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Povzetek

Magistrska naloga obravnava kratkotrajno vizualno sledenje objektov s pomo-

čjo deformabilnih modelov z regijami. Ti modeli kažejo izjemen potencial pri

naslavljanju nerigidnih deformacij in delnega zakrivanja objektov, vendar se

pogosto odrežejo slabše od holističnih pristopov, ki objekt modelirajo z enim

samim globalnim modelom izgleda. Običajno so vzrok za slabše delovanje

veliko število prostih parametrov, ki jih sledilnik ocenjuje, in poenostavitve v

topologiji konstelacije, ki so potrebne za delovanje v realnem času. Pogosto so

tudi geometrijske in vizualne omejitve kombinirane neprincipelno. Za razliko

od opisanih pristopov v nalogi predstavljamo generativni model, ki vizualne

in geometrijske omejitve združuje v sistem vzmeti s konveksno energijsko

funkcijo. Predlagamo tudi optimizacijsko metodo, ki učinkovito minimizira

energijo polno povezanega sistema vzmeti. Predlagano metodo primerjamo z

obstoječim optimizacijskim pristopom, ki ga naša metoda presega tako v smi-

slu hitrosti kot tudi numerične stabilnosti. V nalogi predlagamo sledilnik z

deli, ki kombinira dve stopnji podrobnosti vizualnega modela, in sicer grobo-

in srednjenivojsko predstavitev tarče. Za lokalizacijo regij na srednje-nivojski

predstavitvi uporabimo predlagano rešitev hitre optimizacije sistema vzmeti.

Razvit sledilnik rigorozno primerjamo s trenutno najbolǰsimi metodami sle-

denja znotraj tekmovanja VOT2014, ter analiziramo sestavne dele sledilnika,

saj primerjamo vpliv posameznih komponent na samo delovanje. Rezultati

kažejo, da je predlagan sledilnik bolǰsi tako od testiranih holističnih sledilni-

kov, kot tudi od najbolǰsih objavljenih sledilnikov na VOT2014, ki temeljijo

na regijah. Poleg tega sledilnik deluje v realnem času.
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Ključne besede

računalnǐski vid, vizualno sledenje objektom, deformabilni modeli, korelacijski

filtri, sistemi vzmeti



Razširjeni Povzetek

Vizualno sledenje objektov je eden od temeljnih problemov računalnǐskega

vida. Na kratko lahko povzamemo problem sledenja kot iskanje položaja

objekta skozi sekvenco slik. Avtomatsko sledenje izkazuje svoj potencial

v velikem številu aplikacij, saj se pogosto uporablja v nadzornih sistemih,

urejanju videa ali vmesnikih za komunikacijo z računalnikom. Problem vi-

zualnega sledenja je zahteven zaradi številnih sprememb, ki se lahko med

sledenjem pojavijo. Objekt lahko spremeni svoj izgled (npr. se deformira)

ali pa ga delno ali popolno zakrije drug objekt. Zaradi spremenjene razdalje

sledečega objekta do kamere prihaja do sprememb v velikosti objekta na sliki.

Objekt oziroma kamera se običajno tudi premikata po sceni, kar še dodatno

otežuje sledenje. V nalogi obravnavamo kratkotrajno sledenje ene tarče z eno

kamero. Sledilnik uvrščamo med kratkotrajne, saj mora napovedati pozicijo

objekta za vsako sliko v sekvenci, medtem pa ne izvaja ponovne detekcije

tarče. Poleg tega ima sledilnik še to omejitev, da je edina informacija, ki jo

dobi na začetku, zgolj položaj objekta v prvi sliki. Prav tako sledilnik ne

sme uporabljati informacije iz bodočih slik v sekvenci.

V zadnjem času je kratkotrajno vizualno sledenje deležno precej pozor-

nosti s strani raziskovalcev, saj je bilo organiziranih nekaj tekmovanj, ki

primerjajo najbolǰse sledilnike [1, 2, 3]. Rezultati tekmovanj kažejo, da dve

skupini sledilnikov dosegata precej dobre rezultate, in sicer holistični sledil-

niki ter tisti, ki sledijo s pomočjo regij. Oba pristopa sta prikazana v Sliki 1.

iii
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Holistični vizualni model Vizualni model z regijami

Slika 1: Razlika med holističnim vizualnim modelom (levo) z globalno pred-

stavitvijo tarče in modelom z regijami (desno), ki pokriva tarčo z več pove-

zanimi deli.

Holistični sledilniki predstavijo tarčo globalno, z eno regijo, čemur rečemo

tudi holistični vizualni model. Rezultati kažejo, da je ta skupina sledilnikov

sposobna zelo robustno slediti objektu, saj je število prostih parametrov, ki

jih je potrebno oceniti, tipično majhno. Poleg tega vizualni model pokriva

celoten objekt. Kljub temu imajo ti sledilniki v določenih situacijah težave.

Ker se učijo izgleda celotne tarče, tipično niso sposobni zaznati zakrivanja,

zato se vizualni model v teh primerih lahko pokvari, kar se odraža v slabših

rezultatih sledenja ter celo odpovedi sledilnika. Holistični sledilniki običajno

nenaravno naslavljajo spremembo velikosti objekta, saj bodisi sledijo z ne-

spremenjeno velikostjo regije ali pa izčrpno preiskujejo čez različne skale v

vsaki sliki [4, 5, 6]. Te probleme naslavljajo sledilniki z regijami, ki so opi-

sani v nadaljevanju. Holistični sledilniki se, glede na to, kako formulirajo

lokalizacijo objekta v sliki, delijo na dve skupini: generativne in diskrimina-

tivne. Generativni sledilniki učijo vizualni model izgleda tarče, na podlagi

katerega ǐsčejo najbolj podobno regijo v sliki. Primeri takih sledilnikov so

predstavljeni v [7], kjer se za predstavitev tarče uporablja barvni histogram,

ali pa podprostorske metode predstavljene v [8, 9, 10]. Nekateri avtorji pre-

dlagajo kombinacijo različnih značilnic, npr. [11, 7]. Generativni sledilniki

imajo tudi določene pomanjkljivosti, saj za uspešno sledenje zahtevajo veliko
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število učnih primerov. Ob večjih spremembah izgleda objekta pogosto od-

povejo. Poleg tega pa ne uporabljajo informacije o ozadju v sliki, kar lahko

izbolǰsa rezultat sledenja. Zadnji problem naslavljajo diskriminativni sledil-

niki, ki sledenje predstavijo kot klasifikacijski problem, v katerem poizkušajo

čim bolje ločiti objekt od ozadja. V to skupino spadajo sledilniki, ki delujejo

s pomočjo metode podpornih vektorjev [12], Adaboost [13] in učenje z več

instancami [14]. V zadnjem času so zelo dobre rezultate dosegli sledilniki,

ki delujejo na podlagi strukturiranih podpornih vektorjev (Struck) [15] in

korelacijskih filtrov [16, 4, 5, 17, 18]. Tem sledilnikom je skupno učenje z

regresijo. Bolme et al. [16] je eden prvih, ki je sledenje predstavil s korela-

cijskim filtrom. Njegovo delo je bilo v nadaljevanju nadgrajeno v različnih

sledilnikih [4, 5, 17, 18].

Sledilniki, ki sledijo s pomočjo regij, predstavijo tarčo z več regijami po-

vezanimi v konstelacijo za zagotavljanje geometrijskih omejitev. Ti sledilniki

tipično uspešno naslavljajo pojav zakrivanja med sledenjem, saj objekt, ki

zakriva tarčo, vpliva le na določeno število regij in tako ne pokvari celotnega

modela. Običajno so uspešni tudi pri obvladovanju deformacij objekta. Sle-

denje z regijami je predstavljeno v [19, 20], kjer je tarča predstavljena z veli-

kim številom manǰsih regij, med sledenjem pa se iz konstelacije avtomatično

odstranjujejo neinformativne regije ter dodajo nove. Podoben princip upora-

blja sledilnik LGT [21], ki za sledenje uporablja dve plasti, regijam na lokalni

plasti pa je dodana lokalna povezanost, ki zagotavlja geometrijske omejitve.

V magistrski nalogi predlagamo nov sledilnik, ki za razliko od obstoječih

pristopov predstavi geometrijske in vizualne omejitve z enotnim, polno po-

vezanim sistemom vzmeti. Vzmeti med seboj povezujejo regije, ki niso zelo

majhne v primerjavi z velikostjo tarče, ampak vsaka predstavlja približno

četrtino objekta.

Predlagani sledilnik je sestavljen iz dveh plasti, njegovo delovanje pa je

prikazano na Sliki 2. Zaradi dvoplastne arhitekture je poimenovan dvoslojni

deformabilni sledilnik z deli (angl., layered deformable parts tracker, LDP).

Prva plast je groba reprezentacija tarče, ki skrbi za približno lokalizacijo
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objekta, druga plast pa je srednjenivojska reprezentacija, katere naloga je

upoštevanje deformacije objekta in prilagajanje njegove velikosti. Obe plasti

sta opisani v nadaljevanju.

Groba lokalizacija

Inicializacija
srednje-nivojskih regij

Formulacija sistema
vzmetiMinimizacija energije

Rezultat iz t-1 Nova slika

Posodobitev
konstelacije

Posodobitev
vizualnih modelov

Končna pozicija
objekta

t-1 t

tt

t

t

t

=

1

34

5 6

2

?

Slika 2: Vizualizacija sledenja s sledilnikom LDP.

Groba reprezentacija tarče je sestavljena iz dveh komponent, globalne

vizualne predstavitve tarče in globalnega barvnega modela, ki je sestavljen

iz barvnih histogramov objekta in ozadja. Oba modela sta uporabljena na

vsakem koraku sledenja za ocenitev položaja sredǐsča objekta. Ocena je

predstavljena kot položaj maksimalne vrednosti v verjetnostni mapi, dobljeni

z modeloma. Globalni vizualni model je predstavljen kot korelacijski filter

KCF [4], globalni barvni model pa kot barvni histogram tarče in barvni

histogram njene neposredne okolice. Verjetnostna mapa je izračunana kot

produkt rezultata obeh modelov.

Srednjenivojska reprezentacija tarče je sestavljena iz množice Np srednje
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velikih regij (v našem primeru Np = 4), ki so povezane s sistemom vzmeti.

Porazdelitev za stanje sistema vzmeti, ki je določeno s položajem regij Xt =

{x(i)
t }i=1:Np , je definirana kot

p(Xt|Yt,Θ) ∝ p(Yt|Xt,Θ)p(Xt,Θ). (1)

Porazdelitev p(Yt|Xt,Θ) predstavlja vizualne omejitve, določene z meritvami

Yt, porazdelitev p(Xt,Θ) pa predstavlja geometrijske omejitve določene s pa-

rametri deformacijskega modela Θ, definiranega kot sistem vzmeti. Oba tipa

omejitev sta modelirana z normalno porazdelitvijo, zato jih lahko obravna-

vamo v enem sistemu, in sicer kot produkt verjetnosti. Ta predpostavka nas

pripelje do eksponentne verjetnosti p(Xt|Yt,Θ) ∝ exp(−E), kjer je člen E

modeliran kot funkcija

E =
1

2

∑
i=1:Np

k
(i)
t

d(i)t

2

+
∑
i,j∈L

k
(i,j)
t (µ

(i,j)
t −

d(i,j)t

)2, (2)

ki predstavlja energijsko funkcijo sistema vzmeti. Geometrijske omejitve so

definirane kot dinamična vozlǐsča (krogi na Sliki 3), vizualne omejitve pa kot

statična vozlǐsča v sistemu vzmeti (črni kvadrati na Sliki 3). Leva (zunanja)

vsota v (2) predstavlja vizualne omejitve (statične vzmeti), desna (notra-

nja) vsota pa geometrijske omejitve (dinamične vzmeti). Oznaki k
(i)
t in d

(i)
t

predstavljata prožnostni koeficient in dolžino statične vzmeti. Dinamična

vzmet, ki povezuje i-to in j-to dinamično vozlǐsče je določena s prožnostnim

koeficientom k
(i,j)
t , nominalno dolžino µ

(i,j)
t in trenutno dolžino vzmeti d

(i,j)
t .

Za minimizacijo energijske funkcije iz (2) se običajno uporabljajo metode,

ki temeljijo na odvodu funkcije, kot je na primer metoda konjugiranih gra-

dientov (CGD). Ker pa za enodimenzionalni sistem vzmeti obstaja direktna

oblika rešitve, se lahko ta lastnost uporabi pri optimizaciji dvodimenzional-

nega sistema in tako doseže hitreǰse delovanje. Predlagamo iterativno direk-

tno metodo za optimizacijo sistema vzmeti. Metoda v vsaki iteraciji razbije

sistem na dva enodimenzionalna sistema vzmeti in ju reši z direktno metodo.

V naslednjem koraku se sistema združita v enega dvodimezionalnega. Ker je

energijska funkcija sistema vzmeti konveksna, algoritem v končnem številu

korakov deseže minimum.
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Konstelacijski model Pripadajoči sistem vzmeti

Dinamična
vzmet

Statična
vzmet

Slika 3: Primer konstelacijskega modela s pravokotnimi regijami in

puščicami, ki kažejo proti vizualno najbolj podobnim pozicijam (levo), ter

pripadajoč sistem vzmeti (desno).

Delovanje sledilnika je analizirano in primerjano s trenutno najbolǰsimi

obstoječimi metodami za vizualno sledenje na sistemu VOT2014 [3]. Sistem

je sestavljen iz zbirke 25 sekvenc, ki vsebujejo scene iz različnih domen. Na

vsaki sliki iz zbirke je izračunano prekrivanje regije, ki jo napove sledilnik z

anotirano regijo. Ko prekrivanja ni več, sistem zabeleži odpoved sledilnika,

sledenje pa se nadaljuje čez pet slik. Delovanje sledilnika je ovrednoteno na

podlagi dveh mer, robustnosti in natančnosti. Robustnost predstavlja število

odpovedi sledilnika na neki sekvenci, natančnost pa povprečno prekrivanje

regije, ki jo napove sledilnik z anotiranimi regijami. Sestavni deli sledilnika in

njihov vpliv na sledenje so analizirani tako, da so različne variante sledilnika

LDP primerjane znotraj sistema VOT2014. Predlagan sledilnik s štirimi re-

gijami je označen z oznako LDP, sledilnika s tremi oziroma devetimi regijami

sta označena z LDP-3 oziroma LDP-9. Sledilnik brez segmentacije na grobi

predstavitvi je označen z LDP-nosegm, sledilnik LDP-nomid je sestavljen

brez srednjenivojske predstavitve, LDP-nosprings je sledilnik brez sistema

vzmeti ter LDP-root-only predstavlja sledilnik z zgolj vizualnim modelom

na grobi predstavitvi (torej brez segmentacije in brez srednjenivojske pred-
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stavitve). Sledilnika LDP-star in LDP-pairwise sta sledilnika s spremenjeno

topologijo sistema vzmeti. Zvezdasta topologija je označena z oznako LDP-

star, medtem ko LDP-pairwise predstavlja sledilnik s topologijo, ki sta ji

odvzeti diagonalni vzmeti. Primerjava rezultatov je prikazana na AR-grafu,

na Sliki 4. Na abscisni osi je podano povprečno število odpovedi sledilnika

(robustnost), na ordinatni osi pa povprečno prekrivanje regije z anotiranimi

vrednostmi (natančnost). Vrednosti so uteženo povprečene čez sekvence,

utež pa je proporcionalna dolžini posamezne sekvence. Idealna pozicija v

grafu je zgornji levi vogal, ki predstavlja nič odpovedi in 100 % povprečno

prekrivanje. Rezultati kažejo, da se sledilnik LDP z vsemi komponentami

odreže najbolje od vseh variant.

Robustnost
0 0.2 0.4 0.6 0.8 1 1.2

N
a
ta

n
č
n
o
s
t

0

0.1

0.2
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0.4
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0.6

0.7

0.8

0.9

1

LDP
LDP-3
LDP-9
LDP-nosprings

LDP-root-only

LDP-nosegm.

LDP-nomid

LDP-star

LDP-pairwise

Slika 4: Primerjava rezličnih variant sledilnika LDP. Na grafu sta prikazana

robustnost (povprečne število odpovedi) in natančnost.

Primerjava predlaganega sledilnika z obstoječimi metodami za vizualno

sledenje je prav tako izvedena na sistemu VOT2014. Rezultati so, podobno

kot rezultati analize sestavnih delov sledilnika, prikazani na AR-grafu na

Sliki 5. Opaziti je mogoče, da je sledilnik LDP najbližje točki idealnega sle-
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denja, saj je po natančnosti primerljiv z najnatančneǰsimi sledilniki, medtem

ko je bistveno bolǰsi v robustnosti.

0 0.5 1 1.5 2 2.5 3
0
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Robustn ( )ost povprečno število odpovedi
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LDP
DSST
KCF
SAMF
DGT
Struck
TGPR

STC
LGT
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CT
IVT
MIL

Točka najboljšega delovanja

Slika 5: Graf prikazuje vsak sledilnik kot točko v prostoru natačnost/število

odpovedi. Vrednosti so povprečene preko sekvenc.

VOT2014 nudi tudi analizo sledilnikov in razvrstitev v obliki tekmova-

nja. Rezultat primerjave sledilnika LDP z ostalimi je prikazan v Tabeli 1,

kjer številke prikazujejo povprečne razvrstitve po sekvencah (prvi stolpec)

oziroma po vizualnih atributih (drugi stolpec). Vizualni atributi predsta-

vljajo sestavni del vsake sekvence v podatkovni zbirki tako, da je za vsako

sliko podano, kateri atributi so prisotni. Rezultati kažejo, da sledilnik LDP

v povprečju doseže najbolǰso uvrstitev med primerjanimi.
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sekvence viz. atributi skupaj

sledilnik A R Av A R Av Av

LDP 2.60 1.80 2.20 2.00 1.67 1.83 2.02

KCF 1.96 3.16 2.56 1.17 2.50 1.83 2.20

DSST 2.40 2.96 2.68 1.17 2.33 1.75 2.21

SAMF 2.24 3.16 2.70 1.33 2.50 1.91 2.31

DGT 3.88 2.48 3.18 3.50 2.50 3.00 3.09

TGPR 3.76 4.8 4.28 5.00 4.33 4.66 4.47

LGT 6.20 3.40 4.80 7.33 1.33 4.33 4.56

Struck 4.64 5.72 5.18 4.67 4.83 4.75 4.96

PT 5.48 5.20 5.34 5.33 4.67 5.00 5.17

STC 5.76 6.96 6.36 6.17 9.33 7.75 7.05

IVT 6.32 7.72 7.02 6.83 9.17 8.00 7.51

MIL 8.32 5.92 7.12 10.17 6.50 8.33 7.73

CT 7.60 7.08 7.34 9.17 7.50 8.33 7.84

Tabela 1: Razvrstitve sledilnikov glede na natančnost (A), robustnost (R) in

povprečje obeh vrednosti (Av). Manǰsa vrednost razvrstitve pomeni bolǰso

uvrstitev in s tem bolǰse delovanje. Zadnji stolpec predstavlja povprečje

obeh vidikov razvrščanja sledilnikov (po sekvencah in po vizualnih atributih).

Najbolǰsi rezultat v vsakem stolpcu je obarvan rdeče, drugi modro in tretji

zeleno.

Predlagana optimizacijska metoda IDA za minimizacijo energijske funk-

cije sistema vzmeti je primerjana z metodo konjugiranih gradientov (CGD)

po številu iteracij potrebnih za konvergenco, energiji, ki ostane v sistemu po

optimizaciji, in po času potrebnem za optimizacijo. Rezultati obeh metod

so prikazani v Tabeli 2 in so dobljeni tako, da so povprečeni preko sto tisoč

različnih, naključno generiranih sistemov vzmeti. Primerjava prikazuje, da

metoda IDA dosega primerljivo končno energijo sistema s približno pol manj

iteracijami kot metoda CGD. Zadnji stolpec v Tabeli 2 prikazuje, da metoda

IDA potrebuje povprečno 3ms za optimizacijo, medtem ko je metoda CGD
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več kot trikrat počasneǰsa.

Število iteracij Energija Čas

Metoda Povpr. St. dev Mediana Povpr. St. dev Mediana Povpr. [ms]

IDA 12.75 9.32 10 1.22 3.34 0.83 2.92

CGD 28.01 9.90 28 1.28 3.34 0.83 9.72

Tabela 2: Primerjava predlagane iterativne optimizacijske metode (IDA) in

metode konjugiranih gradientov (CGD).



Abstract

This thesis addresses short-term visual object tracking by deformable parts

models (DPM). The DPMs show a great potential in addressing non-rigid

object deformations and self-occlusions, but according to recent benchmarks,

they often lag behind the holistic approaches, which model an object with

a single appearance model. The reason is that potentially large number

of parameters in constellation needs to be estimated for target localization

and simplifications of the constellation topology are often assumed to make

the inference tractable. Furthermore, the visual model and geometric con-

straints are usually combined in an ad-hoc fashion. In contrast to related

approaches, we present a generative model that jointly treats contributions

of the visual and of the geometric model as a single physics-based spring

system with a convex energy function. An efficient optimization method is

proposed for this dual form that allows MAP inference of a fully-connected

constellation model. The proposed optimization method is compared to the

existing optimization approach and outperforms it in terms of stability and

efficiency. In the thesis we propose a part-based tracker that combines two

visual representations of the target, i.e., coarse and mid-level representation.

The proposed optimization method is used for target localization on the mid-

level representation. The resulting tracker is rigorously analyzed on a highly

challenging VOT2014 benchmark, it outperforms the related part-based and

holistic trackers including the winner of the VOT2014 challenge and runs in

real-time. The design of the proposed tracker is analyzed by an analysis of

each component of the tracker.
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Chapter 1

Introduction

Visual object tracking is one of the fundamental problems in computer vi-

sion. Knowing the position of the object in current (i-th) frame, the task

is to determine the location of the object in the next frame, as shown in

Figure 1.1. Estimating the trajectory of an object through the sequence of

frames appears in many real-world problems, therefore it is interesting and

highly useful for numerous applications e.g., surveillance systems, gesture

recognition, video editing or interfaces for computer-human interaction. The

problem of visual tracking is challenging for numerous reasons: the object

can change its appearance (e.g., deformation), it can be occluded by an-

other object or by itself (self-occlusion) and it can change its size due to

the changed distance from the camera. Furthermore, camera or object often

move and also the illumination of the scene can change significantly during

tracking. Visual tracking includes tracking of one (single-target) or many

targets (multi-target). It differs also by the modalities used, typically by

tracking with one (single-camera) or many cameras (multi-camera). Visual

trackers are devided into two groups by the intention of tracking. Short-term

trackers do not perform reinitialization of the target when it is lost and out-

put the target position at every frame. On the other hand, long-term trackers

automatically detect when target is lost or outside the frame and perform

re-detection of the target. This thesis addresses short-term, single-camera,

1
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t+1

t

?

Figure 1.1: Main task in visual tracking: given two sequential frames from

a video and the position of an object in t-th frame, the position of an object

in frame t+ 1 is estimated.

single-target, model-free, causal visual tracking. The model-free property

means that except from the position of the object in the first frame, no prior

knowledge of the object is given. The causality of the tracker represents that

no future frames or frames prior the initialization are used.

Short-term single-target visual tracking has received a significant atten-

tion over the last decade and recently several papers reporting experimen-

tal comparison of trackers on a common testing ground have been pub-

lished [1, 22, 2, 3]. Results show that tracking quality depends highly on

the expressiveness of the feature space in the target appearance model and

the inference algorithm that converts the features into a score of target pres-

ence. Most of the popular trackers apply holistic visual models which cap-

ture the target appearance by a single patch. In combination with efficient

machine-learning and signal processing techniques from online classification

and regression, these trackers exhibited top performance across all bench-

marks [15, 14, 13, 16]. Most of these approaches localize the target by sliding

windows and some apply a greedy search over nearby scales [5, 17, 4, 6] to

address the scale change as well.

Nevertheless, a single patch often poorly approximates the targets that

undergo significant deformation, self-occlusion and partial occlusions, lead-

ing to drift and eventual failure. These situations are conceptually better ad-
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dressed by part-based models that decompose the target into a constellation

of parts. These types of trackers show a great potential in tracking non-rigid

objects, but the performance often falls behind the holistic models [3], which

is due to the large number of free parameters estimated in the deformation

model. Most part-based trackers use very small parts, apply low-level fea-

tures for the visual models, e.g., histograms [21, 23] or keypoints [24, 25] and

increase their discrimination power by increasing the number of parts. The

target is localized by optimizing a tradeoff between the visual and geometric

agreement. For tractability, most of the recent trackers use star-based topol-

ogy, e.g. [23, 26, 27, 28, 29, 24], or local connectivity, e.g. [21], instead of

a fully-connected constellation [25], but at a cost of a reduced power of the

geometric model.

1.1 Our approach and contributions

Our main contribution is a new class of fully-connected part-based trackers

for robust tracking. In contrast to using a large number of small detailed

parts, a small set of fully connected mid-level parts is used. Note that many

approaches claim using a spring-like model on geometry only and apply ad-

hoc combination with the visual models often leading to nonconvex optimiza-

tion. In contrast we show that the geometric and visual constraints can be

jointly modeled by a single equivalent physical spring system and the MAP

inference is achieved by minimizing a convex cost function. To the best of our

knowledge, this is the first work to efficiently jointly treat the visual and the

geometric constraints within a single spring system. The proposed tracker

combines a coarse object representation with a mid-level deformable parts

model in top-down localization and bottom-up updates (Figure 1.2). The

coarse model initializes the mid-level representation at approximate object

location. An equivalent spring system is formed and optimized, yielding a

MAP constellation estimate. The parts are updated and the estimated con-

stellation is used to update the coarse representation. Due to the two-layer
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architecture, the proposed tracker is called Layered Deformable Parts tracker

(LDP). Our tracker is rigorously compared against a set of state-of-the-art

Coarse localization

Initialize mid-level partsForm a spring systemMinimize the energy

Result from t-1 New frame

Update the constellation Update the visual models The output bounding box

t-1 t

tt

t

t

t

=

1

34

5 6

2

?

#5 #26 #57 #219

Figure 1.2: Illustration of coarse-to-fine tracking by spring system energy

minimization in a deformable part model (top). Tracking examples with

our tracker LDP (yellow), KCF (red), IVT (blue) and Struck (magenta) are

shown in the bottom.

trackers on a highly challenging recent benchmark VOT2014 [3] and outper-

forms all trackers, including the winner of the VOT2014 challenge. Addi-

tional tests show that improvements come from the fully-connected constel-

lation and the top-down/bottom-up combination of the coarse representation

with the proposed deformable parts model.
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1.2 Thesis outline

The remainder of the thesis is organized as follows. Chapter 2 describes

related work and presents different tracking approaches. Chapter 3 details

an approach for fast learning of so-called correlation filters that we use for

part localization and learning in the proposed tracker. Chapter 4 presents the

proposed part-based tracker and provides important implementation details.

In Chapter 5 experimental results are presented. Our tracker is evaluated

on VOT2014 [3] benchmark which is described in Section 5.2. Analysis of

the tracker is presented in Section 5.3 and in Section 5.4 comparison with

state-of-the-art trackers is given. In Chapter 6 we draw the conclusion and

discuss the future work.
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Chapter 2

Related work

This section overviews the most related works and points out the differences

with our approach. Depending on the approach for target localization, the

trackers are divided into two classes: (i) generative trackers and (ii) discrim-

inative trackers. If the target is modeled as a whole, the visual model is

treated as holistic (see Figure 2.1 left), while if it is modeled with several

parts, the approach is called part-based visual model (see Figure 2.1 right).

Both approaches with the state-of-the-art methods are described in the fol-

lowing.

Holistic visual model Part-based visual model

Figure 2.1: Difference between holistic visual model (left) where target

is modeled globally and part-based visual model (right) with many small

patches modeling local parts of the target.

7
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2.1 Holistic trackers

Holistic models are known by the robust tracking, because of the small num-

ber of free parameters which need to be estimated and they cover the whole

target by the global visual model. Holistic visual models also have some

issues: they do not explicitly address partial occlusion and object changes

e.g., deformation. Occlusion is especially problematic since even partial oc-

clusion with another object corrupts the entire visual model, which leads to

reduced performance and potential failure. Another issue of holistic trackers

is scale change adaptation which is also not addressed naturally. In par-

ticular, holistic trackers track with the fixed bounding box or they adapt

size with exhaustive search over nearby scales [4, 5, 6]. Trackers that apply

holistic models can be divided into two classes, generative and discrimina-

tive, depending on the formulation of the target localization by their visual

model. Most related holistic trackers from these two classes are reviewed in

the following.

2.1.1 Generative models

Generative models typically learn a target appearance model and localize it

by finding an image position that maximizes the similarity between the model

with the features extracted at that position. Early work in holistic mod-

els explored generative models like color histograms [7] and subspace-based

templates [8, 9] or sparse reconstruction templates [10]. Black et al. [30] pre-

sented generative eigen-tracker which learns an eigenspace to represent the

object. Mei et al. [31] proposed a tracker using ℓ1 minimization within a

particle filter framework [32]. To reduce computational complexity of a ℓ1

tracker, dimensionality reduction and orthogonal matching pursuit algorithm

was used in [33]. Several authors applied feature combination [7, 11] and re-

cently Gaussian process regression was proposed for efficient updating [34].

Generative trackers have the following common issues. They need a lot of

training examples extracted from an image to learn appearance model which
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can lead to slow performance. They tend to drift from target at significant

appearance changes of an object. They also do not use visual information of

background surrounding an object, which can often help to improve track-

ing performance. The latter issue is better addressed by the discriminative

trackers.

2.1.2 Discriminative models

Trackers with discriminative models formulate tracking as a classification

problem. In these models, an online classifier is trained during tracking

and the target is localized by trying to find a boundary between the object

and the background as accurate as possible. Early work includes support

vector machines (SVM) [12], Adaboost [13] and multiple-instance learning

(MIL) [14] which require to set the class label to each training sample. Kalal

et al. [35] presented positive-negative learning process where samples are la-

beled via classifier using structural constraints. Saffari et al. [36] proposed

random forest algorithm combined with on-line bagging, random feature se-

lection and an on-line tree building approach. Wu et al. [37] tracked using

the image alignment method. Their approach seeks for an optimal image

transformation such that the transformed image can be decomposed as the

sum of a sparse error and a linear decomposition of well-aligned basis set by

solving a sequence of convex optimization problems. Recently excellent per-

formance was demonstrated by structured SVMs [15]. The crucial difference

to standard classifiers like SVM and Adaboost is that the training labels are

no longer hard-assigned to positive and negative classes, but are rather con-

tinuous values between zero and one. Bolme et al. [16] proposed regression-

based discriminative model resulting in discriminativelly trained correlation

filters that minimize the output sum of squared errors. These filters have

been recently extended to multivariate features e.g., color [38], HoG [39],

outperforming the related approaches on various benchmarks. Henriques et

al. [4] combined correlation filters with kernels to achieve more accurate ob-

ject localization. This work was extended by Li et al. [17] to address scale
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adaptation. Danelljan et al. presented a correlation filter-based tracker with

the ability to accurate address scale change problem [5]. Zhang et al. [18]

adapted the correlation filters to spatio-temporal context learning.

2.2 Part-based trackers

Part-based models are constellations of (generative or discriminative) holistic

models and vary in modeling the constellation geometric properties. An

example of part-based model is shown on Figure 2.1 (right). Since the target

is modeled with more than one part, they usually successfully address the

partial occlusion problem. When this happens, there are usually only a few

parts under occlusion, but the majority of them is not. Part-based models

are typically successful in handling the object deformations. But because of

the larger number of free parameters, they usually do not achieve as accurate

performance as holistic trackers.

Hoey [19] proposed a flock-of-features tracking in which parts are indepen-

dently tracked by optical flow. The flock is kept on target by identifying parts

that deviate too far from the flock and replacing them with new ones. But

because of weak geometric constraints, tracking is prone to drifting. Martinez

et al. [20] proposed connecting triplets of parts and tracked them by kernels

while enforcing locally-affine deformations. The local connectivity resulted

in inefficient optimization and parts required careful manual initialization.

Artner et al. [25] proposed a key-point-based tracker with a fully-connected

constellation. They use a geometric model that enforces preservation of inter-

keypoint distance ratios. Because the ratios are not updated during tracking

and due to the ad-hoc combination of geometric and visual models, the re-

sulting optimization is quite brittle, requiring manual initialization of parts

and the resulting tracker handles only moderate locally-affine deformations.

Pernici et al. [40] address nonrigid deformations by oversampling key-points,

apply multiple instances of target models and use a similarity transform

for matching. But, the tracker still fails at significant nonrigid deformations.
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Several works simplify a geometric model to a star-based topology in interest

of simplified optimization. A number of these works apply part detectors and

a generalized Hough transform for localization. Examples of part detectors

are key-points [24], random forest classifiers [28], ferns [41] and pixels [42].

Cai et al. [26] apply superpixels as parts combined with segmentation for ef-

ficient tracking, but the high reliability on color results in significant failures

during illumination changes. Kwon et al. [23] apply generative models in a

star-based topology with adding and removing parts and Cehovin et al. [21]

increase the power of the geometric model by local connectivity. Both ap-

proaches require efficient stochastic optimizers for inference. Yao et al. [27]

address the visual and geometric model within a single discriminative frame-

work. They extend the structured SVM [15] to multiple part tracking, but

cannot handle scale changes. This model was extended by Zhu et al. [29] to

account for context as well, but uses a star-based topology for making the

inference tractable.

In contrast to these approaches, we treat the visual and geometric de-

formations within a generative framework of a single spring system with

fully-connected mid-level parts. The resulting model naturally addresses the

aspect and scale changes as well as occlusion, affords efficient optimization

and runs in real-time.
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Chapter 3

Correlation filters

The visual model of our tracker is based on the holistic correlation filter

trackers [4]. In the recent benchmarks [3, 1], these trackers have achieved

a state-of-the-art performance, while running faster than real-time. In this

chapter we give full exposition of this important class of trackers.

Let I be an image in which the target is to be localized and let h be an

appropriate filter. The localization is performed via convolution, i.e.,

g = h ∗ I, (3.1)

where g is the output of the same size as the input image, preferably zero

everywhere, except at the location of the target (see Figure 3.1). The main

challenge in the correlation filter tracking is then finding a filter h, that

produces a desired response g when convolved over an image I. To address

this challenge, the particular property of convolution under Fourier transform

is used. The convolution of the two signals in spatial domain corresponds

to the dot product of two signals in Fourier domain. Let ĥ be a Fourier

transform of the signal h, i.e.,

ĥ = F(h). (3.2)

In the following the symbol (̂·) will be used to denote Fourier transform of

a signal. The Fourier transform of the optimal filter is obtained by applying

13
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Fourier transform to (3.1) and solving for ĥ, i.e.,

ĥ∗ =
ĝ

Î
, (3.3)

where division is performed element-wise and symbol (·)∗ represents the

complex-conjugate element. The desired (ideal) output g (also called labels)

is typically defined as a Gaussian function (see Figure 3.1).

25
20

15
10

5
030

20

10

0

0.2

0.4

0.6

0.8

1

0

Figure 3.1: Visualization of Gaussian-shaped ”labels” g, of each output

position. Correlation filter-based trackers typically model a filter, so that

the response of the convolution between filter and current patch is as similar

as possible to the Gaussian function on the image.

One of the first correlation filter-based trackers was presented by Bolme

et al., called MOSSE tracker [16]. When creating a filter ĥ, this tracker

minimizes the output sum of squared errors defined as

min
ĥ∗

∑
i

|̂Ii ⊙ ĥ∗ − ĝi|2, (3.4)

where i goes over the image elements and ⊙ represents the element-wise

multiplication.
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Henriques et al., built on MOSSE [16] and presented kernelized correlation

filter-based tracker (KCF) [4], which uses kernels for better target localiza-

tion and multivariate features. The KCF tracker is an essential part of our

proposed tracker and we detail it in Section 3.1. The KCF applies a powerful

and fast descriptor called the histogram of oriented gradients (HoG), which

is described in Section 3.2.

3.1 Tracking with kernelized correlation

filters

This section summarizes the kernelized correlation filters (KCF) and draws

heavily from the original paper [4]. The KCF takes advantage of the connec-

tion between linear regression and correlation filters using circulant matrices.

This property allows tracker to train the model on all translated positions

within the search region in real-time. A linear ridge regression is an extended

linear regression with an additional term which reduces the overfitting in

classification. Training is defined as finding a function f(z) = wTz that

minimizes the squared error over the samples xi and regression targets yi

min
w

∑
i

(f(xi)− yi)
2 + λ||w||2. (3.5)

Parameter λ is a regularization parameter that controls overfitting, similar as

regularization in the support vector machines (SVM). Note that i-th sample

xi is a n-dimensional feature vector extracted from image. Minimization can

be represented in a closed-form solution

w = (XTX+ λI)−1XTy, (3.6)

where X is the data matrix with one sample per row xi, and y is the vector

with regression target elements yi. The identity matrix is represented by I.

Since the fourier domain operates with the complex numbers, Equation (3.6)

can be written as

w∗ = (XHX+ λI)−1XHy, (3.7)
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where XH is the Hermitian transpose, XH = (X∗)T .

For understanding KCF fast implementation, terms of cyclic shifts and

circulant matrices need to be clarified. A 1D signal of length d, x ∈ Rd×1,

can be shifted by a single element via multiplication by a permutation matrix

P defined as

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 1

1 0 0 . . . 0

0 1 0 . . . 0
...

...
. . . . . .

...

0 0 . . . 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.8)

Translation of the object in the image patch can be modeled with the product

Px. Larger translations can be modeled using the power matrix Pux. The

full set of shifted signals can be obtained with the equation

{Pux|u = 0, . . . , n− 1}. (3.9)

An example of cycle-shifting the image is shown in Figure 3.2. Because of the

larger shifts, the warp-around effect happens, which is shown in Figure 3.3.

Figure 3.2: Vertically shifted base sample [4].

Using cycling shifts from (3.9) for rows, the following circulant matrix is

obtained

X = C(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 . . . xn

xn x1 x2 . . . xn−1

xn−1 xn x1 . . . xn−2

...
...

...
. . .

...

x2 x3 x4 . . . x1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.10)
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Figure 3.3: Each row of a circulant matrix represents a base sample (1D

signal in the first row) translated for 1-more element than in the signal a row

above it. Properties of circulant matrices can be used also on 2D images [4].

Matrix X is used to compute regression with shifted samples and since it is

a circulant matrix, the diagonalization can be done by the Discrete Fourier

Transform (DFT)

X = FHdiag(x̂)F, (3.11)

where F is the constant DFT matrix that does not depend on x. Using

properties of cycling shifts and circulant matrices, it was shown in [4] that

regression from (3.7) can be written as

ŵ∗ = diag

(
x̂∗

x̂∗ ⊙ x̂+ λ

)
ŷ =

x̂∗ ⊙ ŷ

x̂∗ ⊙ x̂+ λ
. (3.12)

For improved performance, the KCF tracker applies a non-linear regres-

sion. The linear ridge regression is transformed into a kernelized non-linear

regression using ”kernel-trick”. The kernel trick is a well-known approach

from machine learning that transforms a low dimensional feature into a high-

dimensional feature space ϕ(x). In fact, since all operations among the fea-

tures are in form of a dot product, it suffices to transform the outputs of

the dot products by kernels, thus avoiding explicit transformation of fea-

tures [43]. In particular, the weight vector w is rewritten (in the dual feature

space) as a linear combination

ŵ∗ =
∑
i

αiϕ(xi), (3.13)
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where α is the term that is being optimized. The dot-product among the

transformed features can be defined using kernel function as

ϕT (x)ϕ(x′) = κ(x,x′), (3.14)

where x and x′ are original feature vectors and κ(·, ·) is the kernel function

(e.g., Gaussian or polynomial). The dot-product between the pairs of samples

is defined as an element in matrix K,

Kij = κ(xi,xj). (3.15)

The regression function from (3.5) in dual feature space can be written as

f(z) = wTz =
n∑

i=1

αiκ(z,xi), (3.16)

and its closed-form solution is given as

α = (K+ λI)−1y, (3.17)

where K is the kernel matrix and α is the vector of coefficients αi that

represents the solution in the dual space. Since K is circulant, it is possible

to diagonalize (3.17) and represent it in the form

α̂∗ =
ŷ

k̂xx + λ
, (3.18)

where k̂xx is the first row of the kernel matrix K = C(kxx). In general,

vector kxx′
can be obtained with a kernel correlation. For two vectors x and

x′, the kernel correlation is defined as

kxx′

i = κ(x,Pi−1x′). (3.19)

The training in the KCF tracker is defined with the so-called kernel auto-

correlation and is given by

α̂∗ =
ŷ

F(exp(− 1
σ2 (||x||2 + ||x||2 − 2F−1(

∑
c x̂c ⊙ x̂∗

c)))) + λ
, (3.20)
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where xc is the c-th channel of the training image (or feature) patch.

Detection of the object in a new image is defined by

f̂(z) = (k̂xz)∗ ⊙ α̂, (3.21)

where z is the image patch extracted from current frame at the position of

the object in the previous frame. Equation (3.21) can be rewritten into the

full form, getting

f̂(z) = (F(exp(− 1

σ2
(||x||2 + ||z||2 − 2F−1(

∑
c

x̂c ⊙ ẑ∗c)))))
∗ ⊙ α̂. (3.22)
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Algorithm 1 : Main Matlab functions of the KCF tracker used for training

and tracking, appropriate for multi-channel features.
Input:

x: training image patch (m× n× c),

y: regression target, Gaussian-shaped (m× n),

z: test image patch (m× n× c)

Output:

responses: detection scores for each location (m× n)

function a lpha f = t r a i n (x , y , sigma , lambda )

k = k e r n e l c o r r e l a t i o n (x , x , sigma ) ;

a lpha f = f f t2 ( y ) . / ( f f t2 ( k ) + lambda ) ;

end

function r e sponse s = dete c t ( a lphaf , x , z , sigma )

k = k e r n e l c o r r e l a t i o n (x , z , sigma ) ;

r e sponse s = real ( i f f t 2 ( a lpha f .∗ conj ( f f t2 ( k ) ) ) ) ;

end

function k = k e r n e l c o r r e l a t i o n ( x1 , x2 , sigma )

c = i f f t 2 (sum( f f t2 ( x1 ) .∗ conj ( f f t2 ( x2 ) ) , 3 ) ) ;

d = x1 ( : ) ’ ∗ x1 ( : ) + x2 ( : ) ’ ∗ x2 ( : ) − 2∗ c ;
k = exp(−1/sigmaˆ2 ∗ abs (d) / numel (d ) ) ;

end
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For tracking in time-step t, the position pt−1 of an object at time-step

t−1 has to be given. The target model is represented as x̂t−1 and α̂t−1. The

result of tracking is a new position of the object pt, as well as updated x̂t

and α̂t. The Algorithm 2 summarizes the tracking process at the time-step

t on the image It, using functions from Algorithm 1.

Algorithm 2 : Localization of the target with the KCF tracker.

Require:

Image It, position of the object pt−1 at the time-step t − 1 and target

representations x̂t−1 and α̂t−1.

Ensure:

New position of the object pt at the current time-step t and updated x̂t

and α̂t.

Procedure:

1: Extract image patch zt from position pt−1 in the image It.

2: Extract features (e.g., HoG, color, grayscale, etc.) from the image patch

zt, multiply it with the cosine window and convert it to fourier domain,

obtaining x̂.

3: Calculate cross correlation using function detect. Finding the position

of cross correlation maximum response results in a position of the object

pt in the current frame.

4: Repeat steps 1 and 2 on the position pt, obtaining new x̂.

5: Calculate the new alpha α̂ according to (3.20), using function train.

Note that ŷ in (3.20) represents the target variable in Fourier domain

(e.g., Gaussian-shaped labels which are shown in Figure 3.1).

6: Update x̂t and α̂t using x̂ and α̂ with a running average

x̂t = (1− η)x̂t−1 + ηx̂,

α̂t = (1− η)α̂t−1 + ηα̂,
(3.23)

where η is a learning rate parameter.
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3.1.1 Improved KCF tracker

The KCF described so far follows the details from [4], but the authors made

three improvements for the VOT2014 Challenge [3] and they are described

in the following sections.

Scale adaptation

The scale adaptation problem is addressed by calculating the response on

multiple scales. Steps 1-3 in Algorithm 2 are repeated on a current scale

and also on one smaller and one larger scale. The scale with the highest

maximum response obtained with the function detect from Algorithm 1 is

chosen as the optimal scale.

Tracker updating

The update phase is modified so that numerator and denominator of the α̂∗

in (3.18) or (3.20) are learned separately. Equation for α̂∗ can be rewritten

into the form

α̂∗ =
A

B
,

A = ŷ,

B = F(exp(− 1

σ2
(||x||2 + ||x||2 − 2F−1(

∑
c

x̂c ⊙ x̂∗
c)))) + λ.

(3.24)

Taking into account also Gaussian kernel function, (3.24) is rewritten into

k = F(exp(− 1

σ2
(||x||2+||x||2 − 2F−1(

∑
c

x̂c ⊙ x̂∗
c)))),

A = ŷ ⊙ k,

B = k ⊙ (k + λ).

(3.25)

Update step is done in the same way as in (3.23) – both factors are updated

with a running average.
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Sub-cell peak estimation

The third improvement is sub-cell peak estimation [44] of the response map.

In each direction (horizontal and vertical) three pixels values of the response

around the maximum are extracted. Given the maximum pixel value p0,

two neighbouring pixel values are denoted p− and p+ (see Figure 3.4). Thus

given three pixel values, the interpolated peak location ∆p is obtained at the

maximum of the fitted parabola

∆p =
p+ − p−

4p0 − 2(p+ + p−)
. (3.26)

0 1-1

p
0

p
-

p
+

pΔ

Figure 3.4: Estimation of the ∆p, position of a peak of the curve fitted on

the three points.
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3.2 Histogram of oriented gradients

Histogram of oriented gradients (HoG) is a descriptor developed by Dalal

and Triggs [39], which won the PASCAL object detection challenge in 2006.

Felzenswalb et al. [45] increased performance of HoG descriptor by increasing

its speed and descripting power. They proposed a deformable parts model for

object detection with the ability of handling object deformation and multi-

scale changes of the object. Even though HoG was originally developed for

object detection problems, it can be used as a powerful descriptor for object

tracking. Calculation of the HoG descriptor is summarized by [45, 39] and

it can be divided into three steps, described in the following sections.

3.2.1 Pixel-level feature map

HoG descriptor is based on the image gradients which are efficiently com-

puted using finite difference filters [−1, 0, 1] and [−1, 0, 1]T . For color images,

the color channel with the largest magnitude is used to compute orientation

θ(x, y) and magnitude r(x, y) at a pixel (x, y). The gradient orientation is at

each pixel discretized into one of the q values using either a contrast sensitive

(B1) or contrast insensitive (B2) definition,

B1(x, y) = round(
qθ(x, y)

2π
) mod q, (3.27)

B2(x, y) = round(
qθ(x, y)

π
) mod q. (3.28)

Given b ∈ {0, . . . , q− 1} representing q orientation bins, a pixel-level feature

map that specifies a sparse histogram of gradient magnitudes at (x, y) is

defined as

F (x, y) =

{
r(x, y) if b = B(x, y)

0 otherwise.
(3.29)

Orientation edge map F can be represented as a w × h× q matrix, where w

and h are dimensions of an original image.
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3.2.2 Spatial aggregation

Given a pixel-level feature map F for a w × h image and parameter k > 0,

specifying the side length of a square image region, a dense grid of rectangular

”cells” is defined. Pixel-level features are aggregated to obtain a cell-based

feature map C, with feature vectors C(i, j) for 0 ≤ i ≤ ⌊(w − 1)/k⌋ and

0 ≤ j ≤ ⌊(h − 1)/k⌋. This aggregation provides some invariance to small

deformations and reduces the size of feature map.

Mapping each pixel to a cell is achieved by ”soft binning” presented in [39],

where each pixel contributes to the feature vectors in the four cells around

it using bilinear interpolation.

3.2.3 Normalization and truncation

Gradients are invariant to changes in bias and this invariance can be achieved

via normalization. As in [39], four different normalization factors for the

feature vector C(i, j) are used. These normalization factors Nδ,γ(i, j) where

δ, γ ∈ {−1, 1} are

Nδ,γ(i, j) = (||C(i, j)||2+ ||C(i+δ, j)||2+ ||C(i, j+γ)||2+ ||C(i+δ, j+γ)||2)
1
2 .

(3.30)

Each factor measures the ”gradient energy” in a square block of four cells

containing (i, j).

The HoG feature map is obtained by concatenating the result of normal-

izing the cell-based feature map C with respect to each normalization factor

followed by truncation,

H(i, j) =

⎛⎜⎜⎜⎜⎝
Tα(C(i, j)/N−1,−1(i, j))

Tα(C(i, j)/N+1,−1(i, j))

Tα(C(i, j)/N+1,+1(i, j))

Tα(C(i, j)/N−1,+1(i, j))

⎞⎟⎟⎟⎟⎠ , (3.31)

where Tα(v) denotes the component-wise truncation of a vector v by α (the

i-th entry in Tα(v) is the minimum of the i-th entry of v and α). HoG features

are commonly using the following parameters:
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• contrast insensitive gradient orientations, q = 9, discretized with B2,

Equation (3.28),

• cell size, k = 8,

• truncation, α = 0.2.

This setting leads to a 36-dimensional feature vector.



Chapter 4

Deformable parts tracker

In this chapter our tracking method, layered deformable part tracker (LDP)

is presented. The tracker output at time-step t is an axis-aligned bounding

box x
(0)
t , which is estimated by integrating the coarse and mid-level object

representations. The coarse representation is explained in Section 4.1, the

mid-level representation in Section 4.2 and the resulting tracking algorithm

is presented in Section 4.3. Step-by-step tracking and parts of the LDP

tracker are visualized in Figure 4.1. The tracker localizes the target with the

coarse representation (step 1) and initializes parts on mid-level representation

(step 2). Then the spring system on mid-level representation is formed and

optimized to fine localization of the target (steps 3-4). All parts on both

layers are updated next (steps 5-6) and position of the object is reported.

4.1 Coarse representation

The coarse representation consists of two high-level object models: the object

global template It = {z(0)t } and a global color model Ct = {p(xt|f), p(xt|b)},
specified by the foreground and background color histograms, p(xt|f) and

p(xt|b). These models are used in each tracking iteration to coarsely es-

timate the center of the target bounding box x
(0)
t within a specified search

region (Figure 1.2, step 1), which is subsequently refined by the mid-level rep-

27
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Coarse localization

Initialize mid-level partsForm a spring systemMinimize the energy

Result from t-1 New frame

Update the constellation Update the visual models The output bounding box

t-1 t

tt

t

t

t

=

1

34

5 6

2

?

Figure 4.1: Visualization of tracking with LDP tracker.

resentation. Given a search region (Figure 4.2a), the center is estimated by

maximizing the density p(x
(0)
t |It, Ct) ∝ p(It|x(0)

t )p(Ct|x(0)
t ). The first term,

p(It|x(0)
t ), is the template probability reflecting the similarity between the

patch centered at x
(0)
t and the target template z

(0)
t (Figure 4.2b). The second

term is the color probability defined as p(Ct|x(0)
t ) = p(f |xt)(1− αcol) + αcol,

where p(f |xt) is the probability of a pixel belonging to a foreground and αcol

is a weak uniform distribution to address sudden temporal changes of the ob-

ject color, since the p(f |xt) might be uninformative in these situations and

would deteriorate localization. The probability of a pixel belonging to a fore-

ground, p(f |xt), is calculated by histogram backprojection, i.e., by applying

the Bayes rule with p(xt|f) and p(xt|b), and regularized by a Markov random

field [46] to arrive at a smoothed foreground posterior (Figure 4.2c). Mul-

tiplying the template and color probabilities yields the density p(x
(0)
t |It, Ct)

(Figure 4.2d). Note that on their own, the template and color result in am-

biguous densities but their combination drastically reduces the ambiguity. In



4.1. COARSE REPRESENTATION 29

the following we briefly overview the color segmentation model.

search region

a b c d

Figure 4.2: Example of a search region and the tracked object indicated by

a rectangle and an arrow, respectively (a). The coarse template probability,

the color probability and the full coarse model density are shown in (b), (c)

and (d), respectively.

4.1.1 The color segmentation model

One of the components on the coarse representation is the color probability

map (Figure 4.2c). It is obtained via an object segmentation using foreground

and background object probabilities (3-dimensional color histograms), h
(f)
t

and h
(b)
t , which are learned during the tracking. Pixels in probability map are

modeled using Markov random field (MRF) method, presented by Kristan

et al. [47] shown in Figure 4.3.

(hidden)
Prior distributions

(hidden)
Pixel labels

(observed)
Pixel measurements

(hidden)
Mixture parameters

Figure 4.3: Graphical model of Markov random field with hidden and

observed layers.
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Mixture parameters in the MRF in Figure 4.3 consist of two histograms –

foreground and background, i.e., Θ = {h(f)
t ,h

(b)
t }. Pixel measurement in an

image withM pixels is denoted as yi and it represents a d-dimensional feature

vector of i-th pixel. The i-th pixel label xi is an unobserved random variable

governed by the class prior distribution πi = [πi1, πi2], where πil = p(xi = l).

Since our model consists of two components – foreground and background,

the class prior distribution πi has two elements. The MRF from Figure 4.3

is solved, i.e., the per-pixel posteriors are estimated, by minimizing cost

function defined as

C =
M∑
i=1

log p(yi,Θ)− 1

2
(E(πi, πNi

) + E(pi,pNi
)). (4.1)

The first term on the right-hand side of (4.1) represents the joint proba-

bility that is obtained via histogram back-projection defined as

p(yi,Θ) =
2∑

k=1

p(yi|xi = k)πik. (4.2)

Note that the k runs over two components – foreground and background,

therefore the term xi = 1 represents the foreground label and xi = 2 repre-

sents the background label. Using Bayes rule, foreground probability can be

rewritten into

p(xi = 1|yi) =
p(yi|xi = 1)p(xi = 1)

p(yi|xi = 1)p(xi = 1) + p(yi|xi = 2)p(xi = 2)
. (4.3)

The probability distributions p(yi|xi = 1) and p(yi|xi = 2) are modeled by

the foreground and background histograms, h
(f)
t and h

(b)
t , respectively. The

background prior probability p(xi = 2) is calculated as

p(xi = 2) =
Sb

Sf

, (4.4)

where Sf represents the size of the target (foreground) and Sb is the size of

the search region (background) within which the segmentation is performed.

The foreground prior is therefore defined as p(xi = 1) = 1− p(xi = 2).
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The second term on the right-hand side of (4.1) is a local-consistency term

consisting of two energy functions E(·, ·). The mixture distribution over the

priors of the i-th pixel neighbors Ni is defined as

πNi
=

∑
j∈Ni,j ̸=i

λijπj, (4.5)

where λij are fixed positive weights such as the one for i-th pixel
∑

j λij = 1.

The segmentation smoothness is further enforced by placing another MRF

over the posteriors. In this respect, the posteriors, like priors, are treated as

random variables P = {pi}i=1:M , where the components of pi are defined as

pik = p(xi = k|Θ,yi), (4.6)

and can be computed by the Bayes rule from p(yi|xi = k,Θ) and p(xi = k).

The term pNi
is a mixture defined in the same spirit as πNi

. The smoothness

term in the energy function (4.1) is defined as

E(πi, πNi
) = D(πi||πNi

) +H(πi). (4.7)

The termD(πi||πNi
) is Kullback-Leibler divergence which penalizes the differ-

ence between prior distributions over neighboring pixels (πi and πNi
), defined

as

D(πi||πNi
) =

2∑
k=1

πik ln
πik

πNik

. (4.8)

The term H(πi) is entropy defined as

H(πi) = −
2∑

k=1

πik log πik, (4.9)

which penalizes uninformative priors πi. The term enforcing the smooth-

ness of posteriors in (4.1), i.e., E(pi,pNi
), is defined in the same manner as

E(πi, πNi
).

In our approach, the segmentation is performed by optimizing the MRF,

i.e., minimizing the cost (4.1), over the posteriors using the fast convolution-

based approach as in Kristan et al. [47].
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4.2 Mid-level representation

The mid-level representation is a geometrically constrained constellation of

Np parts Xt = {x(i)
t }i=1:Np . Each part x

(i)
t is a local mid-level representation

of target and is specified by the part visual model (template) z
(i)
t . The prob-

ability of a constellation being at state Xt conditioned on the measurements

Yt and parameters of the deformation model Θ is decomposed into

p(Xt|Yt,Θ) ∝ p(Yt|Xt,Θ)p(Xt|Θ). (4.10)

The density p(Yt|Xt,Θ) is the measurement constraint term, reflecting the

agreement of measurements with the current stateXt of constellation, whereas

the second term, p(Xt|Θ), reflects the agreement of the constellation with the

geometric constraints.

4.2.1 Geometric constraints

The constellation is specified by a set of links (i, j) ∈ L indexing the con-

nected pairs of parts (Figure 4.4). The parts and links form an undirected

graph and the joint pdf over the part states can be factored over the links as

p(Xt|Θ) =
∏

(i,j)∈L
φ(||d(i,j)t ||;µ(i,j), k(i,j)), (4.11)

where d
(i,j)
t = x

(i)
t − x

(j)
t is a difference in positions of the linked parts, µ(i,j)

is the preferred distance between the pair of parts and k(i,j) is the intensity

of this constraint. The factors in (4.11) are defined as Gaussians φ(·;µ, k)
with mean µ and variance k to reflect the property that deviations from the

preferred distances should decrease the probability (4.11).
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4.2.2 Measurement constraints

Given a fixed part state, x
(i)
t , the measurement at that part is independent

from the states of other parts and the measurement probability decomposes

into a product of per-part visual likelihoods

p(Yt|Xt,Θ) =
∏

i=1:Np

p(y
(i)
t |x(i)

t ,Θ). (4.12)

The visual likelihoods are chosen from the same family of pdfs as factors

in (4.11) for tractability. Let x
(i)
tA be the position in vicinity of x

(i)
t that

maximizes the similarity of the visual model z
(i)
t and the measurement y

(i)
t

(see Figure 4.4, left). The visual likelihood can then be defined as a Gaussian

p(y(i)|x(i),Θ) = φ(||d(i)t ||; 0, k(i)) where d
(i)
t = x

(i)
t − x

(i)
tA is the difference of

the part current state and its visually-ideal position, and k(i) is the intensity

of this constraint. The visual likelihood thus reflects the agreement of the

visual model z(i) with the measurement y(i) at position x
(i)
t . Since the parts

are of mid-size and the part search region is relatively small compared to

the size of the target, the local Gaussian approximation of the likelihood is a

valid choice. As pointed out in Section 5.1, the visual models z
(i)
t are in fact

filters discriminatively regressed to a Gaussian response function.

4.2.3 Collecting constraints

Equations (4.11,4.12) lead to an exponential posterior p(Xt|Yt,Θ) ∝ exp(−E),

with

E =
1

2

∑
i=1:Np

k
(i)
t

d(i)t

2

+
∑
i,j∈L

k
(i,j)
t (µ

(i,j)
t −

d(i,j)t

)2. (4.13)

Note that E corresponds to an energy of a spring system in which pairs

of parts are connected by springs and each part is connected by another

spring to an image position most similar to the part visual model (Figure 4.4,

right). The terms µ(i,j) and k(i,j) are nominal lengths and stiffness of springs

interconnecting parts (dynamic springs), while k(i) is stiffness of the spring

connecting part to the image location (static spring). This spring system is

a dual representation of the deformable parts model and minimization of its
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(convex) energy corresponds to the maximum a posteriori state estimation of

(4.10). Several solvers for spring systems exist from physics. We tested two

optimization methods e.g., conjugated gradient descent and direct method.

Experimental comparison of both methods is given in Section 5.3.1.

Constellation model The corresponding spring system

Static
spring

Dynamic
spring

Figure 4.4: Example of a constellation model with rectangular parts and

arrows pointing to the most visually similar positions (left) and the dual form

corresponding to a spring system (right).

4.2.4 Conversion of DPM to a spring system

The deformable parts model from previous section can be converted into a

spring system as follows. The main challenge is to define the stiffness of each

spring in a system.

The stiffness k
(i)
t of a spring connecting a part to the image (in Figure 4.4

denoted as static spring1) should reflect the uncertainty of the visually most

similar location estimate x
(i)
tA in the search region of the i-th part. The visual

model z
(i)
t is evaluated at all displacements in the search region, producing

1Note that static spring does not mean actual static spring with fixed length. Name

static comes from term static node which represents the location x
(i)
tA and it does not

change its position during the optimization.
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the similarity map. The maximum on the map, w
(i)
t , is obtained at the

location x
(i)
tA. The spatial uncertainty in the search region is estimated as the

weighted variance σ
2(i)
t , i.e., the expected squared distance from x

(i)
tA. The

spring stiffness is a product of the response w
(i)
t and spatial uncertainty, i.e.,

k
(i)
t = w

(i)
t /σ

2(i)
t . (4.14)

The stiffness of springs interconnecting the parts (in Figure 4.4 denoted

as dynamic spring) depends on the allowed constellation size change between

consecutive time-steps and part location uncertainty. The stiffness of a spring

connecting parts indexed by (i, j) is defined as

k
(i,j)
t = w

(i,j)
t /(µ

(i,j)
t−1 αscl)

2, (4.15)

where µ
(i,j)
t is the preferred part distance estimated from the previous time-

step, αscl is the allowed scale change factor and w
(i,j)
t is the average weight

of the two parts.

4.2.5 Spring system optimization

The spring system is defined as a two-dimensional problem with two different

types of nodes. Geometric constraints from (4.11) are represented with the

dynamic nodes. They change their positions during the optimization to min-

imize the energy of the spring system. Measurement constraints from (4.12)

are represented with the static nodes. They are called also anchors, because

they do not change the position during the optimization. There is no closed-

form solution for a multi-dimensional spring system. But the energy of the

system is convex and standard iterative optimization approaches can be ap-

plied. Two optimization methods are considered. The first is the conjugated

gradient descend [48, 49], which is a common approach for low-complexity

efficient nonlinear optimization (Section 4.2.5). However, our cost function

has a particular form and we propose a specialized optimization tailored for

the spring-system cost functions in Section 4.2.5.
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Conjugated gradient descent

Conjuated gradient descend (CGD) optimization requires gradient of the

energy function from Equation (4.13) and it is defined w.r.t. x
(i)
t as

∂E

∂x
(i)
t

= −k
(i)
t d

(i)
t −

∑
i,j∈L(i)

(µ
(i,j)
t −

d(i,j)t

)k(i,j)t d
(i,j)
td(i,j)t

 , (4.16)

where L(i) denotes the links connecting part i with the neighboring parts via

dynamic springs, while the first term refers to a static spring of i-th part. The

terms of Equation (4.16) are described in Section 4.2. Conjugated gradient

descend is an iterative optimization method which is, in contrast to gradient

descend, able to automatically adjust the length of a step in the direction

of gradient in each iteration of the optimization. This ensures much faster

convergence and more robust performance, since the length of the step does

not need to be set in advance. The CGD method is described in Algorithm 3,

where function f(x) represents spring system energy function (4.13) and

∇f(x) is its derivative, defined in (4.16). Note that the term Q(x) represents

the Hessian matrix of a function f(x).

Direct optimization

In this section a novel optimization method called iterative direct approach

(IDA) is presented. The optimization iteratively minimizes the energy of a

spring system by decomposing the 2D spring system into two 1D indepen-

dent systems (Figure 4.5), minimizing the separate energies in a closed form

and re-composing the 2D spring system. This procedure is iterated until

convergence. In the following, an efficient algebraic closed-form solution is

derived.
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Algorithm 3 : Conjugate gradient descend optimization.

Require:

Approximation of the solution x0, function f(x) and its gradient ∇f(x).

Ensure:

Solution x that minimizes the function f(x).

Procedure:

1: Set i = 0, p−1 = 0, β0 = 0, d−1 = 0, and set stopping criterion ϵ.

2: while ||∇f(xi)|| > ϵ do

3: if i > 0 then

4: βi =
∇f(xi)

T∇f(xi)
∇f(xi−1)T∇f(xi−1)

.

5: end if

6: pi = −∇f(xi) + βipi−1

7: di = −∇f(xi) + βi−1di−1

8: αi = −∇f(xi)
Tdi

dT
i Q(xi)di

9: xi+1 = xi + αipi

10: i = i+ 1

11: end while

Using standard Newtonian mechanics results, the relation between the

forces at springs of a 1D spring system, the stiffness coefficients and spring

expansions, can be written in a matrix form as

Fsprings = −K ·∆L, (4.17)

where K = diag([k1, · · · , kN ]) is a diagonal matrix of spring stiffness coeffi-

cients. The spring displacements vector ∆L is defined as

∆L = Ax− L, (4.18)

where x is a vector of the 1D positions of the nodes and the current-lenght

vector L = [l1, · · · , lN ], where element li represents the length of the i-th

spring. Elements in the vector of positions x are arranged in the following

form

x =

[
xdyn

xstat

]
, (4.19)
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1D spring
system

1D spring
system

2D spring
system

Figure 4.5: Example of decomposition of a 2D spring system with 4 dy-

namic (circles) and 4 static nodes (crosses) on two 1D spring systems. Each

1D spring system can be solved in a closed-form.

where xdyn and xstat are 1D positions of the dynamic and static nodes, re-

spectively. The connectivity matrix A represents the directed connections

between the nodes with the dimensionality Nsprings × Nnodes. If i-th spring

connects a pair of nodes {ni1, ni2}, than the element aij of the matrix A is

defined as

aij =

⎧⎪⎪⎨⎪⎪⎩
1 ; j ≡ ni1

−1 ; j ≡ ni2

0 ; otherwise

(4.20)

Equation (4.17) can be rewritten in to the form Fsprings = −KAx + KL.

The forces in the nodes are given by left-multiplying by AT , obtaining an

equation

Fnodes = −ATKAx+ATKL. (4.21)

Equilibrium of the system is reached when forces in nodes equal to zero,
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resulting in the following linear system

ATKAx = ATKL. (4.22)

For efficient calculation of x, two more matrices are defined, K̂ = ATKA and

C = ATK. Since the vector of positions x is in the same form as in (4.19),

the matrix K̂ can be written into the form

K̂ =

[
K̂dyn K̂stat

K̂rem

]
. (4.23)

Note that the remaining matrix K̂rem is not used in the following. The matrix

K̂ has the dimensionality Nnodes ×Nnodes and matrix K̂dyn is defined as

K̂dyn =

⎡⎢⎢⎣
k̂1,1 · · · k̂1,Ndyn

... · · · ...

k̂Ndyn,1 · · · k̂Ndyn,Ndyn

⎤⎥⎥⎦ , (4.24)

where element k̂i,j represents an element from matrix K̂. The element Ndyn

represents the number of dynamic nodes in the spring system. The matrix

K̂stat is defined in the same manner as K̂dyn,

K̂stat =

⎡⎢⎢⎣
k̂1,Ndyn+1

· · · k̂1,Nnodes

... · · · ...

k̂Ndyn,Ndyn+1
· · · k̂Ndyn,Nnodes

⎤⎥⎥⎦ . (4.25)

Note that the dimensions of the matrix K̂stat are Ndyn × Nstat, where Nstat

represents the number of static nodes in the spring system. The matrix C

has the dimensionality Nnodes×Nsprings and it can be, similarly as K̂, written

into the form

C =

[
Cdyn

Cstat

]
. (4.26)

Following the notation in (4.24) and (4.25), the elements of the matrix C are

denoted as ci,j and Cdyn is defined as

Cdyn =

⎡⎢⎢⎣
c1,1 · · · c1,Nsprings

... · · · ...

cNdyn,1 · · · cNdyn,Nsprings

⎤⎥⎥⎦ . (4.27)
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Since the matrix Cstat is not used in the following, we do not give the ex-

planation how to derive it from C. Using the matrices K̂ and C, the spring

system from Equation (4.22) can be written as

K̂x = CL. (4.28)

If we take into account that static nodes do not change their positions during

the optimization, the system can be decomposed into the form

K̂dynxdyn + K̂statxstat = CdynL. (4.29)

Optimal positions of the dynamic nodes can be written in to the following

closed-form solution

xdyn = K̂
−1

dyn(CdynL− K̂statxstat). (4.30)

Note that the expression K̂statxstat can be calculated only once and it re-

mains unchanged during the optimization. The spring system optimization

is described in Algorithm 4.

The iterative direct approach (IDA) is summarized in the following. At

each iteration, 2D system is decomposed into two 1D systems, each system

is solved by (4.30) and then the 2D system is re-assembled. This process

is iterated until convergence (Algoritm 4). Note that the term K̂statxstat is

independent from the dynamic nodes and can be precomputed before entering

the iterations.
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Algorithm 4 : Optimization of a 2D spring system.

Require:

Positions of dynamic xdyn and static nodes xstat, stiffness vector k and

adjacency matrix A, defined as in (4.20).

Ensure:

New positions of dynamic nodes xdyn.

Procedure:

1: Construct stiffness matrix K = diag(k).

2: Calculate matrices K̂ = ATKA and C = ATK.

3: Obtain matrices K̂dyn, K̂stat, and Cdyn according to (4.24), (4.25) and

(4.27).

4: Calculate the product K̂statxstat for each dimension.

5: while stop condition do

6: For each dimension do:

7: Extract 1D positions of dynamic nodes from xdyn.

8: Calculate vector of current lengths L of the springs (the distances

between connected nodes).

9: Solve Equation (4.30) using product from Step 4 and update the vector

xdyn.

10: end while
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4.3 Layered deformable parts tracker (LDP)

The coarse and mid-level representations from Section 4.1 and Section 4.2 are

integrated into a tracker that localizes the target at each time-step within a

search region by a top-down localization and bottom-up updates. Our layered

deformable parts tracker (LDP) is described in the following, summarized in

Algorithm 5 and visualized in Figure 4.6.

Coarse localization

Initialize mid-level partsForm a spring systemMinimize the energy

Result from t-1 New frame

Update the constellation Update the visual models The output bounding box

t-1 t

tt

t

t

t

=

1

34

5 6

2

?

Figure 4.6: Visualization of tracking with LDP tracker. Top down local-

ization is shown in steps 1-4, while bottom-up update is shown in steps 5-6.

Result of the tracker at time-step t is bounding box x
(0)
t .

4.3.1 Top-down localization

The object is coarsely localized within a search region corresponding to the

bounding box estimated at the previous time-step with size increased by

αreg. The object center is approximated by position that maximizes the
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conditional probability p(x
(0)
t |It, Ct) from Section 4.1 and a coarse center

translation from t − 1 to t is estimated (Figure 4.6, step 1). The mid-level

representation, i.e, constellation of parts, is initialized by this translation.

For each translated part x
(i)
t , a local search region centered at the part with

the size equal to the part size scaled by αreg is set and similarity to the

corresponding visual model z
(i)
t is calculated for all displacements within the

region. The position of maximum similarity response, x
(i)
tA, is determined

for each part along with the stiffness coefficients k
(i)
t and k

(i,j)
t as detailed

in Section 4.2.4. A maximum aposteriori probability (MAP) constellation

estimate X̂t is calculated by minimizing the energy (4.13) of the equivalent

spring system (Figure 4.6, steps 2-4).

4.3.2 Bottom-up update

The mid-level and coarse representations are updated as follows (Figure 1.2,

steps 5,6). The visual models of parts, z
(i)
t , are updated by the visual models

taken at the MAP estimates of part positions x̂
(i)
t . The details of the update

depend on the particular implementation of the visual model. The proposed

tracker can apply any visual model, but see Section 5.1 for the details of the

models used in the experiments. Updating all part visual models at constant

rate might lead to drifting and failure whenever the object is partially oc-

cluded or self-occluded. An effective mechanism is applied to address this

issue. A part is updated only if its response (similarity) at the MAP position

x̂
(i)
t is at least half of the strongest response among all parts. Experimen-

tal presentation of this mechanism is shown in Section 5.3.5. The nominal

spring lengths (the preferred distances between parts) are updated by an

autoregressive scheme µ
(i,j)
t = µ

(i,j)
t−1 (1 − αspr) + ||d̂(i,j)t ||αspr, where ||d̂(i,j)t || is

the distance between the parts (i, j) in the MAP estimate X̂t and αspr is the

update factor.

The coarse representation is updated next. The MAP object bounding

box is estimated by x̂
(0)
t = Ttx̂

(0)
t−1, where Tt is a similarity transform esti-

mated by least squares from the constellation MAP estimates X̂t−1 and X̂t.



44 CHAPTER 4. DEFORMABLE PARTS TRACKER

The object template z
(0)
t is updated from x̂

(0)
t in the same manner as parts

visual models. The histograms in the global color model Ct are updated

from x̂
(0)
t as well. A histogram h

(f)
t is extracted from x̂

(0)
t and another his-

togram h
(b)
t is extracted from a region surrounding x̂

(0)
t by a factor αsur. The

foreground histogram is updated by an autoregressive model, i.e.,

p(xt|f) = p(xt−1|f)(1− αhist) + h
(f)
t αhist, (4.31)

where αhist is the forgetting factor. The background histogram is updated

with h
(b)
t in the same way. The top-down localization and bottom-up update

steps are summarized in Algorithm 5.
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Algorithm 5 : A tracking iteration of a two-layer deformable parts tracker.

Require:

Coarsely representation {It−1,Ct−1}, mid-level representation

{Xt−1,Zt−1}, position of an object xt−1 at time-step t− 1.

Ensure:

New position of an object xt at the current time-step t and updated

coarse {It,Ct} and mid-level representation {Xt,Zt}.
Procedure:

1: Coarse estimate the position of the object, denoted as xc
t . Compute

displacement vector ∆t between positions xc
t and xt−1.

2: Displace the mid-level parts by displacement vector ∆t.

3: For each part calculate the part responses and form an extended spring

system – set position of the nodes and stiffness of the springs using (4.15)

and (4.14). (Section 4.2.4)

4: Solve spring system by computing the MAP estimate XMAP
t of the dy-

namic nodes by maximizing (4.11) and (4.12). (Section 4.2.5)

5: Calculate the similarity transform Tt between the positions of mid-level

parts from previous and current time-step.

6: Update the spring system parameters and the visual models of the parts

(z
(i)
t ∈ Zt, i = 1...NP ) on the mid-level representation.

7: Update the position and size of the coarse representation by the trans-

formation Tt and update the global color Ct (histograms hf and hb)

and root visual model It (template z(0)) by an autoregressive scheme

i.e., (4.31).

8: Position of the object xt is defined as the center of the coarse represen-

tation.
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Chapter 5

Experimental analysis

In this chapter the implementation details of the proposed layered deformable

parts model (LDP) are given in Section 5.1. Experimental setup is described

in Section 5.2, analysis of the LDP tracker is given in Section 5.3 and exper-

imental results of the comparison with state-of-the-art methods are reported

in Section 5.4.

5.1 Implementation details and parameters

The LDP described in Section 4.2 requires specification of the coarse visual

model It as well as part visual models {z(i)t }1:Np . In our implementation, the

kernelized correlation filters (KCF) [4] with HOG [39] features are used for the

part visual models. The KCF trains a filter to a Gaussian response function

for robust patch-based localization, which makes it ideal for our part-based

visual likelihood function which assumes approximately Gaussian form of the

likelihood. The filter parameters and learning rate are the same as in [4]. The

parts have to be large enough to capture locally visually-distinctive regions

on the object and have to cover the object without significantly overlapping

with each other. Taking into account the usual level of detail of the ob-

ject appearance, we set the number of parts to Np = 4. The LDP allows

any type of connectivity among the parts and our implementation applies a

47



48 CHAPTER 5. EXPERIMENTAL ANALYSIS

fully-connected constellation for maximally constrained geometry. The fore-

ground/background models Ct are RGB color histograms with 64× 64× 64

bins. The remaining parameters are as follows:

• the constellation scale change parameter is set to αscl = 0.1,

• the uniform component in the color similarity map is set to αcol = 0.01,

• the search region scale parameter is set to αreg = 1.5,

• the background histogram extraction area parameter is set to

αsur = 1.6,

• the rate of spring system update is αspr = 0.95,

• the histogram update rate is set to αhist = 0.05.

These parameters have a straight-forward interpretation and did not require

special tuning. The parameters have been fixed throughout all experiments.

5.1.1 Initialization details

The coarse representation at time-step t = 1 is initialized by training a KCF

template z
(0)
1 from the bounding box x

(0)
1 and sampling the foreground and

background histograms from the initial bounding box and from the increased

region outside the bounding box (as in the update stage). The mid-level

representation is initialized as follows. The constellation model is initialized

by splitting the initial object bounding box into four equal non-overlapping

parts. A KCF visual model z
(i)
t is initialized for each part and the preferred

distances between parts are calculated from the initialized positions. The

tracker was implemented in Matlab with backprojection and HoG extraction

implemented in C and performed at 19fps on a core i7 machine.

Since our tracker uses KCF as a visual model on parts and coarse repre-

sentation, the complexity of our method is given w.r.t. the KCF complexity,

which is O(n log n), where n is the number of pixels in the search region.
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The LDP has complexity five times the KCF, because of the four parts on

mid-level representation and a template on the coarse representation. The

localization and update of five KCF visual models take approximately 40ms.

Our tracker consists also of the spring system and target segmentation. The

spring system takes in average less than 3ms for the optimization. The color

segmentation with the histogram extraction is performed in approximately

9ms.

5.2 Experimental setup

The LDP tracker was evaluated using the baseline experiments from the

recent benchmark VOT2014 [3, 50]. The number of tested trackers makes

VOT2014 the largest short-term tracking benchmark. The benchmark se-

quences have been collected from the recent Amsterdam library of ordinary

videos [22], Online tracking benchmark [1] as well as from a set of previ-

ously unpublished sequences. A sequence selection protocol was applied to

construct a dataset of 25 sequences that reflect real-life phenomena while

keeping the number of sequences low. The targets are annotated by ro-

tated bounding boxes and all sequences are per-frame annotated by visual

attributes. The VOT2014 evaluation protocol initializes the tracker from a

ground truth bounding box. Once the overlap between the ground truth and

tracker output bounding box falls to zero, a failure is detected and tracker is

re-initialized. The benchmark measures two aspects of tracking performance:

accuracy and robustness. The accuracy is measured as the average overlap,

while the robustness measures the number of failures during tracking. The

tracking overlap at time-step t is defined as

φt =
AG

t ∩ AT
t

AG
t ∪ AT

t

, (5.1)

where AG
t represents the ground truth bounding box and AT

t is the bounding

box predicted by a tracker. Apart from reporting raw accuracy/robustness

values, the benchmark can rank trackers with respect to these measures sep-
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arately and adjusts the ranks by identifying groups of trackers performing

indistinguishably. The adjustment can be made by taking the mean, max or

min rank from the group. In our setup the adjusted rank is the minimum

rank in the group to prevent a potentially poorly-performing tracker pulling

down the rank of a better-performing one. The performance equivalency

is established by tests of statistical and practical differences. According to

VOT2014 [3], the practical difference level was estimated for the ground truth

on each sequence and specifies a level of noise in ground truth annotation.

Any difference in accuracy of trackers below the level of practical difference

is considered negligible.

5.3 The LDP design analysis

This section analyzes the design choices of the LDP. Section 5.3.1 reports

the analysis of the spring system optimization, Section 5.3.2 analyzes the in-

fluence of the number of parts in the mid-level representation, Section 5.3.3

analyzes the influence of spring system topology, Section 5.3.4 analyzes the

influence of individual LDP components and Section 5.3.5 provides qualita-

tive demonstration of how parts react to occlusion. All experiments have

been conducted on VOT2014 dataset, and the tracking performance is char-

acterized by the average accuracy (average overlap with the ground truth)

and the average robustness (number of failures).

5.3.1 Analysis of the spring system optimization

Since visual object tracking requires real-time performance, it is cruicial that

all parts of the algorithm are as efficient as possible. A central part of the

deformable parts model is the optimization method that minimizes the energy

of the spring system. This section compares the standard baseline method,

i.e., the conjugated gradient descend (CGD) from Section 4.2.5 with the

proposed iterated direct approach (IDA) which we proposed in Section 4.2.5.

To allow controlled experimental analysis of the optimization approach, a
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simulated spring system with four dynamic nodes and four anchor nodes was

used. We have analyzed the performance of the optimization methods by

averaging over a large number of randomly generated spring systems and

their displacements. In particular, experiment was repeated 100,000 times

and the positions of all nodes were each time randomly perturbed around the

initial positions. Four dynamic nodes were initialized on the positions (0,0),

(0,1), (1,0) and (1,1). Each node was displaced by the vector d = [dx, dy],

where dx and dy were sampled from uniform distribution U([−0.5; 0.5]). Each

anchor node was set by displacing the corresponding dynamic node by the

vector b = [bx, by], where bx and by were sampled from uniform distribution

U([−0.25; 0.25]). The stiffness of i-th dynamic spring was set as

ki = (σdi)
−2, (5.2)

where di represents the length of the spring and σ is the size change, set on

0.1. The stiffness of j-th static spring was set as

kj =
1

2
+ ujkdyn, (5.3)

where kdyn represents the average stiffness of the dynamic springs and uj is

the random number sampled from the uniform distribution U([0; 1]). The

performance of the optimization method was measured by the number of

iterations and time needed to reach the stable state and energy of the spring

system after the optimization. Time is important to achieve as fast perfor-

mance as possible and energy should also be as small as possible to reach the

state that is close to the global minimum.

Table 5.1 summarizes the performance analysis of CGD and IDA. The first

column represents average, standard deviation and median of the number of

iterations needed to reach the stable state. The second column represents

average, standard deviation and median of the amount of energy that remains

in the spring system after the optimization. The last column in the table

shows the average time (in milliseconds) needed for the convergence of a

method (both methods were implemented in Matlab). The results show that
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the proposed IDA needs approximately two times less iterations than the

CGD. The remaining energy in a spring system after optimization converges

does not change much between the methods, which means that both methods

reach global minima. This is not surprising since the optimization function

is convex. The Figure 5.1 shows how energy of the spring system drops

in each iteration for both methods. It is clear that energy at IDA drops

much faster in the beginning of the optimization, which is the key reason

for fast performance. Since both methods are equally accurate (both reach

the global minima), the convergence speed is of crucial importance. The

proposed IDA is in average approximately more than three-times faster than

the CGD. With less than 3ms needed for optimization of the spring system,

this method can be used in tracking tasks without any larger time losses.

Number of iterations Energy Time

Method Avg Std Median Avg Std Median Avg [ms]

IDA 12.75 9.32 10 1.22 3.34 0.83 2.92

CGD 28.01 9.90 28 1.28 3.34 0.83 9.72

Table 5.1: Comparison of the proposed iterative direct approach (IDA) and

conjugated gradient descent (CGD) optimization methods.

We have analyzed the average time needed for the initialization of both

methods and the time for iterating phase. The first column in Table 5.2

shows average time in milliseconds for each phase. The results show that

initialization of the optimization method is faster at IDA. The last column

shows the time needed for a single iteration, which is also faster at IDA. Note

that Table 5.2 was obtained with the same experiment settings as Table 5.1.
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Figure 5.1: Figure illustrates how energy of the spring system drops in

every iteration. Experiment is averaged over 10,000 spring systems.

Average time [ms]

Method Init Iterations Total Avg. Iterations ms per-iteration

IDA 0.18 2.74 2.92 12.75 0.23 (0.215)

CGD 0.35 9.37 9.72 28.01 0.35 (0.335)

Table 5.2: Average time for method initialization, iterations and sum of

both is given in the table. The last column represents the average time for

one iteration. The number in parenthesis is the average time for one iteration

without considering the initialization phase.

We have also observed that the proposed IDA is numerically more stable

than the CGD. Figure 5.2 shows an example of numerically unstable spring

system, where CGD does not reach the optimal state. The spring system

consists of four static and four dynamic nodes. The blue lines represent dy-

namic springs of an initial spring system and the red lines represent dynamic

springs of spring system after optimization. The green small circles denote
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the dynamic nodes. The centers of the red circles represent anchor nodes and

the radius of circles represent the variance of each node. The dotted lines

are static springs before and after optimization. The energy of the final opti-

mized spring system is also given in the figures. Note that the direct method

converged to a stable state with much lower energy, while CGD method did

not reach that state. The difference is noticeable also in the amount of energy

remained in the spring system. Numerical unstability can be explained with

the initial positions of the nodes. Since there are two nodes very close to each

other, the spring system becomes numerically unstable. This effects on CGD

method, while direct method converged to a stable state without problems.

There is also a huge difference in number of steps needed for terminating the

optimization e.g., the proposed IDA converged in only 5 iterations, whereas

the CGD required 471 iterations to converge. Note that the IDA still attains

a significantly lower energy than CGD. The unstable spring systems were

automatically detected during the experiment and they were not considered

in the calculation.
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Figure 5.2: The figure shows CGD and IDA optimization methods on a

numerically unstable spring system. Blue color represents the initial and red

color the optimized spring system.
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5.3.2 Number of parts

We used four parts initialized on a regular grid in our implementation. This

section reports the analysis of performance variation with the number of parts

in the mid-level representation. Figure 5.3 illustrates the constellation of

parts for every tested configuration. The proposed tracker (with the 4 parts)

is denoted by LDP, configuration with three parts is denoted by LDP-3 where

horizontal and vertical orientations are possible, depending on whether the

target height is larger or smaller than the width, respectively. The LDP-9

represents our tracker with 9 parts on mid-level. In all cases parts are of

the same size – width and height are half of the object width and height,

respectively. Note that topology on mid-level representation is always fully

connected.

LDP LDP-3

OR

LDP-9

Figure 5.3: Different configurations of LDP parts on local layer.

The results of comparative performance analysis of the LDP, LDP-3 and

LDP-9 are shown in Figure 5.4. Average number of failures (Robustness raw)

and average overlap (Accuracy raw) are given on the graph. The results show

that the accuracy is not significantly affected by the number of parts, on the

other hand the robustness drops for the LDP-3 and LDP-9. We believe that

tracker with three parts (LDP-3) is performing poorly because the target

is covered unnaturally. The tracker with nine parts (LDP-9) has a lot of

springs (because of the fully-connected topology), which results in very strong

geometric constraints. This can be a reason for larger number of failures –

the mid-level representation performs similarly as a coarse representation.

Increasing number of parts or different positions of them do not result in
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better performance. From this experiment it is clear that the optimal number

of parts is four.
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Figure 5.4: AR-plot with the comparison of the LDP tracker (four parts

on mid-level representation) with other versions of LDP – each with different

number of the parts on mid-level representation. See Figure 5.3 for the

different part configurations.

5.3.3 Topology of the spring system

This section reports the analysis of how the constellation topology affects the

tracker performance. The different topologies are illustrated in Figure 5.5.

The LDP represents the proposed tracker with four fully-connected parts,

the LDP-pairwise stands for a similar tracker as LDP, just without diagonal

springs. The LDP-star tracker consists of four parts which are connected

with a central node in the so-called star-based topology.

The results of performance analysis with respect to different topologies

are given in Figure 5.6. The LDP achieves best results in terms of robustness,

while the accuracy is comparable with the other two variants. The reason
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LDP LDP-
pairwise

LDP-star

Figure 5.5: The figure shows different variants of the LDP spring system.

for this is likely in weaker geometric constraints of the spring system, which

decrease performance. If one would like to achieve a better performance

with the non-fully-connected spring system, the parameters should be set

more restrictively. However, in our experience, the performance of a fully-

connected spring system will be typically higher than of a non-fully-connected

spring system.
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Figure 5.6: AR-plot with the comparison of the LDP tracker (fully con-

nected spring system) with other versions of LDP, each with different spring

system topology. See Figure 5.5 for the different topologies.
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5.3.4 Analysis of the LDP components

This section reports the analysis of how much each component of the LDP

affects the tracking performance. A variant of LDP without target segmen-

tation on coarse representation is denoted with LDP-nosegm, LDP-nosprings

represents LDP tracker without springs between the parts and LDP-nomid

denotes a tracker without mid-level representation. Note that LDP-nomid

has only coarse representation with visual model (correlation filter) and color

segmentation, so the tracker does not adapt the size change of the target.

The LDP-root-only tracks only with a root node (without segmentation and

mid-level representation). Note that the root is actually a modified KCF

tracker (without scale adaptation). Table 5.3 summarizes the components of

the tested LDP variants, and results of the analysis are reported in Figure 5.7.

Tracker Root Segmentation Springs Mid-level (nodes)

LDP ✓ ✓ ✓ ✓

LDP-nosegm. ✓ ✗ ✓ ✓

LDP-nosprings ✓ ✓ ✗ ✓

LDP-nomid ✓ ✓ ✗ ✗

LDP-root-only ✓ ✗ ✗ ✗

Table 5.3: Different variants of the LDP tracker. The components used are

checked for each variant.

The results show that the LDP-nosegm has much lower robustness with

the same accuracy as LDP. Since LDP-nosegm is proposed LDP tracker with-

out segmentation, it is clear that this component has large impact on robust-

ness. The LDP-nospring has lower both, accuracy and robustness, than orig-

inal LDP. This shows that the spring system is important for both, accuracy

and robustness, because it ensures geometric constraints and does not allow

parts to be in an arbitrary position. The spring system plays particularly
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important role during partial occlusion in which the non-occluded parts pull

the occluded parts in a direction an object is moving. The spring system

also prevents drift of the parts from the target, which improves performance.

The LDP tracker without mid-level representation is close to the proposed

LDP tracker in terms of robustness, which can explain the importance of

the segmentation for the robust tracking. The accuracy at LDP-nomid is,

as expected, lower because the mid-level representation handles size changes

of the target. In this variant, the target is being tracked with the fixed size

of the bounding box. As expected, the LDP-root-only achieves the worst re-

sults, since it consists of only a visual template on coarse representation. The

accuracy is also lower than the proposed LDP, because the visual template

is a KCF tracker without scale adaptation.
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Figure 5.7: AR-plot with the comparison of the LDP tracker with other

variants of LDP, each without a particular component. See Table 5.3 for

details of the variants.
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For completeness of the LDP design analysis, we have collected the anal-

ysis results from Section 5.3.2 and Section 5.3.3 with the LDP component

analysis from this section. The results are shown in Figure 5.8. The results

clearly show the superiority of the proposed LDP over all its variants.
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Figure 5.8: Combined visualization of comparison of different LDP variants.

AR-plot is obtained combining three AR-plots from Figures 5.4, 5.6 and 5.7.
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5.3.5 Partial occlusion handling

Another experiment was performed to qualitatively demonstrate the effec-

tiveness of part adaptations during significant partial occlusions. The LDP

was applied to a well-known sequence, in which target (face) undergoes repet-

itive partial occlusions by a book (see Figure 5.9). The LDP tracked the face

without failures. Figure 5.9 shows images of the face taken from the sequence

along with the graph of color-coded part weights w
(i)
t . The automatically

computed adaptation threshold is shown in gray. Recall that part is updated

if the weight exceeds this threshold (Section 4.3). Observe that partial occlu-

sions are clearly identified by the weight graphs, resulting in drift prevention

and successful tracking through partial occlusions.
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Figure 5.9: Qualitative tracking results of partially occluded target. A

sketch of parts is shown on the right-hand side. Part weights are color-coded,

with the update threshold shown in gray.
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5.4 Comparison to the state-of-the-art

The LDP tracker was compared to the following 12 trackers:

(i) The standard baselines: CT [9], IVT [8] and MIL [14].

(ii) The recent state-of-the-art part-based trackers: PT [27], DGT [26]

and LGT [21].

(iii) State-of-the-art discriminative holistic trackers: TGPR [34], Struck [15],

DSST [5], KCF [4], SAMF [17] and STC [18].

This is a highly challenging set of recent state-of-the-art containing all pub-

lished top-performing trackers on VOT2014, including the winner of the chal-

lenge DSST [5] and recent trackers from major computer vision conferences

and journals.

5.4.1 Per-sequence analysis

The raw per-sequence accuracy and robustness values are shown in Table 5.5.

It can be seen that the LDP achieves a high accuracy at low number of

failures across all sequences. The LDP is nearly always among the top-

three performing trackers per sequence in accuracy and robustness. These

values are summarized by weighted averaging over all sequences with weights

proportional to the sequence length. In terms of average accuracy, the LDP

performs nearly as accurately as the most accurate tracker KCF [4]. In fact,

the difference in average overlaps between LDP and KCF is 0.05, which is

lower than the weighted average of practical difference over the sequences

(0.068). However, the LDP considerably outperforms all other trackers in

robustness.

Trackers are represented as points in the average accuracy/number-of-

failures plot in Figure 5.10. The point of optimal performance is located at

the upper-left corner, corresponding to total overlap and zero failures. Note

that the LDP is the closest to that point among all tested trackers, which
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Figure 5.10: The plot shows each tracker as a point in the

accuracy/number-of-failures space when averaging over the sequences from

Table 5.5.

indicates that the tracker exhibits excellent performance in accuracy as well

as robustness. The LDP outperforms the baseline trackers in all aspects and

can be considered a state-of-the-art tracker. The LDP outperforms by a large

margin the recently published state-of-the-art context tracker STC [18] as

well as the recent Gaussian-process-based tracker TGPR [34] and the struc-

tured SVM tracker Struck [15] by producing more accurate tracks as well

as exhibiting significant improvement in robustness. The LDP also achieves

comparable accuracy to the state-of-the-art discriminative correlation track-

ers DSST [5], KCF [4] and SAMF [17] and significantly outperforms them in

robustness. Note that the parts in LDP constellation are essentially KCF [4]

trackers without scale adaptation. The significant increase of the robustness

compared to KCF [4] thus speaks of effectiveness of the proposed constel-

lation model that is used in LDP. The LDP also outperforms in accuracy

and robustness the state-of-the-art part-based trackers, i.e., the structured
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SVM parts PT [27], the segmentation-based DGT [26] and the stochastic

part-based LGT [21].
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Figure 5.11: The VOT2014 sequence-normalized AR-rank plot.

The improvements of LDP over state-of-the-art are further supported by

running the rigorous VOT2014 per-sequence ranking analysis with min-rank

equivalency rule in which the final ranking is the average of per-sequence

rankings. The results are shown in Table 5.4 under sequence-normalized

ranks and visualized by the AR-rank plot in Figure 5.11. The point of top

performance is in the upper-right corner, where a tracker would be ranked

highest in terms of accuracy and robustness. Compared to top-performing

trackers, the LDP achieves competitive rank in terms of accuracy and out-

performs all trackers in robustness. The results in Table 5.4 show that the

LDP achieves the best average rank among all tested trackers. Additional

examples of tracking with LDP are shown in Figure 5.13 and in Figure 5.12,

where LDP is compared with other trackers.
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seq. normalized attrib. normalized All

tracker A R Av A R Av Av

LDP 2.60 1.80 2.20 2.00 1.67 1.83 2.02

KCF 1.96 3.16 2.56 1.17 2.50 1.83 2.20

DSST 2.40 2.96 2.68 1.17 2.33 1.75 2.21

SAMF 2.24 3.16 2.70 1.33 2.50 1.91 2.31

DGT 3.88 2.48 3.18 3.50 2.50 3.00 3.09

TGPR 3.76 4.8 4.28 5.00 4.33 4.66 4.47

LGT 6.20 3.40 4.80 7.33 1.33 4.33 4.56

Struck 4.64 5.72 5.18 4.67 4.83 4.75 4.96

PT 5.48 5.20 5.34 5.33 4.67 5.00 5.17

STC 5.76 6.96 6.36 6.17 9.33 7.75 7.05

IVT 6.32 7.72 7.02 6.83 9.17 8.00 7.51

MIL 8.32 5.92 7.12 10.17 6.50 8.33 7.73

CT 7.60 7.08 7.34 9.17 7.50 8.33 7.84

Table 5.4: Tracker ranks on accuracy (A), robustness (R) and averaged

ranks (Av) for the sequence-normalized and attribute-normalized ranking

(smaller value means better performance). The last column shows average

ranks over both normalization types. Trackers ranked first, second and third

are shown in red, blue and green, respectively.
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LDP DSST KCF SAMF DGT Struck TGPR STC LGT PT CT IVT MIL

sequence A F A F A F A F A F A F A F A F A F A F A F A F A F

ball (0.026) 0.74 0.00 0.56 1.00 0.75 1.00 0.77 1.00 0.81 0.00 0.57 0.87 0.68 0.00 0.42 1.00 0.31 1.13 0.46 1.00 0.39 1.00 0.33 4.00 0.45 0.80

basketball (0.07) 0.54 1.00 0.64 1.00 0.64 0.00 0.75 0.00 0.50 0.00 0.61 1.53 0.66 0.60 0.54 3.00 0.50 0.80 0.62 1.00 0.54 1.00 0.43 1.00 0.61 2.20

bicycle (0.073) 0.48 0.00 0.58 0.00 0.62 0.00 0.61 0.00 0.63 0.00 0.42 0.60 0.50 0.13 0.46 1.00 0.53 0.93 0.44 1.00 0.56 2.00 0.71 1.00 0.54 0.00

bolt (0.111) 0.60 0.00 0.56 1.00 0.49 3.00 0.56 2.00 0.49 0.00 0.52 4.60 0.47 2.53 0.53 4.00 0.38 0.67 0.52 7.00 0.42 9.00 0.40 6.00 0.50 5.00

car (0.036) 0.47 0.00 0.73 0.00 0.70 0.00 0.51 0.00 0.57 0.00 0.43 0.00 0.47 0.00 0.53 1.00 0.51 0.80 0.43 0.00 0.37 0.00 0.64 0.00 0.42 0.00

david (0.118) 0.78 0.00 0.80 0.00 0.82 0.00 0.82 0.00 0.53 1.00 0.59 0.73 0.61 1.20 0.74 0.00 0.56 0.00 0.55 1.00 0.40 1.00 0.69 0.00 0.50 0.00

diving (0.082) 0.43 1.00 0.44 1.00 0.25 4.00 0.24 4.00 0.34 0.00 0.28 2.47 0.27 4.00 0.25 4.00 0.33 1.27 0.33 2.00 0.24 2.00 0.23 3.00 0.24 1.00

drunk (0.046) 0.51 0.00 0.55 0.00 0.53 0.00 0.57 0.00 0.67 0.00 0.50 0.00 0.42 0.00 0.39 1.00 0.52 0.00 0.49 0.00 0.48 0.00 0.51 0.00 0.45 0.00

fernando (0.062) 0.33 1.00 0.34 1.00 0.41 1.00 0.39 1.00 0.61 0.00 0.38 2.07 0.40 1.47 0.34 1.00 0.47 0.47 0.38 1.00 0.39 3.00 0.39 3.00 0.46 2.00

fish1 (0.065) 0.50 2.00 0.32 1.00 0.42 3.00 0.49 3.00 0.56 0.00 0.35 7.07 0.34 2.47 0.22 10.00 0.36 0.93 0.39 4.00 0.36 10.00 0.26 4.00 0.40 2.80

fish2 (0.084) 0.34 1.00 0.35 4.00 0.26 6.00 0.30 5.00 0.48 2.00 0.21 6.27 0.26 4.40 0.22 8.00 0.28 1.80 0.14 5.00 0.21 4.00 0.20 6.00 0.22 5.87

gymnastics (0.099) 0.53 1.00 0.63 5.00 0.53 1.00 0.54 2.00 0.58 0.00 0.49 4.13 0.51 2.93 0.58 3.00 0.48 1.00 0.57 3.00 0.48 4.00 0.56 4.00 0.26 4.80

hand1 (0.068) 0.50 1.00 0.21 2.00 0.56 3.00 0.54 3.00 0.63 1.00 0.35 3.93 0.48 4.13 0.45 6.00 0.55 0.00 0.31 4.00 0.31 3.00 0.28 7.00 0.43 1.80

hand2 (0.068) 0.50 3.00 0.52 6.00 0.49 6.00 0.46 5.00 0.52 5.00 0.30 9.47 0.43 6.13 0.27 12.00 0.49 1.20 0.29 10.00 0.20 15.00 0.34 8.00 0.40 8.20

jogging (0.076) 0.80 1.00 0.79 1.00 0.79 1.00 0.82 1.00 0.66 0.00 0.77 1.00 0.78 1.00 0.78 1.00 0.35 1.00 0.72 1.00 0.77 1.00 0.72 2.00 0.20 1.00

motocross (0.046) 0.50 1.00 0.42 4.00 0.36 2.00 0.40 4.00 0.49 1.00 0.26 2.80 0.35 3.53 0.31 3.00 0.41 1.00 0.34 1.00 0.22 3.00 0.25 5.00 0.22 3.27

polarbear (0.051) 0.76 0.00 0.63 0.00 0.78 0.00 0.71 0.00 0.81 0.00 0.62 0.00 0.67 0.00 0.47 0.00 0.65 0.00 0.60 0.00 0.60 0.00 0.45 0.00 0.46 0.00

skating (0.099) 0.47 1.00 0.59 0.00 0.68 1.00 0.45 0.00 0.39 7.00 0.52 1.00 0.53 1.20 0.53 2.00 0.32 0.40 0.52 1.00 0.51 2.00 0.56 4.00 0.25 3.60

sphere (0.027) 0.81 0.00 0.92 0.00 0.90 0.00 0.88 0.00 0.84 0.00 0.70 0.00 0.72 0.00 0.71 0.00 0.64 0.00 0.65 0.00 0.61 0.00 0.38 0.00 0.57 0.00

sunshade (0.075) 0.80 0.00 0.78 0.00 0.76 0.00 0.76 0.00 0.51 0.00 0.78 0.00 0.71 0.27 0.75 0.00 0.55 0.40 0.63 0.00 0.40 4.00 0.75 3.00 0.43 2.87

surfing (0.081) 0.90 0.00 0.90 0.00 0.79 0.00 0.80 0.00 0.63 0.00 0.90 0.00 0.87 0.00 0.78 0.00 0.57 0.00 0.88 0.00 0.66 0.00 0.68 0.00 0.38 0.00

torus (0.029) 0.84 0.00 0.81 0.00 0.85 0.00 0.84 0.00 0.83 0.00 0.50 3.67 0.67 1.53 0.48 4.00 0.63 0.00 0.51 5.00 0.54 4.00 0.70 1.00 0.43 3.80

trellis (0.068) 0.62 0.00 0.80 0.00 0.79 0.00 0.81 0.00 0.48 0.00 0.53 1.60 0.61 0.53 0.66 2.00 0.48 0.00 0.48 1.00 0.33 5.00 0.54 3.00 0.42 4.73

tunnel (0.065) 0.35 0.00 0.80 0.00 0.68 0.00 0.54 0.00 0.44 8.00 0.32 0.13 0.44 0.27 0.31 0.00 0.36 1.47 0.31 0.00 0.19 0.00 0.30 0.00 0.32 2.47

woman (0.08) 0.78 1.00 0.79 1.00 0.74 1.00 0.76 1.00 0.54 0.00 0.75 0.00 0.77 1.00 0.75 1.00 0.36 1.13 0.76 1.00 0.57 4.00 0.47 4.00 0.26 0.47

Average (0.068) 0.59 0.50 0.63 0.84 0.64 0.99 0.64 0.92 0.58 1.15 0.51 1.73 0.55 1.19 0.50 2.31 0.46 0.62 0.50 1.61 0.43 2.63 0.47 2.27 0.41 1.94

Table 5.5: The per-sequence accuracy (A) and number of failures (F) over all 25 sequences and 13 tested trackers.

The practical difference value of each sequence is given next to the name of each sequence in parentheses.
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2 41 79 118 157 195 234 273 311 350

2 26 50 74 98 123 147 171 195 219

2 36 70 105 139 173 207 242 276 310

Figure 5.12: Qualitative comparative examples of tracking for LDP, KCF,

Struck and IVT shown in red, green, violet and blue, respectively.

Figure 5.13: Qualitative examples of LDP tracker on six sequences. Track-

ing bounding box is visualized with blue color and four parts on mid-level

representation are shown in yellow.
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Per-difficulty analysis

According to VOT2014 [50], sequences are classified into four classes (hard,

intermediate, intermediate/easy and easy). The twenty five VOT2014 se-

quences are classified as follows:

• Hard: motocross, hand2, diving, fish2, bolt, hand1.

• Intermediate: fish1, fernando, gymnastics, torus, skating.

• Interm./easy: trellis, basketball, tunnel, sunshade, jogging, woman.

• Easy: bicycle, david, ball, sphere, car, drunk, surfing, polarbear.

A sequence-normalized analysis was performed on each of this four sequence

subsets. The AR-plots on the Figure 5.14 show rankings of the trackers for

each subset. The LDP tracker is positioned on each plot among the top-

performing trackers (close to the top-right corner). It is interesting that it

performs the best on sequences which are labelled as hard.
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Figure 5.14: Four VOT2014 sequence-normalized AR-rank plots. Each

plot represents tracker ranking on a subset of sequences. Each sequence is

classified to a difficulty class according to the VOT2014.
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5.4.2 Per-attribute analysis
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Figure 5.15: The VOT2014 attribute-normalized AR-rank plot (a) and

per-attribute failures plot (b).

The VOT2014 benchmark contains per-frame visual attribute annota-

tion. To analyze the robustness with respect to the attributes, the number

of failures per attribute was obtained by summing across all 25 sequences.

The number of failures per visual attribute for each tracker is shown in Fig-

ure 5.15b. Note that the LDP is again consistently the top or among the

top-two trackers at each attribute, which implies that the tracker reaches

top performance by addressing well the challenges posed by all attributes.

Raw results of all tested trackers among the visual attributes are given in

Table 5.6. The last column represents the average overlap and total num-

ber of failures across the attributes. The VOT2014 also provides attribute-

normalized ranking that averages ranks across the attributes in contrast to

the sequence-normalized ranking. The resulting attribute-normalized AR-

rank plot is shown in Figure 5.15a, which again shows the LDP close to
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the upper-right corner, exhibiting top performance. The values of ranks are

shown in Table 5.4 under attribute-normalized ranks. Averaging ranks over

both sequence-normalized and attribute-normalized ranks, the LDP is again

the top-performing tracker. In Figure 5.16 AR-rank plot is shown for each

visual attribute separately. Note that the LDP is consistently ranked among

the top trackers with respect to each attribute.
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camera motion (0.072) illum change (0.088) occlusion (0.078) size change (0.065) motion change (0.069) empty (0.050) Average

Overlap Failures Overlap Failures Overlap Failures Overlap Failures Overlap Failures Overlap Failures Overlap Failures

LDP 0.60 11.00 0.58 2.00 0.59 3.00 0.51 6.00 0.62 12.00 0.52 0.00 0.59 8.87

DSST 0.66 20.00 0.75 1.00 0.63 3.00 0.52 15.00 0.65 24.00 0.56 0.00 0.64 16.90

KCF 0.67 24.00 0.74 1.00 0.64 5.00 0.58 20.00 0.67 26.00 0.54 0.00 0.66 19.79

SAMF 0.66 24.00 0.67 1.00 0.61 4.00 0.56 18.00 0.67 25.00 0.57 0.00 0.64 19.23

DGT 0.56 19.00 0.47 14.00 0.48 1.00 0.58 6.00 0.58 14.00 0.68 0.00 0.56 13.78

Struck 0.53 36.67 0.51 3.67 0.58 3.20 0.40 27.07 0.51 41.67 0.50 0.07 0.51 30.39

TGPR 0.57 27.27 0.57 3.47 0.61 5.00 0.47 21.20 0.55 30.20 0.43 0.00 0.55 22.67

STC 0.54 45.00 0.57 3.00 0.60 6.00 0.42 33.00 0.53 53.00 0.41 1.00 0.52 37.76

LGT 0.44 15.20 0.45 1.47 0.33 3.93 0.43 7.40 0.46 10.47 0.52 0.00 0.45 10.34

PT 0.52 31.00 0.50 3.00 0.60 4.00 0.40 22.00 0.49 36.00 0.50 0.00 0.50 25.83

CT 0.43 55.00 0.38 11.00 0.42 8.00 0.36 33.00 0.42 58.00 0.49 0.00 0.42 44.03

IVT 0.47 52.00 0.56 11.00 0.40 9.00 0.41 28.00 0.49 53.00 0.52 0.00 0.48 40.83

MIL 0.41 41.87 0.38 13.53 0.28 5.00 0.37 19.40 0.41 40.13 0.42 0.00 0.40 32.15

Table 5.6: The per-attribute accuracy (overlap) and number of failures over all 5 visual attributes and 13 tested

trackers. The practical difference value of each attribute is given next to the name of the attribute in parentheses.
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Figure 5.16: The VOT2014 AR-rank plots for each visual attribute. In

each plot the top performing point is top-right corner.
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Chapter 6

Conclusion

We presented a novel deformable-part based method for visual tracking,

called LDP tracker. It consists of two layers, the coarse and mid-level

representation. The coarse representation has a target template (holistic

model) and a color model that uses Markov random field segmentation. The

mid-level representation consists of a set of parts connected with the spring

system. A part-based tracker (LDP) combines a coarse object representa-

tion with a mid-level deformable parts model in top-down localization and

bottom-up updates. The main contributions of this thesis are as follows.

The developed deformable parts model jointly treats the visual and geomet-

ric properties within a single formulation, resulting in a convex optimization

problem. We have shown that the dual representation of such a deformable

parts model is an extended spring system and that minimization of the corre-

sponding energy function leads to a MAP inference on the deformable parts

model. A novel optimization method – iterative direct approach (IDA) for

efficient minimization of the spring system energy is proposed in this thesis.

The proposed optimization method, IDA, is analyzed and compared to the

standard optimization approach, i.e., conjugated gradient descend (CGD).

The results show that it outperforms the CGD in terms of lower number of

iterations as well as in lower optimization time. Our tracker is rigorously

compared against the state-of-the-art trackers on a recent highly challenging
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VOT2014 [3] benchmark. The LDP tracker outperforms the related state-

of-the-art part-based trackers as well as state-of-the-art trackers that use

a single visual model, including the winner of the VOT2014 challenge and

runs in real-time. Additional tests show that improvements come from the

fully-connected constellation and the top-down, bottom-up combination of

the coarse representation with the proposed deformable parts model.

6.1 Future work

The proposed deformable parts model is highly extendable, therefore the

visual models on parts can be easily replaced with other discriminative or

generative models. Since the model is fully probabilistic, it can be readily

integrated with probabilistic dynamic models, i.e., Kalman filter, to improve

the prediction of the target location in a new frame. The proposed tracker

should also be modified for the long-term tracking, where tracker should be

able to perform target re-detection. This could be done by an online-learned

object detector to guide the tracker. Experiments showed that segmentation

on the coarse representation contributes a lot to robust tracking, but it has

problems on sudden illumination changes. Therefore we think that segmen-

tation mask could be learned via correlation filter, which could result in a

more robust tracking during changing illumination.
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