Artículo

Tang, S.; Tesler, F.; Marlasca, F.G.; Levy, P.; Dobrosavljevic, V.; Rozenberg, M. "Shock waves and commutation speed of memristors" (2016) Physical Review X. 6(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Progress of silicon-based technology is nearing its physical limit, as the minimum feature size of components is reaching a mere 10 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next-generation electronics. Significant progress has already been made in the past decade, and devices are beginning to hit the market; however, this progress has mainly been the result of empirical trial and error. Hence, gaining theoretical insight is of the essence. In the present work, we report the striking result of a connection between the resistive switching and shock-wave formation, a classic topic of nonlinear dynamics. We argue that the profile of oxygen vacancies that migrate during the commutation forms a shock wave that propagates through a highly resistive region of the device. We validate the scenario by means of model simulations and experiments in a manganese-oxide-based memristor device, and we extend our theory to the case of binary oxides. The shock-wave scenario brings unprecedented physical insight and enables us to rationalize the process of oxygen-vacancy-driven resistive change with direct implications for a key technological aspect-the commutation speed.

Registro:

Documento: Artículo
Título:Shock waves and commutation speed of memristors
Autor:Tang, S.; Tesler, F.; Marlasca, F.G.; Levy, P.; Dobrosavljevic, V.; Rozenberg, M.
Filiación:Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306, United States
Departamento de Física-IFIBA, FCEN, Universidad de Buenos Aires, Ciudad Universitaria Pabellón I, (1428), Buenos Aires, Argentina
GIA-CAC-CNEA, Avenida Gral Paz 1499 (1650) San Martín, Pcia Buenos Aires, Argentina
Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay Cedex, 91405, France
Palabras clave:Manganese oxide; Memristors; Oxygen vacancies; Transition metal oxides; Transition metals; Vacancies; Minimum feature sizes; Model simulation; Physical limits; Resistive switching; Resistive switching behaviors; Silicon-based technology; Technological aspects; Trial and error; Shock waves
Año:2016
Volumen:6
Número:1
DOI: http://dx.doi.org/10.1103/PhysRevX.6.011028
Título revista:Physical Review X
Título revista abreviado:Phys. Rev. X
ISSN:21603308
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21603308_v6_n1_p_Tang

Referencias:

  • International technology road map for semiconductors, , http://www.itrs.net
  • Rozenberg, M.J., Resistive Switching (2011) Scholarpedia, 6
  • Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S., The Missing Memristor Found (2008) Nature (London), 453
  • Waser, R., Aono, M., Nanoionics-Based Resistive Switching Memories (2007) Nat. Mater, 6
  • Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S., Memristive Switching Mechanism for Metal/Oxide/Metal Nanodevices (2008) Nat. Nanotechnol, 3
  • Waser, R., Dittmann, R., Staikov, G., Szot, K., Redox-Based Resistive Switching Memories-Nanoionic Mechanisms. Prospects, and Challenges (2009) Adv. Mater, 21
  • Inoue, I.H., Sawa, A., (2013) Functional Metal Oxides, New Science and Novel Applications, , edited by S. Ogale, T. Venkatesan, and M. Blamire (Wiley-VCH, Germany), Chap. 16
  • Yang, J.J., Inoue, I.H., Mikolajick, T., Hwang, C.S., Metal Oxide Memories Based on Thermochemical and Valence Change Mechanisms (2012) MRS Bull, 37
  • Sawa, A., Resistive Switching in Transition Metal Oxides (2008) Mater. Today, 11
  • Baikalov, A., Wang, Y.Q., Shen, B., Lorenz, B., Tsui, S., Sun, Y.Y., Xue, Y.Y., Chu, C.W., Field-Driven Hysteretic and Reversible Resistive Switch at the Ag-Pr 0.7 Ca 0.3 MnO 3 Interface (2003) Appl. Phys. Lett, 83
  • Stoliar, P., Levy, P., Sánchez, M.J., Leyba, A.G., Albornoz, A.C., Gomez-Marlasca, F., Zanini, A., Rozenberg, M.J., Nonvolatile Multilevel Resistive Switching Memory Cell: A Transition Metal Oxide-Based Circuit (2014) IEEE Trans. Circuits Syst. II: Express Briefs, 61
  • Alibart, F., Gao, L., Hoskins, B.D., Strukov, D.B., High Precision Tuning of State for Memristive Devices by Adaptable Variation-Tolerant Algorithm (2012) Nanotechnology, 23
  • Ghenzi, N., Sánchez, M.J., Gomez-Marlasca, F., Levy, P., Rozenberg, M.J., Hysteresis Switching Loops in Ag-Manganite Memristive Interfaces (2010) J. Appl. Phys, 107
  • Nian, Y.B., Strozier, J., Wu, N.J., Chen, X., Ignatiev, A., Evidence for an Oxygen Diffusion Model for the Electric Pulse Induced Resistance Change Effect in Transition-Metal Oxides (2007) Phys. Rev. Lett, 98
  • Chen, X., Wu, N.J., Strozier, J., Ignatiev, A., Direct Resistance Profile for an Electrical Pulse Induced Resistance Change Device (2005) Appl. Phys. Lett, 87
  • Larentis, S., Nardi, F., Balatti, S., Gilme, C., Ielmini, D., Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM-Part II: Modeling (2011) IEEE Trans. Electron Devices, 58
  • Menzel, S., Waters, M., Marchewka, A., Bottger, U., Dittmann, R., Waser, R., Origin of the Ultra-Nonlinear Switching Kinetics in Oxide-Based Resistive Switches (2011) Adv. Funct. Mater, 21
  • Bocquet, M., Deleruyelle, D., Aziza, H., Muller, C., Portal, J.M., Cabout, T., Jalaguier, E., Robust Compact Model for Bipolar Oxide-Based Resistive Switching Memories (2014) IEEE Trans. Electron Devices, 61
  • Hur, J.H., Lee, M.J., Lee, C.B., Kim, Y.B., Kim, C.J., Modeling for Bipolar Resistive Memory Switching in Transition-Metal Oxides (2010) Phys. Rev. B, 82
  • Huang, P., Liu, X.Y., Chen, B., Li, H.T., Wang, Y.J., Deng, Y.X., Wei, K.L., Kang, J.F., A Physics-Based Compact Model of Metal-Oxide-Based RRAM DC and AC Operations (2013) IEEE Trans. Electron Devices, 60
  • Noman, M., Jiang, W., Salvador, P.A., Skowronski, M., Bain, J.A., Computational Investigations into the Operating Window for Memristive Devices Based on Homogeneous Ionic Motion (2011) Appl. Phys. A, 102
  • Strukov, D.B., Borghetti, J.L., Williams, R.S., Coupled Ionic and Electronic Transport Model of Thin-Film Semiconductor Memristive Behavior (2009) Small, 5
  • Lee, J.S., Lee, S.B., Kahng, B., Noh, T.W., Two Opposite Hysteresis Curves in Semiconductors with Mobile Dopants (2013) Appl. Phys. Lett, 102
  • Kim, S., Choi, S., Lu, W., Comprehensive Physical Model of Dynamic Resistive Switching in an Oxide Memristor (2014) ACS Nano, 8
  • Rozenberg, M.J., Inoue, I.H., Sanchez, M.J., Nonvolatile Memory with Multilevel Switching: A Basic Model (2004) Phys. Rev. Lett, 92
  • Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L., Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices (2009) IEEE Trans. Electron Devices, 56
  • Rozenberg, M.J., Sanchez, M.J., Weht, R., Acha, C., Gomez-Marlasca, F., Levy, P., Mechanism for Bipolar Resistive Switching in Transition-Metal Oxides (2010) Phys. Rev. B, 81
  • Debnath, L., (2011) Nonlinear Partial Differential Equations for Scientists and Engineers, , Birkhauser, Boston
  • Taylor, M., (2011) Partial Differential Equations I, II, III, Applied Mathematical Sciences, , Springer, New York
  • Courant, R., Hilbert, D., (1962) Methods of Mathematical Physics. Vol. II: Partial Differential Equations, , Interscience, New York
  • Lee, H.-S., Choi, S.-G., Park, H.-H., Rozenberg, M.J., A New Route to the Mott-Hubbard Metal-Insulator Transition: Strong Correlations Effects in Pr0.7Ca0.3MnO3 (2013) Sci. Rep, 3
  • Landau, L.D., Lifshitz, E.M., (1987) Fluid Mechanics, 6. , Course of Theoretical Physics) (Butterworth-Heinemann, Oxford
  • Quintero, M., Levy, P., Leyva, A.G., Rozenberg, M.J., Mechanism of Electric-Pulse-Induced Resistance Switching in Manganites (2007) Phys. Rev. Lett, 98
  • Jin, Y.L., Xu, Z.T., Jin, K.J., He, X., Wang, C., Lu, H.B., Enhancement of Resistive Switching Effect in Double-Layered Pt/Pr0.7Ca0.3MnO3/La0.6Pr0.4MnO3/SrNb0.01Ti0.99O3 Heterostructure (2014) Physica B (Amsterdam), 449
  • Scherff, M., Hoffmann, J., Meyer, B., Danz, T., Jooss, C., Interplay of Cross-Plane Polaronic Transport and Resistive Switching in Pt-Pr0.67Ca0.33MnO3-Pt Heterostructures (2013) New J. Phys, 15
  • Park, S., Jung, S., Siddik, M., Jo, M., Park, J., Kim, S., Lee, W., Cha, E., Self-Formed Schottky Barrier Induced Selector-Less RRAM for Cross-Point Memory Applications (2012) Physica Status Solidi-Rapid Research Lett, 6
  • Herpers, A., Lenser, C., Park, C., Offi, F., Borgatti, F., Panaccione, G., Menzel, S., Dittmann, R., Spectroscopic Proof of the Correlation between Redox-State and Charge-Carrier Transport at the Interface of Resistively Switching Ti/PCMO Devices (2014) Adv. Mater, 26
  • Gomez-Marlasca, F., Ghenzi, N., Leyba, A.G., Albornoz, A.C., Rubi, D., Stoliar, P., Levy, P., Modeling Electronic Transport Mechanisms in Metal-Manganite Memristive Interfaces (2013) J. Appl. Phys, 113
  • Ghenzi, N., Rozenberg, M.J., Llopis, R., Levy, P., Hueso, L.E., Rubi, D., Stoliar, P., Tuning the Resistive Switching Properties of TiO2-x Films (2015) Appl. Phys. Lett, 106
  • Nian, Y.B., Strozier, J., Wu, N.J., Chen, X., Ignatiev, A., Evidence for an Oxygen Diffusion Model for the Electric Pulse Induced Resistance Change Effect in Transition-Metal Oxides (2007) Phys. Rev. Lett, 98

Citas:

---------- APA ----------
Tang, S., Tesler, F., Marlasca, F.G., Levy, P., Dobrosavljevic, V. & Rozenberg, M. (2016) . Shock waves and commutation speed of memristors. Physical Review X, 6(1).
http://dx.doi.org/10.1103/PhysRevX.6.011028
---------- CHICAGO ----------
Tang, S., Tesler, F., Marlasca, F.G., Levy, P., Dobrosavljevic, V., Rozenberg, M. "Shock waves and commutation speed of memristors" . Physical Review X 6, no. 1 (2016).
http://dx.doi.org/10.1103/PhysRevX.6.011028
---------- MLA ----------
Tang, S., Tesler, F., Marlasca, F.G., Levy, P., Dobrosavljevic, V., Rozenberg, M. "Shock waves and commutation speed of memristors" . Physical Review X, vol. 6, no. 1, 2016.
http://dx.doi.org/10.1103/PhysRevX.6.011028
---------- VANCOUVER ----------
Tang, S., Tesler, F., Marlasca, F.G., Levy, P., Dobrosavljevic, V., Rozenberg, M. Shock waves and commutation speed of memristors. Phys. Rev. X. 2016;6(1).
http://dx.doi.org/10.1103/PhysRevX.6.011028