Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A search for dark matter in association with a Higgs boson decaying to two photons is presented. This study is based on data collected with the ATLAS detector, corresponding to an integrated luminosity of 36.1 fb -1 of proton-proton collisions at the LHC at a center-of-mass energy of 13 TeV in 2015 and 2016. No significant excess over the expected background is observed. Upper limits at 95% confidence level are set on the visible cross section for beyond the Standard Model physics processes, and the production cross section times branching fraction of the Standard Model Higgs boson decaying into two photons in association with missing transverse momentum in three different benchmark models. Limits at 95% confidence level are also set on the observed signal in two-dimensional mass planes. Additionally, the results are interpreted in terms of 90% confidence-level limits on the dark-matter-nucleon scattering cross section, as a function of the dark-matter particle mass, for a spin-independent scenario. © 2017 CERN, for the ATLAS Collaboration.

Registro:

Documento: Artículo
Título:Search for dark matter in association with a Higgs boson decaying to two photons at √s=13 TeV with the ATLAS detector
Autor:Aaboud, M. et al.
Este artículo contiene 2874 autores, consultelos en el artículo en formato pdf.
Filiación: Este artículo contiene 2874 autores con sus filiaciones, consultelas en el artículo en formato pdf.
Año:2017
Volumen:96
Número:11
DOI: http://dx.doi.org/10.1103/PhysRevD.96.112004
Título revista:Physical Review D
Título revista abreviado:Phy. Rev. D
ISSN:24700010
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24700010_v96_n11_p_Aaboud

Referencias:

  • Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC (2012) Phys. Lett. B, 716, p. 1
  • Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC (2012) Phys. Lett. B, 716, p. 30
  • Patrignani, C., Review of Particle Physics (2016) Chin. Phys. C, 40, p. 100001
  • Bertone, G., Hooper, D., Silk, J., Particle dark matter: Evidence, candidates and constraints (2005) Phys. Rep., 405, p. 279
  • Carpenter, L., DiFranzo, A., Mulhearn, M., Shimmin, C., Tulin, S., Whiteson, D., Mono-Higgs-boson: A new collider probe of dark matter (2014) Phys. Rev. D, 89, p. 075017
  • Petrov, A.A., Shepherd, W., Searching for dark matter at LHC with Mono-Higgs production (2014) Phys. Lett. B, 730, p. 178
  • Search for Dark Matter in Events with Missing Transverse Momentum and a Higgs Boson Decaying to Two Photons in pp Collisions at √s = 8 TeV with the ATLAS Detector (2015) Phys. Rev. Lett., 115, p. 131801
  • Search for dark matter produced in association with a Higgs boson decaying to two bottom quarks in pp collisions at √s = 8 TeV with the ATLAS detector (2016) Phys. Rev. D, 93, p. 072007
  • Search for dark matter in association with a Higgs boson decaying to b-quarks in pp collisions at √s = 13 TeV with the ATLAS detector (2017) Phys. Lett. B, 765, p. 11
  • Search for Associated Production of Dark Matter with a Higgs Boson Decaying to b or γγ at √s = 13 TeV
  • Search for Dark Matter Produced in Association with a Higgs Boson Decaying to bb using 36 fb -1 of pp Collisions at √s = 13 TeV with the ATLAS Detector (2017) Phys. Rev. Lett., 119, p. 181804
  • Abercrombie, D., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum
  • Berlin, A., Lin, T., Wang, L.-T., Mono-Higgs detection of dark matter at the LHC (2014) J. High Energy Phys., 6, p. 078
  • Von Buddenbrock, S., Chakrabarty, N., Cornell, A.S., Kar, D., Kumar, M., Mandal, T., Mellado, B., Ruan, X., Phenomenological signatures of additional scalar bosons at the LHC (2016) Eur. Phys. J. C, 76, p. 580
  • Guo, W.-L., Wu, Y.-L., The real singlet scalar dark matter model (2010) J. High Energy Phys., 10, p. 083
  • The ATLAS experiment at the CERN Large Hadron Collider (2008) J. Instrum., 3, p. S08003
  • https://cds.cern.ch/record/1291633; https://cds.cern.ch/record/1602235; Performance of the ATLAS Trigger System in 2015 (2017) Eur. Phys. J. C, 77, p. 317
  • Search for resonances in diphoton events at √s = 13 TeV with the ATLAS detector (2016) J. High Energy Phys., 9, p. 001
  • Alwall, J., Frederix, R., Frixione, S., Hirschi, V., Maltoni, F., Mattelaer, O., Shao, H.-S., Zaro, M., The automated computation of tree-level and next-toleading order differential cross sections, and their matching to parton shower simulations (2014) J. High Energy Phys., 7, p. 79
  • Ball, R.D., Parton distributions for the LHC run II (2015) J. High Energy Phys., 4, p. 040
  • Sjostrand, T., Mrenna, S., Skands, P., A brief introduction to PYTHIA 8.1 (2008) Comput. Phys. Commun., 178, p. 852
  • https://cds.cern.ch/record/1966419; Ball, R.D., Parton distributions with LHC data (2013) Nucl. Phys., B867, p. 244
  • Nason, P., A new method for combining NLO QCD with shower Monte Carlo algorithms (2004) J. High Energy Phys., 11, p. 040
  • Alioli, S., Nason, P., Oleari, C., Re, E., NLO Higgs boson production via gluon fusion matched with shower in POWHEG (2009) J. High Energy Phys., 4, p. 002
  • Nason, P., Oleari, C., NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG (2010) J. High Energy Phys., 2, p. 037
  • Alioli, S., Nason, P., Oleari, C., Re, E., A general framework for implementing NLO calculations in shower Monte Carlo programs: The POWHEG BOX (2010) J. High Energy Phys., 6, p. 043
  • https://cds.cern.ch/record/1629317; Lai, H.-L., Guzzi, M., Huston, J., Li, Z., Nadolsky, P.M., Pumplin, J., Yuan, C.-P., New parton distributions for collider physics (2010) Phys. Rev. D, 82, p. 074024
  • Gleisberg, T., Event generation with SHERPA 1.1 (2009) J. High Energy Phys., 2, p. 007
  • Schumann, S., Krauss, F., A Parton shower algorithm based on Catani-Seymour dipole factorisation (2008) J. High Energy Phys., 3, p. 038
  • Höche, S., Krauss, F., Schumann, S., Siegert, F., QCD matrix elements and truncated showers (2009) J. High Energy Phys., 5, p. 053
  • De Florian, D., Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector
  • Combined Measurement of the Higgs Boson Mass in pp Collisions at √s = 7 and 8 TeV with the ATLAS and CMS Experiments (2015) Phys. Rev. Lett., 114, p. 191803
  • Lange, D.J., The EvtGen particle decay simulation package (2001) Nucl. Instrum. Methods Phys. Res., Sect. A, 462, p. 152
  • https://cds.cern.ch/record/1474107/; The ATLAS Simulation Infrastructure (2010) Eur. Phys. J. C, 70, p. 823
  • Agostinelli, S., GEANT4-A Simulation toolkit (2003) Nucl. Instrum. Methods Phys. Res., Sect. A, 506, p. 250
  • Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data (2016) Eur. Phys. J. C, 76, p. 666
  • Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data (2014) Eur. Phys. J. C, 74, p. 3071
  • https://cds.cern.ch/record/2203125; Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector (2014) Phys. Rev. D, 90, p. 112015
  • Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1 (2017) Eur. Phys. J. C, 77, p. 490
  • Cacciari, M., Salam, G.P., Soyez, G., The catchment area of jets (2008) J. High Energy Phys., 4, p. 005
  • Performance of pile-up mitigation techniques for jets in pp collisions at √s = 8 TeV using the ATLAS detector (2016) Eur. Phys. J. C, 76, p. 581
  • Measurement of the Higgs boson mass from the H → yy and H → ZZ ∗ → 4l channels with the ATLAS detector (2014) Phys. Rev. D, 90, p. 052004
  • Electron efficiency measurements with the ATLAS detector using 2012 LHC proton-proton collision data (2017) Eur. Phys. J. C, 77, p. 195
  • https://cds.cern.ch/record/2048202; Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at √s = 8 TeV with ATLAS (2014) J. High Energy Phys., 9, p. 112
  • Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton-proton collision data (2014) Eur. Phys. J. C, 74, p. 3130
  • Muon reconstruction performance of the ATLAS detector in proton-proton collision data at √s = 13 TeV (2016) Eur. Phys. J. C, 76, p. 292
  • Cacciari, M., Salam, G.P., Soyez, G., The anti-kt jet clustering algorithm (2008) J. High Energy Phys., 4, p. 063
  • https://cds.cern.ch/record/1643929; Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at √s = 13 TeV with the ATLAS detector (2017) Phys. Rev. D, 96, p. 072002
  • Performance of missing transverse momentum reconstruction in proton-proton collisions at √s = 7 TeV with ATLAS (2012) Eur. Phys. J. C, 72, p. 1844
  • https://cds.cern.ch/record/2037904; Measurement of isolated-photon pair production in pp collisions at √s = 7 TeV with the ATLAS detector (2013) J. High Energy Phys., 1, p. 086
  • Aaltonen, T., Search for new particles decaying into dijets in proton-antiproton collisions at √s = 1.96 TeV (2009) Phys. Rev. D, 79, p. 112002
  • Luminosity determination in pp collisions at √s = 8 TeV using the ATLAS detector at the LHC (2016) Eur. Phys. J. C, 76, p. 653
  • https://cds.cern.ch/record/2037700; Dulat, S., Hou, T.-J., Gao, J., Guzzi, M., Huston, J., Nadolsky, P., Pumplin, J., Yuan, C.-P., New parton distribution functions from a global analysis of quantum chromodynamics (2016) Phys. Rev. D, 93, p. 033006
  • Harland-Lang, L.A., Martin, A.D., Motylinski, P., Thorne, R.S., Parton distributions in the LHC era: MMHT 2014 PDFs (2015) Eur. Phys. J. C, 75, p. 204
  • Read, A.L., Presentation of search results: The CLs technique (2002) J. Phys. G, 28, p. 2693
  • Junk, T., Confidence level computation for combining searches with small statistics (1999) Nucl. Instrum. Methods Phys. Res., Sect. A, 434, p. 435
  • Cowan, G., Cranmer, K., Gross, E., Vitells, O., Asymptotic formulae for likelihood-based tests of new physics (2011) Eur. Phys. J. C, 71, p. 1554
  • Erratum (2013) Eur. Phys. J. C, 73, p. 2501
  • Akerib, D.S., Results from a Search for Dark Matter in the Complete LUX exposure (2017) Phys. Rev. Lett., 118, p. 021303
  • Tan, A., Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment (2016) Phys. Rev. Lett., 117, p. 121303
  • Aprile, E., First Dark Matter Search Results from the XENON1T Experiment (2017) Phys. Rev. Lett., 119, p. 181301
  • Agnese, R., New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment (2016) Phys. Rev. Lett., 116, p. 071301
  • Angloher, G., Results on light dark matter particles with a low-threshold CRESST-II detector (2016) Eur. Phys. J. C, 76, p. 25
  • Crivellin, A., D'Eramo, F., Procura, M., New Constraints on Dark Matter Effective Theories from Standard Model Loops (2014) Phys. Rev. Lett., 112, p. 191304
  • D'Eramo, F., Procura, M., Connecting dark matter UV complete models to direct detection rates via effective field theory (2015) J. High Energy Phys., 4, p. 054
  • https://cds.cern.ch/record/2202407

Citas:

---------- APA ----------
(2017) . Search for dark matter in association with a Higgs boson decaying to two photons at √s=13 TeV with the ATLAS detector. Physical Review D, 96(11).
http://dx.doi.org/10.1103/PhysRevD.96.112004
---------- CHICAGO ----------
Aaboud, M. "Search for dark matter in association with a Higgs boson decaying to two photons at √s=13 TeV with the ATLAS detector" . Physical Review D 96, no. 11 (2017).
http://dx.doi.org/10.1103/PhysRevD.96.112004
---------- MLA ----------
Aaboud, M. "Search for dark matter in association with a Higgs boson decaying to two photons at √s=13 TeV with the ATLAS detector" . Physical Review D, vol. 96, no. 11, 2017.
http://dx.doi.org/10.1103/PhysRevD.96.112004
---------- VANCOUVER ----------
Aaboud, M. Search for dark matter in association with a Higgs boson decaying to two photons at √s=13 TeV with the ATLAS detector. Phy. Rev. D. 2017;96(11).
http://dx.doi.org/10.1103/PhysRevD.96.112004