Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The range of thermal tolerance is one of the main factors influencing the geographic distribution of species. Climate change projections predict increases in average and extreme temperatures over the coming decades; hence, the ability of living beings to resist these changes will depend on physiological and adaptive responses. On an evolutionary scale, changes will occur as the result of selective pressures on individual heritable differences. In this work, we studied the genetic basis of tolerance to high temperatures in the fly Drosophila melanogaster and whether this species presents sufficient genetic variability to allow expansion of its upper thermo-tolerance limit. To do so, we used adult flies derived from a natural population belonging to the Drosophila Genetic Reference Panel, for which genomic sequencing data are available. We characterized the phenotypic variation of the upper thermal limit in 34 lines by measuring knockdown temperature (i.e., critical thermal maximum [CTmax]) by exposing flies to a ramp of increasing temperature (0.25°C/min). Fourteen percent of the variation in CTmax is explained by the genetic variation across lines, without a significant sexual dimorphism. Through a genomewide association study, 12 single nucleotide polymorphisms associated with the CTmax were identified. In most of these SNPs, the less frequent allele increased the upper thermal limit suggesting that this population harbors raw genetic variation capable of expanding its heat tolerance. This potential upper thermal tolerance increase has implications under the global warming scenario. Past climatic records show a very low incidence of days above CTmax (10 days over 25 years); however, future climate scenarios predict 243 days with extreme high temperature above CTmax from 2045 to 2070. Thus, in the context of the future climate warming, rising temperatures might drive the evolution of heat tolerance in this population by increasing the frequency of the alleles associated with higher CTmax. © 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Registro:

Documento: Artículo
Título:Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster
Autor:Rolandi, C.; Lighton, J.R.B.; de la Vega, G.J.; Schilman, P.E.; Mensch, J.
Filiación:IBBEA-CONICET-UBA. DBBEA, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Sable Systems International, Las Vegas, NV, United States
Grupo de Ecología de Poblaciones de Insectos (GEPI), INTA EEA Bariloche, Bariloche, Argentina
IEGEBA-CONICET-UBA, DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:climatic adaptation; CTmax; DGRP; global warming scenario; GWAS; SNPs
Año:2018
Volumen:8
Número:21
Página de inicio:10374
Página de fin:10383
DOI: http://dx.doi.org/10.1002/ece3.4409
Título revista:Ecology and Evolution
Título revista abreviado:Ecology and Evolution
ISSN:20457758
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20457758_v8_n21_p10374_Rolandi

Referencias:

  • Angilletta, M.J., (2009) Thermal adaptation: A theoretical and empirical synthesis, , https://doi.org/10.1093/acprof:oso/9780198570875.001.1, Oxford, UK; New York, NY, Oxford University Press
  • Bates, D., Maechler, M., Bolker, B.M., Fitting Linear Mixed-Effects Models Using lme4 (2015) Journal of Statistical Software, 67 (1), pp. 1-48. , https://doi.org/10.18637/jss.v067.i01
  • Birch-Machin, I., Gao, S., Huen, D., McGirr, R., White, R.A.H., Russell, S., Genomic analysis of heat-shock factor targets in Drosophila (2005) Genome Biology, 6, p. R63. , https://doi.org/10.1186/gb-2005-6-7-r63
  • Blackburn, S., van Heerwaarden, B., Kellermann, V., Sgrò, C.M., Evolutionary capacity of upper thermal limits: Beyond single trait assessments (2014) Journal of Experimental Biology, 217, pp. 1918-1924. , https://doi.org/10.1242/jeb.099184
  • Bozinovic, F., Calosi, P., Spicer, J.I., Physiological correlates of geographic range in animals (2011) Annual Review of Ecology Evolution and Systematics, 42, pp. 155-179. , https://doi.org/10.1146/annurev-ecolsys-102710-145055
  • Bush, A., Mokany, K., Catullo, R., Hoffmann, A.A., Kellermann, V., Sgrò, C.M., Ferrier, S., Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change (2016) Ecology Letters, 19, pp. 1468-1478. , https://doi.org/10.1111/ele.12696
  • Chen, G.-C., Lee, J.Y., Tang, H.-W., Debnath, J., Thomas, S.M., Settleman, J., Genetic interactions between Drosophila melanogaster Atg1 and paxillin reveal a role for paxillin in autophagosome formation (2008) Autophagy, 4, pp. 37-45. , https://doi.org/10.4161/auto.5141
  • Chown, S.L., Jumbam, K.R., Sørensen, J.G., Terblanche, J.S., Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context (2009) Functional Ecology, 23, pp. 133-140. , https://doi.org/10.1111/j.1365-2435.2008.01481.x
  • Chown, S.L., Nicolson, S.W., (2004) Insect physiological ecology: Mechanisms and patterns, , https://doi.org/10.1093/acprof:oso/9780198515494.001.0001, Oxford, UK, Oxford University Press
  • Coumou, D., Rahmstorf, S., A decade of weather extremes (2012) Nature Climate Change, 2, pp. 491-496. , https://doi.org/10.1038/nclimate1452
  • de la Vega, G.J., Medone, P., Ceccarelli, S., Rabinovich, J.E., Schilman, P.E., Geographical distribution, climatic variability and thermo-tolerance of Chagas disease vectors (2015) Ecography, 38, pp. 1-10
  • de la Vega, G.J., Schilman, P.E., Ecological and physiological thermal niches to understand distribution of Chagas disease vectors in Latin America (2018) Medical and Veterinary Entomology, 32, pp. 1-13. , https://doi.org/10.1111/mve.12262
  • Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C., Martin, P.R., Impacts of climate warming on terrestrial ectotherms across latitude (2008) Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 6668-6672. , https://doi.org/10.1073/pnas.0709472105
  • Duun Rohde, P., Krag, K., Loeschcke, V., Overgaard, J., Sørensen, P., Kristensen, T.N., A quantitative genomic approach for analysis of fitness and stress related traits in a Drosophila melanogaster model population (2016) International Journal of Genomics, 2016, p. 2157494
  • Easterling, D.R., Climate extremes: Observations, modeling, and impacts (2000) Science, 289, pp. 2068-2074. , https://doi.org/10.1126/science.289.5487.2068
  • Fallis, L.C., Fanara, J.J., Morgan, T.J., Genetic variation in heat-stress tolerance among South American Drosophila populations (2011) Genetica, 139, pp. 1331-1337. , https://doi.org/10.1007/s10709-012-9635-z
  • Giannakou, M.E., Dow, J.A.T., Characterization of the Drosophila melanogaster alkali-metal/proton exchanger (NHE) gene family (2001) Journal of Experimental Biology, 204, pp. 3703-3716
  • Hangartner, S., Hoffmann, A.A., Evolutionary potential of multiple measures of upper thermal tolerance in Drosophila melanogaster (2016) Functional Ecology, 30, pp. 442-452. , https://doi.org/10.1111/1365-2435.12499
  • Hervas, S., Sanz, E., Casillas, S., Pool, J.E., Barbadilla, A., PopFly: The Drosophila population genomics browser (2017) Bioinformatics, 33, pp. 2779-2780. , https://doi.org/10.1093/bioinformatics/btx301
  • Hochachka, P.W., Somero, G.N., (2002) Biochemical adaptation: Mechanism and process in physiological evolution, , Oxford, UK, Oxford University Press
  • Hoffmann, A.A., Dagher, H., Hercus, M., Berrigan, D., Comparing different measures of heat resistance in selected lines of Drosophila melanogaster (1997) Journal of Insect Physiology, 43, pp. 393-405. , https://doi.org/10.1016/S0022-1910(96)00108-4
  • Huang, W., Massouras, A., Inoue, Y., Peiffer, J., Ràmia, M., Tarone, A.M., Mackay, T.F., Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines (2014) Genome Research, 24, pp. 1193-1208. , https://doi.org/10.1101/gr.171546.113
  • Iliadi, K.G., Avivi, A., Iliadi, N.N., Knight, D., Korol, A.B., Nevo, E., Boulianne, G.L., nemy encodes a cytochrome b561 that is required for Drosophila learning and memory (2008) Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 19986-19991. , https://doi.org/10.1073/pnas.0810698105
  • Jensen, L.T., Nielsen, M.M., Loeschcke, V., New candidate genes for heat resistance in Drosophila melanogaster are regulated by HSF (2008) Cell Stress and Chaperones, 13, pp. 177-182. , https://doi.org/10.1007/s12192-008-0020-x
  • Juneja, P., Quinn, A., Jiggins, F.M., Latitudinal clines in gene expression and cis-regulatory element variation in Drosophila melanogaster (2016) BMC Genomics, 17, pp. 1-11
  • Knight, D., Iliadi, K.G., Iliadi, N., Wilk, R., Hu, J., Krause, H.M., Boulianne, G.L., Distinct regulation of transmitter release at the drosophila NMJ by different isoforms of nemy (2015) PLoS ONE, 10. , https://doi.org/10.1371/journal.pone.0132548
  • Kuznetsova, A., Brockhoff, P., Christensen, R., (2017) Journal of Statistical Software, 82 (13), pp. 1-26. , https://doi.org/10.18637/jss.v082.i13, . lmerTest Package Tests in Linear Mixed Effects Models
  • Levine, M.T., Eckert, M.L., Begun, D.J., Whole-genome expression plasticity across tropical and temperate Drosophila melanogaster populations from eastern Australia (2011) Molecular Biology and Evolution, 28, pp. 249-256. , https://doi.org/10.1093/molbev/msq197
  • Lighton, J.R.B., Turner, R.J., Thermolimit respirometry: An objective assessment of critical thermal maxima in two sympatric desert harvester ants, Pogonomyrmex rugosus and P. californicus (2004) Journal of Experimental Biology, 207, pp. 1903-1913. , https://doi.org/10.1242/jeb.00970
  • Lutterschmidt, W.I., Hutchison, V.H., The critical thermal maximum: History and critique (1997) Canadian Journal of Zoology, 75, pp. 1561-1574. , https://doi.org/10.1139/z97-783
  • Mackay, T.F.C., Richards, S., Stone, E.A., Barbadilla, A., Ayroles, J.F., Zhu, D., Gibbs, R.A., The Drosophila melanogaster Genetic Reference Panel (2012) Nature, 482, pp. 173-178. , https://doi.org/10.1038/nature10811
  • Markow, T.A., O'Grady, P., (2006) Drosophila: A guide to species identification and use, , San Diego, California, USA, Academic Press
  • Mitchell, K.A., Hoffmann, A.A., Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila (2010) Functional Ecology, 24, pp. 694-700. , https://doi.org/10.1111/j.1365-2435.2009.01666.x
  • Nielsen, M.M., Sørensen, J.G., Kruhøffer, M., Justesen, J., Loeschcke, V., Phototransduction genes are up-regulated in a global gene expression study of Drosophila melanogaster selected for heat resistance (2006) Cell Stress and Chaperones, 11, pp. 325-333. , https://doi.org/10.1379/CSC-207.1
  • Overgaard, J., Kearney, M.R., Hoffmann, A.A., Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species (2014) Global Change Biology, 20, pp. 1738-1750. , https://doi.org/10.1111/gcb.12521
  • Overgaard, J., Kristensen, T.N., Sørensen, J.G., Validity of thermal ramping assays used to assess thermal tolerance in arthropods (2012) PLoS ONE, 7. , https://doi.org/10.1371/journal.pone.0032758
  • Pappas, C., Hyde, D., Bowler, K., Loeschcke, V., Sørensen, J.G., Post-eclosion decline in “knock-down” thermal resistance and reduced effect of heat hardening in Drosophila melanogaster (2007) Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 146, pp. 355-359. , https://doi.org/10.1016/j.cbpa.2006.11.010
  • Parmesan, C., Root, T.L., Willig, M.R., Impacts of extreme weather and climate on terrestrial biota (2000) Bulletin of the American Meteorological Society, 81, pp. 443-450. , https://doi.org/10.1175/1520-0477(2000)081<0443:IOEWAC>2.3.CO;2
  • Pool, J.E., The mosaic ancestry of the drosophila genetic reference panel and the D. melanogaster reference genome reveals a network of epistatic fitness interactions (2015) Molecular Biology and Evolution, 32, pp. 3236-3251
  • Pool, J.E., Corbett-Detig, R.B., Sugino, R.P., Stevens, K.A., Cardeno, C.M., Crepeau, M.W., Langley, C.H., Population genomics of sub-saharan Drosophila melanogaster: African diversity and non-African admixture (2012) PLoS Genetics, 8. , https://doi.org/10.1371/journal.pgen.1003080
  • (2017) R: A language and environment for statistical computing, , https://www.R-project.org/, R Foundation for Statistical Computing, Vienna, Austria
  • Rezende, E.L., Tejedo, M., Santos, M., Estimating the adaptive potential of critical thermal limits: Methodological problems and evolutionary implications (2011) Functional Ecology, 25, pp. 111-121. , https://doi.org/10.1111/j.1365-2435.2010.01778.x
  • Richter, K., Haslbeck, M., Buchner, J., The heat shock response: Life on the verge of death (2010) Molecular Cell, 40, pp. 253-266. , https://doi.org/10.1016/j.molcel.2010.10.006
  • Robertson, R.M., Thermal stress and neural function: Adaptive mechanisms in insect model systems (2004) Journal of Thermal Biology, 29, pp. 351-358. , https://doi.org/10.1016/j.jtherbio.2004.08.073
  • Robertson, R.M., Money, T.G.A., Temperature and neuronal circuit function: Compensation, tuning and tolerance (2012) Current Opinion in Neurobiology, 22, pp. 724-734. , https://doi.org/10.1016/j.conb.2012.01.008
  • Santos, M., Castañeda, L.E., Rezende, E.L., Making sense of heat tolerance estimates in ectotherms: Lessons from Drosophila (2011) Functional Ecology, 25, pp. 1169-1180. , https://doi.org/10.1111/j.1365-2435.2011.01908.x
  • Sgrò, C.M., Overgaard, J., Kristensen, T.N., Mitchell, K.A., Cockerell, F.E., Hoffmann, A.A., A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from Eastern Australia (2010) Journal of Evolutionary Biology, 23, pp. 2484-2493. , https://doi.org/10.1111/j.1420-9101.2010.02110.x
  • Sørensen, J.G., Kristensen, T.N., Loeschcke, V., The evolutionary and ecological role of heat shock proteins (2003) Ecology Letters, 6, pp. 1025-1037. , https://doi.org/10.1046/j.1461-0248.2003.00528.x
  • Sørensen, J.G., Kristensen, T.N., Overgaard, J., Evolutionary and ecological patterns of thermal acclimation capacity in Drosophila: Is it important for keeping up with climate change? (2016) Current Opinion in Insect Science, 17, pp. 98-104. , https://doi.org/10.1016/j.cois.2016.08.003
  • Sørensen, J.G., Loeschcke, V., Kristensen, T.N., Cellular damage as induced by high temperature is dependent on rate of temperature change—Investigating consequences of ramping rates on molecular and organismal phenotypes in Drosophila melanogaster (2013) Journal of Experimental Biology, 216, pp. 809-814. , https://doi.org/10.1242/jeb.076356
  • Sørensen, J.G., Nielsen, M.M., Kruhøffer, M., Justesen, J., Loeschcke, V., Full genome gene expression analysis of the heat stress response in Drosophila melanogaster (2005) Cell Stress and Chaperones, 10, pp. 312-328. , https://doi.org/10.1379/CSC-128R1.1
  • Sunday, J.M., Bates, A.E., Kearney, M.R., Colwell, R.K., Dulvy, N.K., Longino, J.T., Huey, R.B., Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation (2014) Proceedings of the National Academy of Sciences of the United States of America, 111, pp. 5610-5615. , https://doi.org/10.1073/pnas.1316145111
  • Terblanche, J.S., Hoffmann, A.A., Mitchell, K.A., Rako, L., le Roux, P.C., Chown, S.L., Ecologically relevant measures of tolerance to potentially lethal temperatures (2011) Journal of Experimental Biology, 214, pp. 3713-3725. , https://doi.org/10.1242/jeb.061283
  • Zhao, L., Wit, J., Svetec, N., Begun, D.J., Parallel gene expression differences between low and high latitude populations of Drosophila melanogaster and D. simulans (2015) PLoS Genetics, 11. , https://doi.org/10.1371/journal.pgen.1005184

Citas:

---------- APA ----------
Rolandi, C., Lighton, J.R.B., de la Vega, G.J., Schilman, P.E. & Mensch, J. (2018) . Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster. Ecology and Evolution, 8(21), 10374-10383.
http://dx.doi.org/10.1002/ece3.4409
---------- CHICAGO ----------
Rolandi, C., Lighton, J.R.B., de la Vega, G.J., Schilman, P.E., Mensch, J. "Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster" . Ecology and Evolution 8, no. 21 (2018) : 10374-10383.
http://dx.doi.org/10.1002/ece3.4409
---------- MLA ----------
Rolandi, C., Lighton, J.R.B., de la Vega, G.J., Schilman, P.E., Mensch, J. "Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster" . Ecology and Evolution, vol. 8, no. 21, 2018, pp. 10374-10383.
http://dx.doi.org/10.1002/ece3.4409
---------- VANCOUVER ----------
Rolandi, C., Lighton, J.R.B., de la Vega, G.J., Schilman, P.E., Mensch, J. Genetic variation for tolerance to high temperatures in a population of Drosophila melanogaster. Ecology and Evolution. 2018;8(21):10374-10383.
http://dx.doi.org/10.1002/ece3.4409