain RP007 Constitute a Divergent Gene Cluster for Polycyclic Aromatic Hydrocarbon Cata
  • Izmalkova, T.Y., Sazonova, O.I., Kosheleva, I.A., Boronin, A.M., Phylogenetic analysis of the genes for naphthalene and phenanthrene degradation in Burkholderia sp. Strains (2013) Genetika, 49 (6), pp. 703-711. , PMID: 24450193
  • Tropel, D., Van Der Meer, J.R., Bacterial transcriptional regulators for degradation pathways of aromatic compounds (2004) Microbiol Mol Biol Rev, 68 (3), pp. 474-500. , American Society for Microbiology (ASM)
  • Khomenkov, V.G., Shevelev, A.B., Zhukov, V.G., Kurlovich, A.E., Zagustina, N.A., Popov, V.O., Metabolic pathways responsible for consumption of aromatic hydrocarbons by microbial associations: Molecular-genetic characterization (2005) Prikl Biokhim Mikrobiol, 41 (3), pp. 298-302. , PMID: 15977790
  • El Amrani, A., Dumas, A.-S., Wick, L.Y., Yergeau, E., Berthomé, R., “Omics” Insights into PAH Degradation toward Improved Green Remediation Biotechnologies (2015) Environ Sci Technol, 49 (19), pp. 11281-11291. , https://doi.org/10.1021/acs.est.5b01740, PMID: 26352597
  • Schneider, T., Riedel, K., Environmental proteomics: Analysis of structure and function of microbial communities (2010) Proteomics, 10 (4), pp. 785-798. , https://doi.org/10.1002/pmic.200900450, PMID: 19953545
  • Benndorf, D., Balcke, G.U., Harms, H., Von Bergen, M., Functional metaproteome analysis of protein extracts from contaminated soil and groundwater (2007) ISME J, 1 (3), pp. 224-234. , https://doi.org/10.1038/ismej.2007.39, PMID: 18043633
  • Williams, M.A., Taylor, E.B., Mula, H.P., Metaproteomic characterization of a soil microbial community following carbon amendment (2010) Soil Biol Biochem, 42 (7), pp. 1148-1156. , Elsevier Ltd
  • Martínez, P., Agulló, L., Hernández, M., Seeger, M., Chlorobenzoate inhibits growth and induces stress proteins in the PCB-degrading bacterium Burkholderia xenovorans LB400 (2007) Arch Microbiol, 188, pp. 289-297. , https://doi.org/10.1007/s00203-007-0247-4, PMID: 17522847
  • Chauhan, A., Jain, R.K., Biodegradation: Gaining insight through proteomics (2010) Biodegradation, 21 (6), pp. 861-879. , https://doi.org/10.1007/s10532-010-9361-0, PMID: 20422258
  • Liu, D., Li, M., Xi, B., Wei, Z., Song, C., Zhu, C., (2015) Metaproteomics Reveals Major Microbial Players and Their Biodegradation Functions in A Large-scale Aerobic Composting Plant, 8 (6), pp. 950-960

Citas:

---------- APA ----------
Festa, S., Coppotelli, B.M., Madueño, L., Loviso, C.L., Macchi, M., Neme Tauil, R.M., Valacco, M.P.,..., Morelli, I.S. (2017) . Assigning ecological roles to the populations belonging to a phenanthrene-degrading bacterial consortium using omic approaches. PLoS ONE, 12(9).
http://dx.doi.org/10.1371/journal.pone.0184505
---------- CHICAGO ----------
Festa, S., Coppotelli, B.M., Madueño, L., Loviso, C.L., Macchi, M., Neme Tauil, R.M., et al. "Assigning ecological roles to the populations belonging to a phenanthrene-degrading bacterial consortium using omic approaches" . PLoS ONE 12, no. 9 (2017).
http://dx.doi.org/10.1371/journal.pone.0184505
---------- MLA ----------
Festa, S., Coppotelli, B.M., Madueño, L., Loviso, C.L., Macchi, M., Neme Tauil, R.M., et al. "Assigning ecological roles to the populations belonging to a phenanthrene-degrading bacterial consortium using omic approaches" . PLoS ONE, vol. 12, no. 9, 2017.
http://dx.doi.org/10.1371/journal.pone.0184505
---------- VANCOUVER ----------
Festa, S., Coppotelli, B.M., Madueño, L., Loviso, C.L., Macchi, M., Neme Tauil, R.M., et al. Assigning ecological roles to the populations belonging to a phenanthrene-degrading bacterial consortium using omic approaches. PLoS ONE. 2017;12(9).
http://dx.doi.org/10.1371/journal.pone.0184505