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Povzetek

Naslov: Napredni programsko definirani sprejemnik za sporočila ADS-B

V tem magistrskem delu sta predstavljeni zasnova in implementacija na-

prednega programsko definiranega sprejemnika za sporočila ADS-B/Mode-S,

ki jih oddajajo plovila v letalskem prometu za namene kontrole zračnega pro-

meta. Predstavljena in argumentirana je zasnova programske procesne verige

za sprejem signalov, ki poleg osnovnega dekodiranja paketov služi tudi kot

platforma za nadgradnjo in razvoj naprednih funkcij. Prav to je s pridom

uporabljeno za razvoj in vrednotenje metode za določanje časa prihodov pa-

ketov, kar je ključen podatek pri pasivnem določanju položaja in sledenju

letečih plovil. V tej magistrski nalogi je predstavljenih in ovrednotenih več

metod za določanje časa prihodov paketov vključno z izvirnim pristopom,

ki upošteva položaj vrhov v signalu ter dosega časovno natančnost tudi do

1, 2 nanosekunde. V nadaljevanju je predstavljena metoda za izbolǰsavo de-

kodiranja z razreševanjem kolizij paketov. Le-ta deluje na podlagi tehnike

izničevanja signala paketa, ki je bila razvita v sklopu tega magistrskega dela.

Delo predstavi tudi potencialne izbolǰsave, ki bi v prihodnosti omogočile ra-

zvoj kognitivnega sprejemnika.

Ključne besede

Programsko definirani radio, ADS-B, nadzor letalskega prometa, sprejemnik





Abstract

Title: Advanced receiver for ADS-B messages in Software-Defined Radio

This master thesis presents the work of designing and implementing an ad-

vanced software-defined radio receiver for ADS-B/Mode-S messages, broad-

casted from aircraft for the use in air traffic control. It presents and argues

the design of the software receiver chain and introduces a platform that

enables augmenting the basic receiver chain with advanced features. Fur-

thermore, this work leverages the software receiver possibilities to implement

and evaluate packet timestamping techniques that produce packet time-of-

arrival information necessary for passive position tracking of airplanes. Mul-

tiple timestamping techniques are implemented and evaluated including a

novel peak-position based approach that achieves precision of impressive 1.2

nanoseconds. Moreover, this thesis produces a method for improving packet

decoding by means of packet collision resolution. Proof of concept collision

resolution is achieved by facilitating the packet signal cancellation method

developed in this work. This thesis also presents improvements for the future

that would allow the developed receiver to become cognitive.

Keywords

Software Defined Radio, ADS-B, Airplane Surveillance, Receiver





Razširjeni povzetek

V zračnem prometu je v uporabi veliko tehnologij, ki so namenjene zago-

tavljanju varnosti in preglednosti zračnega prometa. Ena izmed tehnologij

je tudi sistem Mode-S za izmenjavo sporočil med kontrolo letenja in letali.

V sklopu tega sistema letala periodično pošiljajo podatke o svoji geografski

legi, hitrosti, vǐsini in drugih pomembnih parametrih. To je sistem ADS-B

(angl. automatic dependent surveillance - broadcast) oziroma avtomatski

sistem za nadzor, ki je odvisen od delovanja oddajnika na letalu in podatke

pošilja periodično ter brez zahtevka.

V sklopu tega magistrskega dela smo izdelali programsko definirani spre-

jemnik za sporočila ADS-B/Mode-S, ki temelji na obstoječem projektu gr-

air-modes [1] in je izdelan v ogrodju za digitalno procesiranje signalov in

programsko definirani radio - GNU Radio[2]. To nam omogoča fleksibilnost

in uporabo vnaprej pripravljenih blokov in funkcij za obdelavo signalov, prav

tako pa s tem omogočimo podporo za večino strojnih vmesnikov, ki se upo-

rabljajo na področju programsko definiranega radia. Podrobno smo opisali

arhitekturo in načrt našega sprejemnika. Programski sprejemnik je sestavljen

iz več delov, ki so potrebni za delovanje. Najprej signal sprejeme vmesnik

SDR (vmesnik za programsko definirani radio), ki sprejet signal iz antene

pretvori v zaporedje digitalnih vzorcev. Od te točke naprej poteka vsa obde-

lava signalov znotraj programske opreme. Tok vzorcev najprej potuje skozi

nizkoprepustni filter in fazo povǐsanja vzorčenja (angl. up-sampling), nato pa

v blok za zaznavanje energije, ki tok oz. kos vzorcev prepušča le, če je signal

dovolj močan. Nato sledi zaznavanje preambule paketa, kjer se preveri, ali

i
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imamo v obdelavi kos vzorcev, ki vsebuje paket ADS-B/Mode-S. V primeru,

da je preambula prisotna, se prične dekodiranje vsebine paketa. To poteka

po pravilih modulacije s pozicijo pulza (angl. PPM = Pulse-Position Mo-

dulation). Ob uspešnem dekodiranju (pravilna kontrolna vsota) se vsebina

paketa izpǐse, prav tako pa je pripravljena za nadaljnjo obdelavo, skupaj s

surovimi vzorci, ki pripadajo paketu. To služi kot podporna platforma za

razvoj bolj naprednih funkcij, ki so opisane v nadaljevanju. V delu so pred-

stavljene tudi potencialne izbolǰsave, ki bi v prihodnosti omogočile razvoj

kognitivnega sprejemnika.

Poleg razvoja sprejemnika smo v delu prestavili tudi strojno okolje, ki

je služilo zajem signalov in njihovo shranjevanje v datoteke. Uporabili smo

posebej prilagojeno anteno za sprejem signalov na frekvenci 1090 MHz. Si-

gnal smo filtrirali in ga nato z razdelilnikom pripeljali do dveh identičnih

strojnih vmesnikov za programsko definirani radio. Poleg zajema pa smo

za naš sprejemnik ovrednotili tudi zmožnost dekodiranja paketov in meritve

primerjali s tistimi za odprtokodni sprejemnik dump1090. Pokazali smo, da

naš sprejemnik deluje bolje oziroma vsaj tako dobro kot dump1090.

Ena izmed glavnih naprednih funkcij v sprejemniku je sistem za natančno

določanje časa prihoda paketa. Časovne značke paketov so zelo uporabni po-

datki, saj jih lahko s pomočjo triangulacijskih algoritmov uporabljamo za pa-

sivno določanje geografske lege plovila [3]. S tem lahko lego plovila določamo

zgolj s sprejemom signala in določanjem časovne značke paketa (na več spre-

jemnikih). To je uporabno tudi za preverjanje lege, ki jo v sporočilih pošilja

plovilo. Pomembno je tudi, da iz plovila posredovana lega omejena z na-

tančnostjo GPS sprejemnika na plovilu, pasivno določanje lege iz signala pa

lahko celo doseže bolǰso natančnost, kar uporabljajo tudi komercialni sis-

temi kontrole letenja, predvsem v bližini letalǐsč (članek [4]). Natančnost

določanja časovnih značk je torej za pasivno določanje in preverjanje lege

izrednega pomena saj se direktno preslika v natančnost določanja geografske

lege. Na tem mestu je potrebno poudariti, da sistema ADS-B in Mode-S1

1Sistema ADS-B in Mode-S uporabljata enak fizični format signala in modulacijsko
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nista bila načrtovana za namen natančnega določanja časa prihoda paketov.

Prav nasprotno - zaradi specifikacije [5], ki je nastala pred nekaj desetletji

so zahteve relativno ohlapne. Na primer, posamezni pulzi v signalu lahko

od nominalne pozicije odstopajo za ± 50 nanosekund, cilj našega dela pa je

razvoj metode, ki bi dosegala natančnost v velikostnem redu nekaj nanose-

kund. Izziv predstavlja tudi dejstvo, da sisteme ADS-B in Mode-S izdeluje

več različnih proizvajalcev, ki so na tržǐsču že desetletja. Zaradi tega imamo

opravka z opazno različnimi oblikami signalnih pulzov, čeprav vsi ustrezajo

specifikaciji.

Za natančno določanje časovnih značk oz. časov prihodov paketov smo

razvili in implementirali več metod za določanje časovnih značk. Razvili smo

več različic metode, ki temelji na korelaciji amplitudnega signala z znano pre-

dlogo (angl. template). To je kanoničen pristop k določanju časovnih značk,

vendar pa v našem primeru ni deloval dovolj dobro, kar gre pripisati rela-

tivno ohlapnim tolerancam v specifikaciji. Da bi dosegli bolǰso natančnost,

smo uporabili izviren pristop in razvili metodo za določanje časovnih značk,

ki deluje na podlagi položaja vrhov v amplitudnem signalu. Časovna značka

je določena s pozicijo prvega vrha v amplitudnem signalu in s pomočjo pov-

prečnega odstopanja dejanskih pozicij vrhov od nominalnih. S to metodo

smo dosegli varianco napake v vrednosti 2, 2 nanosekunde, kar bi ustrezalo

oceni geografske lege na 66 cm natančno. Z upoštevanjem jakosti signala

paketa pa smo metodo še izbolǰsali in v posebnem primeru znižali varianco

napake določanja časovnih značk na 1, 2 nanosekunde, kar ustreza oceni geo-

grafske lege na 36 cm natančno. Menimo, da to predstavlja presenetljivo do-

ber rezultat glede na enostavnost in elegantnost pristopa, ki je tudi računsko

učinkovit in primeren za implementacijo na napravah z omejeno računsko

močjo. V delu so predstavljeni rezultati za vse različice razvitih metod, prav

tako pa tudi primerjava z obstoječimi programsko definiranimi sprejemniki za

sporočila ADS-B/Mode-S. Rezultati so poglobljeno obravnavani, prav tako

pa so predstavljeni vplivi povǐsanja vzorčenja (angl. up-sampling) ter možna

shemo
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razlaga za slabše delovanje metod, ki temeljijo na korelaciji. Delo vsebuje

tudi metodo za ocenjevanje variance napak časovnih značk, ki deluje na real-

nih podatkih, kjer ne poznamo dejanskih absolutnih časovnih značk oziroma

jih niti ni mogoče določiti.

Ena izmed glavnih prednosti programsko definiranega sprejemnika je zmožnost

poganjanja algoritmov v več prehodih, prav tako pa lahko procesiranje iz-

vajamo le na specifičnih delih signala. To je ključna prednost, ki nam je

omogočila razvoj metode za izbolǰsavo dekodiranja z razreševanjem kolizij

paketov. Kolizija nastane, ko dva različna oddajnika (dve različni letali)

oddajata signal istočasno oziroma kadar se signala oddanih paketov (delno)

prekrivata. Ponavadi sta v tem primeru izgubljena oba paketa, vendar pa je

možno tudi, da je sprejemnik pravilno sprejel enega (ponavadi močneǰsega)

izmed paketov. V tem primeru lahko s pomočjo metode za izničevanje si-

gnala paketa (angl. packet signal cancellation) odstranimo signal paketa, ki

smo ga uspešno sprejeli in s tem razkrijemo signal drugega paketa, ki bi sicer

bil izgubljen. V tem magistrskem delu smo opisali in implementirali me-

todo za izničevanje signala, ki za delovanje potrebuje dobre približke fizičnih

lastnosti signala, kot so amplituda, faza, frekvenčni zamik, pozicije vrhov

amplitudnega signala (ki jih dobimo iz faze določanja časovnih značk) ter

vsebina paketa. Predstavljeni so postopki za izluščevanje omenjenih lastno-

sti, ter postopek ustvarjanja sintetičnega signala paketa, ki čim bolj ustreza

lastnostim izvornega signala. S tem lahko ustvarimo signal enega izmed pa-

ketov, ki ga nato odštejemo, da izničimo signal prvega paketa in izpostavimo

signal drugega paketa, ki ga je nato mogoče dekodirati. Pokazali smo, da

postopek izničevanja signalov deluje na realnih primerih, vendar pa skupen

postopek razreševanja kolizij dobro deluje le na sintetično ustvarjenih kolizi-

jah. Predstavili smo težave in potencialne izbolǰsave, ki bi omogočale dobro

razreševanje kolizij tudi kadar ne poznamo vsebine niti enega izmed paketov.

V tem magistrskem delu je torej predstavljen napredni programsko defi-

nirani sprejemnik za sporočila ADS-B in Mode-S, ki vsebuje napredne funk-

cije kot sta natančno določanje časov prihodov paketov (pomembnih vho-
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dnih podatkov v algoritme za pasivno določanje geografske lege plovil) in

razreševanje kolizij s pomočjo metode izničevanja signalov. Ugotovili smo,

da je razreševanje kolizij kompleksen problem, ki odpira možnosti za nadalj-

nje raziskave, rezultati evalvacije metod za določanje časovnih značk pa so

pokazali, da lahko z razvito metodo določimo časovne značke tudi do 1, 2 na-

nosekunde natančno (ekvivalentno 36 cm s hitrostjo svetlobe). Predvsem pa

je rezultat tega magistrskega dela implementacija sprejemnika, ki omogoča

nadaljnji razvoj naprednih funkcij in služi kot raziskovalna platforma. Poleg

tega pa smo predstavili tudi potencialne izbolǰsave in vizijo za prihodno raz-

iskovalno delo, ki bi omogočilo razvoj kognitivnega sprejemnika za sporočila

ADS-B in Mode-S.
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Chapter 1

Introduction

The widespread availability of inexpensive software defined radio equipment

has led the research in the field of radio communications to also become a

computer science topic. The processing of radio signals can be done on gen-

eral purpose computers with the help of software-defined radio interfaces.

SDR interface handles physical signal conversions and hardware manipula-

tions necessary to convert the radio signal into a digital form. SDR has been

used in computer science research in many topics. There has been research

in security [6, 7], distributed systems (for example, distributed spectrum

monitoring described in [8]) . One of the more useful qualities of SDR is

that most of the signal processing is done in software, thus allowing a quick

turnaround time as a test-bed for developing and testing new protocols, such

as described in [9, 10]. SDR has been also used in conjunction with artifi-

cial intelligence methods and machine learning to generate new modulation

schemes and increase adaptability, shown in the article [11].

Since the beginning of air traffic, there was always a need to track and

surveil each and every aircraft in order to assure safe and uninterrupted flow

of air traffic. Several technologies were developed to make this possible,

for example radar. There exist multiple radar technologies that are roughly

divided into two categories: primary radar and secondary radar. Primary

radar is the system that emits EM pulses and measures reflections - it is

1



2 CHAPTER 1. INTRODUCTION

completely passive from the aircraft’s point of view. Secondary radar, on the

other hand, requires some cooperation from the aircraft. It initiates radio

communication with the aircraft’s on-board transponder and receives iden-

tity and flight information. Currently there are multiple secondary radar

technologies in place. One that operates at the frequency of 1090 MHz is so

called MODE-S [5]. MODE-S has two modes of operation: interrogation (re-

quest from ground and response from aircraft) and broadcast, where aircraft

periodically broadcast unsolicited messages. This is covered by the ADS-B

- Automated Dependent Surveillance - Broadcast protocol. Every aircraft

equipped with an ADS-B transceiver sends out periodic updates of its lo-

cation, velocity, altitude (GPS data) and other parameters of interest using

radio waves. Traditionally, receivers for specific function were purpose-made,

having an application specific hardware circuitry, or are implemented in semi-

software fashion - with FPGAs, like for example the well known Radarcape

receiver [12]. With wide availability of software defined-radio equipment, it

became possible to implement a receiver for ADS-B in software together with

inexpensive SDR interfaces/cards, like shown in the article [13]. Exploiting

this fact, there are systems that collectively receive ADS-B signals in order

to cover a large area. For example, FlightAware [14] or Flightradar24 [15]

that are commercial, or a more research oriented Opensky Network [16].

Because of great availability of inexpensive SDR hardware, implementa-

tions of Mode-S/ADS-B receivers have emerged in the open-source commu-

nities as well. In fact, open-source ADS-B receiver implementations coupled

together with inexpensive SDR hardware have produced an interesting out-

come: crowdsourced reception, where individuals can setup ADS-B receivers

to improve either the range or accuracy of the collective system (like Fligh-

tradar24 [15], or the Opensky Network [16]). That is why the work of this

thesis is directly related to the most widespread open-source implementa-

tion of Mode-S/ADS-B receiver, the dump1090 [17]. It sets the reference

to which we will compare our work. Other projects include gr-air-modes

[1] that implements the receiver in GNU Radio[2], the open-source software
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radio toolkit.

With any system pertaining radio reception, there is always the motiva-

tion for better reception. In case of MODE-S and ADS-B, better reception

does not necessarily mean a more sensitive receiver, like it is the case with

other analog or digital systems. Here we mostly have a good signal or no

signal at all, since there is usually line-of-sight between the aircraft and the

receiver and the aircraft transmit with very high power [5]. The problem

here is that many aircraft have to share the same frequency band, which

is limited and fixed (due to legacy support). When multiple transponders

initiate transmission at the same time, the packets transmitted destructively

merge - we say that the packets collide.

Another aspect of better reception in the case of ADS-B is precisely tim-

ing the arrival of packets. Similar to GPS and other positional systems,

time information can be used to determine the position of the aircraft. By

measuring the packet time-of-arrival at multiple receivers, we gain data that

multilateration algorithms (MLAT) can transform into a positional estimate

(shown in article [3]). The requirement of multiple timestamps for the same

packet plays very nicely with the crowdsourced reception as multiple indi-

vidual receivers can capture packets from the same aircraft. Given that we

want very precise positional estimates, the time-of-arrival must be precise as

well as the timestamping precision has direct impact on the position preci-

sion. Moreover, the paper [4] explains that multilateration is actually done

in commercial air traffic control systems near airports, because the positional

reports from aircraft are not accurate enough. This motivates research for

timestamping methods that could achieve precision in the order of nanosec-

onds and thus positional precision in the order of 1 meter. Also consider-

ing the crowdsourced reception, we can use the positions determined from

the timing information to verify the positional reports (GPS) that aircraft

themselves are sending and detect attacks on the ATC systems [18, 19, 20].

Similarly, such opportunistic use of aircraft signals has been exploited also

for indoor self-localization (show in article [21]) as a replacement for GPS.
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Both aspects present certain challenges that we must face. Firstly, it

is our goal that software and methods applied work well with inexpensive

SDR devices, for example RTL-SDR dongles. These devices have neither

instrument-grade clock precision and stability, nor the best radio front-end.

Nonetheless, these kind of devices were chosen since they are low-cost and

therefore suited for wide-scale deployment that is common in crowd based

reception. The second challenge is a rather loose specification of the Mode-S

signal format. Specifications are rather old and allow for relatively large tol-

erance margins, including peak temporal position and pulse shape (defined

in [5]). For example, tens of nanosecond wide margins pose a problem when

tying to achieve nanosecond-level resolution. Moreover, signals are gener-

ated by a very heterogeneous set of transponder models, some of which were

deployed decades ago, and differences in signals generated are discernible

enough that fingerprinting of transponder model (and subsequently aircraft

type) is possible (article [20]) just by observing the shape of the signal. It

is important to note that these appreciable differences still comply with the

specifications tolerance levels. For the reasons stated above, the tasks of

high-precision time-of-arrival timestamping and cancellation are more diffi-

cult to achieve comparing to more modern standards (for example, WiFi or

LTE) with tightly constrained tolerance margins and where more canonical

methods are applicable. There has been work on employing correlation with

nominal pulse shape [4, 22] for Mode-S timestamping, however it would likely

suffer when faced with different pulse shapes present in real data, yet still

within the specifications. Therefore, our work focuses on developing an alter-

native approach that does not rely on a priori knowledge of the pulse shape,

nor the exact pulse position.

1.1 Structure

Here we will briefly describe the contents, structure and goals of this thesis.

In chapter 2 we will present secondary radar technology MODE-S and
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ADS-B, what are they used for and the relevance and importance of such

technology. We will describe the physical properties of the radio signals

used, such as operating frequency, signal bandwidth and modulation format.

Moreover we will describe the basic data format and structure relevant for

this work.

In chapter 3 we will present and describe the design and architecture of

the implemented software receiver. We will argue about design choices that

were made during the development. Moreover, we will describe each block of

the receiver. We will present the structure that allows implementing other

improvements that we will describe in the following chapters.

Chapter 4 describes the hardware and software setup for capturing real

world data and preparing the evaluation environment. Furthermore, this

chapter contains the evaluation of the decoding performance in comparison

with the widespread receiver dump1090.

Chapter 5 will describe methods, techniques and evaluation of different

methods of packet timestamping - determining the time of arrival for each

packet. We will present several methods of packet timestamping and present

the developed techniques of evaluation. Next we will present the results of

the work on high precision timestamping.

Chapter 6 contains the work on packet collision resolution and interfer-

ence cancellation. We will present packet cancellation techniques and the

prerequisite estimation of signal properties.

Finally, we conclude this thesis in chapter 7 by briefly recapping the

problem and concisely restate our work and present the most important

results. Furthermore, we lay out possible future improvements and possible

goals for future work and research.

1.2 Goals

The main goals of this thesis are to develop a working implementation of

software receiver for ADS-B and Mode-S and use it as a research and de-
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velopment platform for developing and evaluating advanced features. Fur-

thermore, the goals are to design, implement, and evaluate advanced fea-

tures such as packet cancellation resolution and to implement high precision

timestamping methods and test and confirm its performance on real data.

This work is aiming to develop and implement an alternative timestamping

method that will deliver nanosecond-level resolution of packet time of arrival.

Furthermore, leveraging the details of temporal information, we will show a

proof-of-concept implementation of Mode-S packet collision resolution tech-

nique that does not require expensive gear or multitude of radio receivers or

antenna. Additionally, we will provide insight as to how current cancellation

technique could be improved in the future iterations of the receiver. Another

important design goal that was placed upon this work is that it should be

able to work with inexpensive SDR hardware such as a RTL-SDR dongle, yet

remain compatible with other SDR hardware that might become available in

the future. Lastly, the principle goal of this thesis is not only to produce a

working receiver, but to create an evolvable framework that can facilitate fu-

ture research and allow easy implementation and evaluation of new advanced

features and bring the receiver close to a cognitive one.



Chapter 2

MODE-S and ADS-B

Aviation uses different methods to track and surveil airborne aircraft in order

to keep the airspace a safe and collision free environment. Traditionally

and conventionally, primary surveillance radar is used to detect airborne

objects. It uses a pulse of radio signals and measure the reflections to detect

object’s position though tracking also bearing. It is important to mention

that primary radar does not need any sort of cooperation from the aircraft,

in that sense it is passive.

Secondary surveillance radar, on the other hand, is an active approach.

To be more specific, it requires that an aircraft is equipped with a specific

hardware - a transponder. The transponder receives commands and inter-

rogations and responds to them. In some cases the transponder broadcasts

unsolicitedly - without a request from aircraft traffic control. For the scope

of this thesis the two systems of interest are ADS-B and Mode-S. Normally

the requests or interrogations are sent by the air traffic control by using the

nominal frequency of 1030 MHz. Replies from the aircraft are sent out on

1090 MHz. This is the nominal operating frequency that is most relevant for

our work.

Mode-S is a secondary surveillance radar system that is used for multiple

purposes, in contrast to Mode-A or Mode-B that are used for identification.

Mode-S is used to request telemetry or data, such as altitude, position, or for

7
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delivering messages. Transponders automatically respond to interrogations

from ATC.

ADS-B or Automatic Dependent Surveillance - Broadcast is a specific sub-

system of Mode-S transponders. Like the name suggests, it is an automatic

system. That means it transmits without pilot intervention or traffic control

requests. It periodically broadcasts altitude, airspeed and other telemetry.

2.1 Physical format and modulation

In order to decode Mode-S replies including ADS-B broadcast packets, we

must firstly look at the physical format of the packet. Mode-S packets are

modulated with pulse position modulation. Each bit takes 1 µs. In the

time allocated for transmitting one bit, the pulse could occupy the earlier

(left) or later (right) half of the timeslot encoding either 1 or 0. This is

apparent on figure 2.1. This figure also shows the specific preamble format

that distinguishes Mode-S reply packets from other systems that share the

same frequency.

Figure 2.1: Mode-S reply packet structure

Our work encounters the modulation of Mode-S packet from two differ-

ent perspectives. First and more conventional is the decoding of the packet
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payload data. This is the intended purpose of the format and what the

specifications were written for. The other perspective is determining packet

time-of-arrival (ToA), in other words timestamping. It is important to note

that precise timestamping of Mode-S packets is an opportunistic application,

in other words, support for high precision timestamping was not a part of

the design and the specification. Furthermore, the specifications are several

decades old and keeping in mind the intended purpose, allow for large toler-

ance margins. For example, the position of each pulse might be shifted by

±50 ns with respect to the nominal position. This poses quite a problem

when nanosecond-level resolution is the aim of our work.
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Chapter 3

Receiver design and

implementation

This chapter will present the architecture, design and implementation of the

software-defined radio receiver for Mode-S replies and ADS-B packets.

For better understanding of the following content we will briefly describe

how signals are processed in software defined radio applications. There are

at least two parts in every SDR system: SDR hardware and the software pro-

cessing chain. SDR hardware or SDR interface card provides the interface

to the physical world. SDR card receives radio-frequency signals through an

antenna. It features a radio-frequency fronted that conditions the received

signal and converts it into a digital representation. This is done with the

analog-to-digital converter (ADC) that samples the signal with the appro-

priate sample rate and bit depth. One thing to note here is that rather

than producing a single stream of samples, SDR cards produce two streams

of samples: the ones that are in-phase and the ones that are in quadrature

with the operating frequency, more commonly referred to as I/Q samples.

This actually produces a stream of complex numbers (in-phase as real and

quadrature as imaginary elements) that allow easier digital processing of the

captured signal. Although the receiver presented in this thesis works in real-

time/online with SDR hardware, most of the research was done offline: by

11
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capturing the samples into a file (also called a trace) and replying the file to

the software as if it was a SDR device. The software part of SDR application

is the following digital signal of the two streams of samples. This usually

includes some signal conditioning (filtering, re-sampling), but is not limited

only to simulating operations traditionally done in hardware. It can also do

non-linear processing and is more or less limited only by program design.

We have chosen to implement the receiver using the open source radio and

signal processing toolkit called GNU Radio [2]. This allowed us to use readily

available components such as filters and common signal processing blocks.

Due to the fact that there already exists an implementation of Mode-S/ADS-

B receiver in GNU Radio, we have chosen not to implement our version from

scratch but to base it on the project known gr-air-modes [1]. It served

as a starting point to explore the working of such a receiver and to reuse

components that are necessary but instrumental for our work. It would also

be possible to base our work on top of the more popular dump1090 project,

however, dump1090 is only designed to work together with the inexpensive

RTL-SDR dongle. Although the goal was to ultimately use the same SDR

hardware, we pursued the goal of being compatible with other hardware

as well. Here the modular approach of GNU Radio toolkit comes to play

as it allows to just swap the hardware signal source module for one SDR

card with another one. This has significant value as each year better or

less expensive SDR hardware becomes available, allowing our receiver to be

forward compatible.

3.1 Architecture and design

Our receiver features several blocks:

• Input (trace file or SDR device),

• DC blocker,

• Low-pass filter,
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Figure 3.1: Schematic of the receiver chain

• Up-sampler,

• Energy detector,

• Preamble detector,

• Payload decoder,

• High precision timestamping module,

• Packet cancellation module.

Each of them will be described in its own section. The last two (high

precision timestamping and packet cancellation) were the focus of this work

and are thoroughly described, each in its own chapter.
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Figure 3.2: Our receiver implementation - GNU Radio chain

The signal enters the receiver chain either from a file (captured trace) or

from a SDR device. Since we have implemented this receiver in GNU Radio

toolkit, we have access to source blocks for multiple SDR devices, including

RTL-SDR and somewhat de-facto standard - Ettus Research USRP devices.

3.1.1 Energy detector

The first block after signal conditioning (DC blocking, filtering) and upsam-

pling is the energy detector. Since we are consuming a rather high sample

rate signal and even upsampling it, it is important that we have an efficient

method of deciding what possibly constitutes a signal and what we can ignore

as the background noise. An effective way of limiting further processing is to

to only forward samples when a certain signal-to-noise ratio has reached the
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threshold. This implicitly gives us a requirement: estimating the baseline

noise level, so that the energy detector is able to determine the signal-to-

noise ratio. The threshold is predetermined and acts as a trade-off between

receiving weak signals and having lower processing power demands.

In our receiver, the baseline noise estimation is done by observing the

a − th percentile value of the amplitude. We have empirically found this

value to be around 0.55, but can also be configurable as it depends on the

type of hardware used and the noise profile of the environment.

3.1.2 Preamble detector

When the energy detector is triggered (SNR threshold surpassed), a chunk of

samples is delivered down the chain and into the preamble detector. The role

of preamble detector is somewhat similar to the role or energy detector. Both

are intended to reduce the workload of the future stages and thus relieving

some workload. Preamble detector decides whether or not the chunk of I/Q

samples actually contain something resemblant of a Mode-S reply preamble.

Our receiver implements several criteria upon which it is decided if the

chunk contains a Mode-S reply and should be processed further by trying to

decode the payload:

• Amplitude ratio between the first peak and noise above threshold

• Amplitude ratio between off-peaks1 and noise

• Amplitude ratio between preamble peaks and off-peaks above threshold

Most of these criteria were inherited from the original (gr-air-modes [1])

receiver. The most notable difference is that we have removed the tem-

poral alignment by preamble correlation since we have found it unneeded

for preamble detection and consumes more computational resources than re-

quired. The latter is especially important when the initial upsampling in the

1Off-peaks are areas, where the signal from the transmitter should not be present. See

figure 2.1.
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receiver chain is using a high upsampling factor. The alignment that was

previously done by preamble correlation was pushed into the decoding phase

where the signal is now aligned by the first preamble peak location and it

has therefore no effect on decoding.

After a seemingly valid preamble has been detected, this module captures

a chunk of samples (at least 2.5 packet lengths worth) and passes the chunk

of samples to the next stage, the payload decoder. It also records the sample

number (timestamp) of the start of the sample chunk, allowing further stages

to use it as a reference when computing an actual packet timestamp.

3.1.3 Payload decoder

Payload decoder receives a timestamped chunk of samples from the preamble

detector. The first operation is finding the peak of the first preamble pulse.

The mechanism for finding the peak is the same as described later in chapter

5. The main difference is that a wider search interval is used to compensate

for coarser alignment in the preamble detector.

Next, the aligned signal is sampled every 0.5µs to obtain chips for decod-

ing. This produces a sting of chips - amplitude samples. Chips belonging to

the preamble are ignored and the remaining payload chips are converted to

bits by the rules of (B)PPM modulation described earlier. This decoder uses

differential technique: it compares two chips that correspond to two times-

lots that a pulse could occupy and compares the two. If the amplitude of

the first chip is higher than the other, the bit value assigned is 1. Similarly,

if the second chip is larger in amplitude, the decoder assigns a value of 0 to

the pair of chips. This produces bit values that can be interpreted in terms

of ADS-B or Mode-S message specifications. Furthermore, the CRC value is

checked to verify if the packet was decoded successfully.
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3.2 GNU Radio and implementation details

GNU Radio is an open-source toolkit for software radio. It provides infras-

tructure and facilities for software signal processing. First of all, it provides

interface modules for access to SDR hardware (for example, RTL-SDR library

and osmocom). Though these modules we gain access to the stream of I/Q

samples generated by the SDR hardware device (radio front-end) and allows

real-time processing of the said stream. Furthermore, GNU Radio provides

pre-built blocks for common operations in signal processing. This includes

filters, re-samplers and other signal conditioning operations normally found

either in analog hardware circuits of digital signal processing chips. We have

utilized these blocks for low-pass filtering (when source trace or SDR hard-

ware is used with a bandwidth higher than 2.4MHz) and signal up-sampling.

Other modules in our receiver implementation, namely energy detector,

preamble detector and packet decoder have been developed in C++ from

scratch, while reusing parts from the existing gr-air-modes receiver. GNU

Radio also provide support for integrating C++ code into the processing

chain. This is done by leveraging the GNU Radio facility for out-of-tree

modules. This allows users to write blocks in either python or C++ that can

be used as blocks withing GNU Radio processing chain.

High-precision timestamping and packet cancellation modules have been

developed as a C++ library. The reason behind this decision is that this

advanced features can easily be used inside the packet decoder module or

individually within a different implementation or a test-bed environment.

Last but not least, great care has been taken to ensure correct and acces-

sible flow of raw I/Q samples that belong to a packet, such that the samples

are readily available for timestamping and cancellation modules and that

packet sample time is preserved correctly though the processing chain. In

order to achieve this, we have utilized tagged streams (provided by GNU

Radio) that allow augmenting the stream of samples with additional infor-

mation and thus preserving the necessary data about the stream of samples

corresponding to a packet.
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3.3 Evolvability and future work

We have put considerable effort into making the receiver not only perform

successful packet decoding of non-colliding packets, but also keep the design

modular and ready for adding and implementing additional advanced fea-

tures. To demonstrate this we have implemented two advanced features that

augment the basic receiver:

• High precision packet time-of-arrival estimation,

• Packet collision resolution.

In order to successfully implement these features, we designed the receiver

to be able to pass as much information from preamble detection and payload

decoding phases onto successive block without loosing or distorting important

timing information along the way. Furthermore, we implemented a transport

system for delivering raw I/Q samples from decoding phases to subsequent

consumer blocks, for example cancellation and high precision timestamping

modules. This provides a framework for developing advanced features that

rely on the decoded payload and/or raw I/Q samples of the signal.

It is our vision for the future to develop a cognitive receiver for Mode-

S/ADS-B. Although not included in the receiver version developed for this

thesis, we are conducting research and implementing features characteristic

of a cognitive receiver. Specifically, we are developing a pair of modules

that would together work as a cognitive transmitter profiling and recognition

system. It would consist of two parts:

• transmitter profile cache,

• transmitter recognition module.

The proposed module (pictured on figure 3.3) would receive data about

successfully decoded packets from the packet decoder module. Additionally,

signal properties and other attainable data would be provided by advanced

blocks like high precision timestamping and signal cancellation module. All
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Figure 3.3: Schematic overview of a receiver equipped with transmitter

profiling and recognition system.

of the data would be stored in a retrievable format that could be used in

any of the modules up or downstream. For example, it could be accessed

used when performing cancellation to select an appropriate signal model for

a specific transmitter. Furthermore, the gathered data in the transmitter

profile cache could be used in the transmitter recognition module to identify

or recognize a particular aircraft solely from physical signal properties, like

it has been demonstrated in [18] and [20]. This would also augment packet

decoding because a part of the payload (notably aircraft unique address -

ICAO) would be known in advance even before trying to decode the payload

data. This would allow us to introduce iterative decoding techniques that

would also report partially correct packets that are still valuable for passive

aircraft position tracking.
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Chapter 4

Evaluation environment and

data acquisition

In this brief chapter we discuss how we have captured a trace of real world

data/signals for evaluating the performance of our work.

In order to thoroughly evaluate our work the decision was made to evalu-

ate our work against real world data. Although our work is capable of oper-

ating real-time, we have decided to capture the signals using SDR equipment

and store it a file. This file, henceforth referred as a signal trace was then

fed into our receiver to receive the results. Using a trace rather than live

data has multiple benefits that are also requirements for a scientific work.

We used the same trace with multiple implementations and other receivers

to ensure a fair comparison and reproducibility of results.

4.1 Signal Trace Acquisition

Normally, when there are no special requirements, a signal trace capturing

is relatively simple. An SDR device or a SDR dongle is plugged into a

computer and connected to the appropriate antenna. However, the method

for evaluating timestamping performance posed a requirement: we need to

capture two traces of the same signal, but with two separate SDR devices.

21
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Figure 4.1: Hardware capturing setup: 1090Mhz filter, signal splitter and

two SDR dongles

This is due to reasons discussed in the previous chapter. Capturing traces

with two devices produces two traces that are coarsely synchronized (in the

order of seconds) but are essentially still unsynchronized as each SDR device

uses its own oscillator and work independently of each other. The photo on

figure 4.1 demonstrated the physical hardware setup during one of the trace

capturing sessions. The signal comes from the antenna (pictured on figure

4.2) into a band pass filter that rejects out of band noise and interference. The

output of the filter is connected into a signal splitter that provides two (3dB

attenuated) outputs that are connected to two SDR dongles. In order to keep

coarse synchronization and keep all the settings the same for both dongles,

capturing was done on a single computer. The SDR dongles are essentially

the same as the popular RTL-SDR, but feature a temperature compensated

frequency oscillator that guaranties clock stability of 0.5 ppm. Clock stability

of our devices has been tested prior use with methods described in [23].

The antenna (photo on figure 4.2) was purpose-made for receiving signals

at 1090 MHz. It is a vertical omnidirectional collinear dipole antenna that
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Figure 4.2: Hardware capturing setup: custom made colinear dipole

1090Mhz antenna

features around 6-8 dB gain and a shallow take-off angle that is suitable

for receiving aircraft transponder signals that originate further away and

consequently at a shallower angle.

4.2 Decoding performance evaluation

An important aspect of receivers overall performance is without doubt the

decoding performance. Generally, this is a metric of how good the receiver

is able to receive in terms of number of successfully decoded packets. There

may only be a single variation or set of configuration parameters for a given

receiver and its performance evaluation is straightforward. Our receiver, how-

ever, is configurable and the choice of parameter values can affect its decoding

performance. In some cases, a set of sub-optimal parameters (in therms of

decoding performance) might be preferred because of lighter computational
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footprint of the receiver with those parameters. In this section we evaluate

the decoding performance of our receiver implementation with different sets

of parameters and compare the results with those of the widespread Mode-

S/ADS-B receiver dump1090.

4.2.1 Comparison with dump1090

To perform the comparison of decoding performance of our receiver against

the widespread dump1090, we used a signal trace captured with an RTL-SDR

dongle at the sample rate of 2.4 MHz. The trace contains 18 seconds worth

of I/Q samples. Our receiver requires two parameters for its operation:

• Upsampling factor,

• Energy detector SNR threshold in dB.

Upsampling factor determines the factor, by which the whole signal trace

is upsampled. Our receiver is configurable and its performance can be tuned

by selecting a upsampling that suits the application. The only requirement

posed by the internal works of the receiver is that the new sampling rate

after upsampling must be an integer multiplier of 2 MHz. Due to the fact

that our trace has been captured at the sample rate of 2.4 MHz, we have

chosen to perform the evaluation with upsampling factors of 5-, 10-, 20- and

40-times.

Energy detector SNR threshold configures the behavior of the energy de-

tector block. The lower the threshold, the more permissive is the energy

detector in letting chunks of samples to the next stage in the receiver. If the

threshold is set too low, then the energy detector is letting through chunks of

samples that are essentially noise. On the other hand, if the energy detector

threshold is set too high, then the receiver will not be able to detect week

packets. It presents a trade-off between unnecessary work and lost pack-

ets. The implementation of dump1090 does not have the same structure -

there is no energy detector block explicitly, yet a condition that only accepts

candidates that have SNR higher than 3.5 dB. This condition is equivalent
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to the energy detector SNR threshold in our receiver and thusly one of the

comparison data points is set at the threshold of 3.5 dB to ensure a fair

and relevant comparison between the two receivers. Furthermore, the per-

formance metrics were measured also at threshold values of 0 dB, 2 dB and

6 dB.

Receiver version Decoded Mode-S packets Unique ADS-B messages

dump1090 2527 979

Our recv. 5x, 3.5 dB 2578 1025

Our recv. 10x, 3.5 dB 2558 1018

Our recv. 20x, 3.5 dB 2554 1016

Our recv. 40x, 3.5 dB 2554 1016

Table 4.1: Comparison of our receiver version against the popular

dump1090. Table shows results for different upsampling factors at the energy

detector SNR threshold of 3.5 dB.

We have measured two metrics that indicate decoding performance: num-

ber of successfully decoded Mode-S packets and number of unique ADS-B

messages. If we observe the table 4.1 we can see the numerical results for

dump1090 along with our receiver with energy detector threshold of 3.5 dB

and varying upsampling factor. We can see that our receiver manages to

receive a little more Mode-S packets, however the difference is not really sig-

nificant. The increase in performance is apparent if we look at the number of

unique ADS-B messages. Our receiver manages to receive just little less than

5% more ADS-B messages, no matter what upsampling factor is used. Plots

4.3 and 4.4 display the effects of different upsampling factors and different

energy detector SNR thresholds. The magenta square on the plots indicates

the performance of dump1090 We can clearly see that decreasing the thresh-

old value yields more decoded packets and ADS-B messages in almost all

cases. Although not so apparent, the same is true for upsampling factor.

However, the difference is much smaller. It is clear that our implementa-
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Figure 4.3: Comparison of our receiver against the popular dump1090. Plot

shows Number of successfully decoded Mode-S packets versus energy detector

threshold for different upsampling factors.

tion manages to outperform dump1090 when compared at a similar energy

detector SNR value. We can conclude from the measurements that increas-

ing the upsampling factor and decreasing SNR threshold improves packets

decoding performance. However, this comes at a price. Upsampling is a

computationally intense operation and running the receiver with wide open

energy detector can make a difference of being able to run the receiver in

real-time, especially when used on constrained hardware like, for example,

the Raspberry Pi.



4.2. DECODING PERFORMANCE EVALUATION 27

Figure 4.4: Comparison of our receiver against the popular dump1090. Plot

shows Number of unique ADS-B messages versus energy detector threshold

for different upsampling factors.
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Chapter 5

High Precision Timestamping

In this chapter we describe our work on implementing and evaluating a

method for high precision timestamping. Work done in this thesis regard-

ing timestamping is also basis for a paper that will be submitted to the

IPSN’2018 conference.

Timestamping is a process of determining the time of arrival of the packet.

Precise time of arrival is very import when considering the decoded packets

as data for further processing like multilateration [3] or asynchronous node

tracing [24]. In the case of multilateration, better accuracy directly yields

more accurate position estimates. Improving the precision and accuracy of

timestamping has very beneficial effect for applications and can open new

research possibilities.

This work aims highly as the goal for timestamping performance is achiev-

ing ToA error variance down to a couple of nanoseconds. When timestamp

data is used in triangulation applications, less ToA error variance directly

translates to smaller positional error. As a reference, a couple of nanosec-

onds of ToA error variance translates into a couple of meters of positional

precision. However, the goals presents quite a challenge since Mode-S phys-

ical format and modulation scheme was only intended to serve the purpose

of delivering data, not for precise timestamping. The specifications being

rather old, there are quite large tolerance margins regarding pulse timing,

29
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mainly due to limited hardware capabilities at the time of developing the

system. For example, the position of each pulse might be shifted by ±50

ns with respect to the nominal position. This poses quite a problem when

nanosecond-level resolution is the aim of our work. Furthermore, we are

facing a system deployed on transponders developed by multiple vendors.

These transponders exhibit quite noticeable differences in pulse shapes and

timing, yet they still conform to the specifications. Thusly, this poses quite

a challenge for this opportunistic use of packet signals.

Generally, there are two different sources of ToA errors:

• Synchronization error,

• Measurement noise.

This work works on reducing the latter. Synchronization error is a separate

problem that is not solved by methods described in this thesis. Also, it can be

solved by employing GPS precision clock reference as a master clock in order

to achieve synchronization. There are also use cases where the application

consuming timing data can work entirely with unsynchronized sources, for

example tracing a moving node with asynchronous ToA measurements shown

in [24]. Therefore, this work focuses on reducing the measurement noise, as

it is highly influenced by the method of timestamping.

In following sections we will first look at how the ToA variance was es-

timated and what evaluation setup requirements were necessary. Next, we

will describe two classes of timestamping methods, alternative peak-position

based and more canonical correlation based methods. We will describe both

classes in detail, show the effects of upsampling factor and evaluate the

performance in terms of ToA variance. Moreover, we will show how peak-

position based methods can be further improved by classifying packets based

on the signal strength and treating each packet class separately.
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5.1 Timestamping methods

In this work we have implemented and compared multiple packet timestamp-

ing methods. There are two major groups of timestamping methods: the first

one utilizes the positions of individual peaks, the second one uses correlation

of packet amplitude signal with a template.

5.2 Peak-position based timestamping

The first group of timestamping methods utilizes peaks that are present in

the amplitude signal of the packet. In order to utilize the peak positions we

must firstly discuss the different peak types that are present in an Mode-S

reply packet signal.

5.2.1 Peak types

In Mode-S reply packets there are first 4 preamble peaks and later there

are amplitude peaks corresponding with the packet payload as per (B)PPM

modulation. However, due to (B)PPM modulation, we are dealing with two

different kinds of peaks:

• Type I,

• Type II.

Type I peaks correspond to single peak that are 0.5µs in length. This

peaks occur when modulating (with (B)PPM modulation) bit sequences ’00’,

’10’ and ’11’. Although not modulated with PPM, preamble peaks are also

considered type I peaks, since they are the same length.

Type II peaks correspond to 1µs long peaks. These peaks occur when

modulating the bit sequence ’01’. The first bit (1) transforms into the right

(latter) timeslot and the second bit transforms into the earlier (left) timeslot

forming the pulse sequence of 0110. When pulse shaping is applied, these

two pulses merge, forming a single 1µs long pulse - a type II peak.
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Figure 5.1: (B)PPM modulation and peak types: Type I and Type II peaks

Although not apparent, but this distinction of two peak types is very

important for developing a robust timestamping methods. The reason for it

will be discussed in the upcoming sections.

5.2.2 Finding peaks

In order to robustly find peaks that only belong to the signal of interest,

we employ the following method. Out method requires that the packet in

question is correctly decoded (checksum is correct). From the decoded data

we are able to re-encode the data where the nominal position of the peaks

reside. For each peak we can then search within an interval (width of 1 µs for
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type I peaks and 2 µs for type II peaks) and determine the maximum value.

The sample where the value is maximal is the sample number designated to

the peak.

Figure 5.2: Amplitude actual and nominal peak positions

5.2.3 Timestamping using the first peak

Timestamping using the first peak is the most straightforward approach to

determine the time-of-arrival of a packet using peaks. The first nominal peak

(first preamble peak) is the first local maximum in the packet amplitude

signal. This is the simplest and most computationally efficient method.

Finding the position of the first peak also plays a role in other peak

based timestamping methods. It serves as a reference. All other nominal

peak positions are referenced from the first peak position.

Timestamp value follows the formula:

Ts = Tpp0; where Tpp0 is the time/sample of the first preamble peak.
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5.2.4 Timestamping using preamble peaks

The next progression of using amplitude peak positions as a timestamping

method is to use more peaks. This method uses the first preamble peak

position as a reference. Next three preamble peak positions are compared

to their nominal positions from the reference and the difference of the peak

positions is averaged. The first peak position plus the average peak position

difference serve as a timestamp value.

Timestamp value follows the formula:

Ts = Tpp0 +

∑3
k=1 (T nppk − Tppk)

3

where

Tp0 is the time/sample of the first peak,

Tppk is the time/sample of the k−th preamble peak,

T nppk is the nominal time/sample of the k−th preamble peak.

It is important to mention that this timestamping method works even

when packet payload is not known or not correctly decoded.

5.2.5 Timestamping using all type I peaks

Once the packet payload is known (correctly decoded), previous method using

preamble peaks can easily be extended to the whole packet. At this point

some care is warranted as not all peaks in the payload section are the same.

The type I peaks are the same in length in time as preamble peaks and

can be used directly. Type II peaks, however, are longer and thus have

less concentrated information. We see this as a disadvantage and have thus

developed a method that only considers type I peaks. Furthermore, type

II peaks are not generated the same by all transponders. Some generate a

longer, uniform peak, others generate a longer pulse with two peaks. Because

the type II peak spans two modulation timeslots, it is unclear how the peak

position is to be defined. We have noticed packets where the position of
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the peak is in the first slot, in between the two slots or in the second slot.

This can also vary within the same packet. This hinders the accuracy of

timestamping and greater precision was achieved only using type I peaks.

The computation procedure is the same as for preamble peaks. Firstly,

the first peak position is determined and used as a reference. Then, positions

of all of type I peaks (including preamble peaks) are compared to nominal

peak positions and their difference is averaged.

Timestamp value follows the formula:

Ts = Tpp0 +

∑3
k=1 (T nppk − Tppk) +

∑Np

k=1 (T npk − Tpk)

3 +Np

where

Tp0 is the time/sample of the first peak,

Tppk is the time/sample of the k−th preamble peak,

T nppk is the nominal time/sample of the k−th preamble peak,

Tpk is the time/sample of the k−th payload peak,

T npk is the nominal time/sample of the k−th payload peak,

Np is the number of payload type I peaks.

5.2.6 Timestamping using type I+II peaks

In order to evaluate if the claim that using type II peaks hinder the perfor-

mance of timestamping we have also developed a method that uses both type

I and type II peaks. The first peak is still used as a reference and peak posi-

tion differences (from the nominal) are averaged. We have defined nominal

position of type II peak to be in between the modulation timeslots or at the

0.5µs into the peak.
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5.3 Correlation based timestamping

As stated before, Mode-S (and ADS-B) packet signals have loosely defined

specifications that allow for a relatively big variance in peak position offset

(from nominal position). That makes it less suited for timestamping with

canonical approach of correlation with a known template, like for example,

WiFi or LTE. In order to support our claim that an alternative timestamping

method is in order, we will also evaluate timestamping based on correlation

with a template.

Correlation based timestamping methods are different from the peak-

position based. They still use the peak positions, although this is implicit,

hidden behind the local maximal value of the peak. This methods work by

utilizing the whole packet amplitude signal and a generated template. The

amplitude signal and the template are correlated with each other and the

sample number where the correlation is maximal is used as a timestamp.

Ts = argmax tcorr(signal, template)

5.3.1 Correlation with template A

Template A consists of impulses of value 1 at type I nominal peak positions,

value 1 at type II nominal positions and 0 otherwise.
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5.3.2 Correlation with template B

Template B consists of impulses of value 1 at type I nominal peak positions

and 0 otherwise.

5.3.3 Correlation with template C

Template C consists of impulses of value 1 at type I nominal peak positions,

value 0.5 at type II nominal positions and 0 otherwise.

5.4 Results and evaluation of timestamping

methods

In previous sections we have revealed multiple methods for determining

Mode-S/ADS-B packet ToA. We have shown a canonical correlation with

a known template and a more novel approach by utilizing peak positions.

To evaluate and compare these methods we had to develop an evaluation
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methodology that would allow us to estimate the precision of the time-of-

arrival measurements. Next section will describe this methodology, followed

by results, in-depth analysis of special cases in peak-position-based meth-

ods and comparison between the correlation-based and peak-position-based

methods, including a possible explanation of the different performance that

we have encountered.

5.4.1 Measuring performance of a timestamping method

Evaluating precision of a timetsamping method is a non-trivial task. There

are certain limitations that restrict a direct evaluation - difference from the

actual packet time-of-arrival. This is a challenge, since we do not have ac-

cess to high-end measurement equipment (e.g. spectral analyzer and RF

signal analyzer) that could serve as a reference for evaluation. Even with the

high-end equipment, it would have been non-trivial, since we are aiming at

resolution in the order of nanoseconds, and slight measurement error on the

equipment might skew or even bias the results.

In order to evaluate our ToA estimation, we must first derive an error

model. Lets denote the true arrival time of a packet m received by the

receiver i with tm,i and the arrival time as measured by the receiver i with

t′m,i. The true ToA tm,i is the time measured by a reference clock that is

infinitely precise and has no measurement noise. Mind, such a clock does

not exist, but it is a mathematical construct that helps us define our model.

There are two main components that contribute to the measured ToA error

in respect to the reference clock. These terms are clock error ξi(t) at time

t = tm,i and measurement noise εm,i:

t̂m,i = tm,i + ξi(t)|t=tm,i
+ εm,i (5.1)

The clock error ξi(t) is the difference of the measured time at the receiver

and the absolute reference clock. We have found that this term is the result of

hardware characteristics, more specifically, the stability of the local oscillator

of the SDR device in question. Even more importantly, this term is slowly
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varying with time. This opens up the opportunity of modeling and estimating

this term with a low-degree polynomial. Unfortunately, we can not directly

estimate this term as we do not have the knowledge of the absolute reference

time. The remaining term εm,i represents measurement noise present in TOA

estimation process. It can be modelled by a random variable with zero mean1

and variance σ2
m,i. It is important to note that clock error and measurement

noise are independent. If we find a way to accurately estimate the clock

error, we can in turn get an estimate for the measurement noise and of

course the estimate of precision (inverse of measurement noise variance) for

the timestamping method under test. Let us consider the difference in time-

of-arrival (TDoA) between two receivers (i ∈ {1, 2}) that have captured

the same packet. The true TDoA can be denoted as ∆t̂m and follows the

equation:

∆t̂m = t̂m,1 − t̂m,2 (5.2)

If we insert the equations for the two right-hand-side terms we get the

following:

∆t̂m = tm,1 + ξ1(t)|t=tm,1 + εm,1 − tm,2 − ξ2(t)|t=tm,2 − εm,2 (5.3)

and if we rearrange it:

∆t̂m = tm,1 − tm,2 + ξ1(t)|t=tm,1 − ξ2(t)|t=tm,2 + εm,1 − εm,2 (5.4)

At this point we can consider our hardware setup (described in the next

chapter). The difference between the true arrival time tm,1 − tm,2 at the two

receivers is bounded by signal propagation delay. Since the two receivers

are connected to the same antenna via a signal splitter (see figure 4.1) and

have minimal difference in interconnect cable length, the term tm,1 − tm,2 is

negligible. For all intents and purposes, we can safely consider that tm,1 =

1The assumption of unbiasedness is not critical in this context, since measurement

bias, if present, is absorbed by the constant offset term within ξ(tm,i) and implicitly

compensated along with the latter.
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tm,2 and can henceforth denote the true arrival time by tm = tm,1 = tm,2.

Taking into consideration, the equation for ∆t̂m simplifies:

∆t̂m = ξ1(t)|t=tm − ξ2(t)|t=tm + εm,1 − εm,2 (5.5)

We are left with two groups of terms that can be denoted as ∆ξ(tm) =

ξ1(t)|t=tm − ξ2(t)|t=tm and ∆εm = εm,1− εm,2. Since a difference of two slowly

changing terms is still slowly changing, we can approximate ∆ξ(tm) with

a low degree polynomial. This estimates the temporal profile of the clock

error between the two receivers. In our case, degree of l = 5 was sufficient

to accurately estimate the clock error difference withing a confined time

period (of one minute) without the concern of over-fitting. If we denote the

estimated clock error difference by ∆ξ′(t), we can extract an estimate for ∆εm

from the TDoA data. TDoA data is computed our by taking the ToA for

each packet, received by two receivers. ToA is computed by a timestamping

method that is being evaluated. We call the estimate after removing the

estimated clock a TDoA residual ∆rm:

∆rm = ∆t̂m −∆ξ′(tm) (5.6)

If we express this in terms of ∆ε we get:

∆rm = ωm,l −∆εm (5.7)

where ωm,l is the clock error difference estimation residual from estimation

with polynomial regression.

Because TDoA residuals are unbiased by construction, the following holds

E {∆rm} = 0. Since we are considering identical sensors, with same hardware

and software, we can safely assume that the noise variance is the same at both

sensors, hence V AR(∆εm) = 2 · σ2
m. Taking the variance of the quantities in

(5.7) we obtain:

σ2
∆r = ν` + 2 · σ2

m (5.8)

wherein ν` ≥ 0 denotes the residual component from the polynomial approx-

imation of the (relative) clock error.
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From the data at hand, we can compute an empirical estimate of the

variance of TDOA residuals by the Mean Square Error (MSE) σ̂2
∆r = 〈∆r2

m〉
(the symbol 〈·〉 denoting sample average) and based on (5.8) finally obtain

an estimate of the TOA error standard deviation (recall 1/
√

2 = 0.7):

σ̂2
m =

√
〈∆r2

m〉 − ν`
2

≥ 0.7
√
〈∆r2

m〉 (5.9)

The last inequality of (5.9) stems from the fact that the term ν` is non-

negative. In other words, neglecting such term and taking simply the Root

Mean Square (RMSE) of TDOA residuals after `th order regression provides

a conservative estimate of the TOA precision, i.e., it overestimates the true

value of σm.

5.4.2 Numerical results

Figure 5.3: Comparison of our peak-position-based timestamping methods

(eCDF of residuals)

The performance of various presented timestamping methods have been

evaluated with real world data. The two signal traces have been captured
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Estimation method σ̂ε = 0.7 ·
√
〈∆r2

m〉 distance at vlight

dump1090 51.3 ns 15.29 m

Correlation template A 13.8 ns 4.14 m

Correlation template B 4.8 ns 1.44 m

Correlation template C 17.3 ns 5.19 m

First peak 8.0 ns 2.40 m

Preamble peaks 5.7 ns 1.71 m

All Type I peaks 2.2 ns 0.66 m

All Type I+II peaks 3.4 ns 1.02 m

All Type I peaks (c0 class) 5.1 ns 1.53 m

All Type I peaks (c1 class) 1.2 ns 0.36 m

All Type I peaks (c2 class) 2.7 ns 0.81 m

Table 5.1: Summary of estimated ToA variance for different timestamping

methods. Distance at the speed of light vlight is provided as an projected

estimate for multilateration precision if a given timestamping method was

used to produce ToA data.

using a hardware setup described in chapter 4, using identical SDR hardware.

Both traces were processed through our receiver and successfully decoded

packets2 were subjected to various timestamping techniques (including our

high-precision peak-position-based method) to measure packet ToA (time-

of-arrival). Successfully decoded packets from both traces were matched

and TDoA (time-difference-of-arrival) were computed from matched pairs of

packets from the two receivers. Totally, we have matched 2060 successfully

decoded packets from 18 seconds worth of traces captured at sample rate of

2.4 MHz.

As discussed in section 5.4.1, we can use the values of the TDOA resid-

ual RMS 〈∆r2
m〉 and the corresponding estimate σ̂m = 0.7〈∆r2

m〉 to indicate

the precision ( 1
σ̂m

) of a given timestamping method. Results, including the

2Packets that have valid CRC checksum.
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Figure 5.4: Comparison of correlation-based timestamping methods (eCDF

of residuals)

values achieved by dump1090 - included as a reference, are presented in ta-

ble 5.1. The lower the value of σ̂m, the better the precision. Similarly, we

can present the results graphically by plotting the empirical cumulative dis-

tribution function (ECDF) of the TDOA residuals - the steeper the curve,

the higher the precision. We have compared the peak-position based meth-

ods with different number of peaks (figure 5.3), correlation based methods

(figure 5.4) and finally the best methods of each class with the dump1090

timestamping precision for reference (figure 5.5).

If we look at the numerical results, we can observe that the best perform-

ing method3 is the peak-position-based, where all type I peaks were used.

It achieves deviation of 2.2 ns that would translate in 66 cm of accuracy

in multilateration applications, which is a great result. Furthermore, if we

look at the values for peak-position-based method with only the first peak

and using only the preamble peaks, we can see a clear trend - using more

type I peaks benefits the precision. In average, there are 56 type I peaks

3Without considering packet strength classes.
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Figure 5.5: Comparison of our best performing methods (of each type) with

dump1090 (eCDF of residuals)

in a packet, contrast to only 4 preamble peaks. On the other hand, the in-

clusion of type II in the peaks hinder the performance of the timestamping

method, increasing the deviance to 3.4 ns. It seems that type II peaks also

hinder the performance of correlation-based approach. The only correlation

method that came close to the results of peak-position-based methods was

correlation with template B, that also does not consider the type II peaks.

Looking at figure 5.4, we can see that variance of the residuals of correlation

with template B conforms to normal distribution, while templates A and

C exhibit behaviour that does not conform to normal distribution. This is

something that could be a topic of research for future work, however, given

that correlation based methods suffer from higher computational complexity

and are not as elegant as peak-position based methods, we did not investigate

the phenomenon in this thesis. Lastly, comparing the timestamping perfor-

mance of dump1090 with our methods, it is clear that we have achieved a

massive increase in precision. Nonetheless, we have continued to search for

improvements to our method, we discuss that in the next section.
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5.4.3 Packet signal strength classes

Figure 5.6: Standard quantiles of different packet classes (Type I peak

method)

While the basic peak-position-based with type I peaks timestamping

method already performs more than admirably, we still noticed that the

TDoA residuals did not completely conform to normal distribution. This

can be observed on figure 5.6 in the upper left subplot. This subplot shows

empirical quantiles of TDoA residuals against the quantiles of a fitted normal

distribution (qq-plot). We can see that in the center part it conforms very

nicely to the fitted normal distribution, however there are still quite notice-

able tails that deviate from the normal distribution. This led us to believe

that not all data conforms nicely and that we might be dealing with data

that could be better fitted to multiple normal distributions. However, this

required us to classify packets into multiple classes, and fit normal distribu-

tion over TDoA residuals for each class. After in-depth examination, we have

found that packet signal-to-noise ratio could be a good attribute for split-
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Figure 5.7: TDoA residuals of different packet classes (Type I peak method)

ting our data into multiple classes. This was based on the hypothesis that

weaker packet signals (low SNR) would yield a higher measurement noise

variance due to the relatively high power of the noise. On the other hand,

strong packets (high SNR) will produce lower measurement noise variance.

Moreover, we have observed that quite a lot (about 40 %) of packet signal

exceeded the ADC dynamic range and resulted in clipping. Since the intro-

duced distortions we predict that this will negatively affect the timestamping

performance. To estimate the SNR we used a metric called packet strength

that we defined as:

ψm
def
=

Km∑
k=1

ρ2
k

where ρk
def
= |s′[n]|n=τ̂k

denotes the maximum amplitude of the k-th type I

peak in the upsampled signal s′[n]. This gave us a reliable measure of packet

strength that can be used for classifying packets.

To define classed of packets, we plot in figure 5.7 for every individual

packet m the measured TDoA residual ∆rm against the packet strength ψm.
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We can observe that TDoA residuals deviate further from 0 when packet

strength gets weaker. Similarly, TDoA residuals converge closer to 0 the

stronger the packet gets. At some point we can observe that TDoA residuals

start rapidly diverging away from 0. This is due to packet signals saturating

the ADC and the signals get clipped. Accordingly, we define three classes:

c0 : all TDoA samples associated to packet strength below a given thresh-

old, specifically ψm ≤ 0.002, are marked with a black asterisk “∗”.

c2 : all TDoA samples associated to packets that were clipped by at least

one of the two sensors, marked with a red circle “◦”.

c1 : all remaining packets, labelled with a blue diamond “�”.

After defining the classes we were able to process each class of packets

separately. Figure 5.6 shows that gaussian distribution is very well approxi-

mated for the co and c1 classes. Class c2 still exhibits some deviation from

the normal distribution. This could indicate that among packets with clipped

I/Q samples, there is still room for improvement. Despite this fact, clipping

can effectively be avoided by employing automatic gain control algorithms

for SDR devices, or by using devices with higher ADC bit-depth. After all,

the devices in our testbed use only 8-bit ADC, while devices with 12-bit ADC

are readily available, albeit not as low-cost. On the other end of the packet

strength spectrum, we have the packets classified into c0. These account

for only 5 % of all packets. Packet strength depends upon multiple factors,

including gain values in the SDR radio front-end, antenna, geographical lo-

cation and of course the position and distance of aircraft to the receiver.

When considering each class separately, we obtain remarkable results.

The classes c0 and c2 exhibit estimated ToA error variance of 5.1 ns and 2.7

ns, respectively. This is expected as the packets in c0 and c2 are considered

of a lesser quality. The most awe-inspiring result comes from the estimated

ToA error variance of class c1. We were able to obtain a value as low as 1.2

ns, that corresponds to only 36 cm at the speed of light. This is especially
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impressive when we consider the simplicity and computational efficiency of

proposed timestamping method.

Another result is the usefulness of packet strength as an indicator of

timestamping precision. This is especially convenient for downstream algo-

rithm (like multilateration) that can leverage the quality indicator and assign

higher importance to better quality ToA estimations, consequently increasing

the precision of the algorithm. In the case of multilateration, such weighting

of the input ToA data would induce higher precision positional estimates.

5.4.4 Effects of upsampling

In order to achieve better timestamping precision and accuracy the packet

signal can be upsampled prior executing the timestamping procedure. This

has a two-fold effect. Firstly, it improves the resolution of timestamping.

Secondly, it increases the processing load as it needs to do more process-

ing. In case of peak-position based timestamping, upsampling brings better

resolution when determining positions of peaks. This greatly improves times-

tamping accuracy at the beginning (upsampling factors from 2 to 20), but

later we start to observe diminishing returns. This can be observed on figure

5.8.

The effect of upsampling is more easily quantified when using correlation

based methods. The precision corresponds closely to the upsampling factor.

This is due to the fact that value used as a timestamp is the sample number

where the correlation of amplitude signal and the template is the greatest.

More samples there are, more fine-grained the resulting value can be. It

is important to note that higher upsampling factor does not automatically

yield a more precise timestamp, but a lower upsampling factor can limit the

precision due to the resolution of the output value.

In the case of peak-position based timestamping methods this did not

present such a limitation because of the averaging. Lower upsampling rate,

however, did present a limit to the precision of the peak positions (and thus

affected the performance), but the datatype of the resulting value did not as
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Figure 5.8: TDoA variance versus upsampling factor for correlation and

peak-position-based methods.

it was a floating point number.

Figure 5.8 shows how upsampling factor affects correlation based times-

tamping methods. It can be observed that up to the upsampling factor of

40, there is benefit to upsampling, but further increasing can lead to un-

necessary consumption of computational resources and can even hinder the

performance of correlation based timestamping methods. The peak-position

based methods have a very steep fall to the best TDoA residual value and

further upsamling has no benefit.

5.4.5 Comparison of correlation base methods with peak-

position based methods

The results clearly indicate that correlation based methods perform worse

than peak-position based timestamping methods. Interestingly, peak-position

based methods still give better results even when used with as much as 10

times lower upsampling factor.

One of the key reasons for worse performance of correlation based times-
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Figure 5.9: Positive and negative peak position offset at neighboring peaks

tamping methods is the fact that they are not robust when used on real

world I/Q traces. This is due to the fact that Mode-S transponders aircraft

are a lot of times imprecise in timing. Decoding (the intended purpose of

the signal) is affected very little by these transmitter imperfections, but for

timestamping this can have a huge impact. Figure 5.9 shows two peaks of a

packet amplitude signal and their respective nominal positions. We can see

that the first peak is late in comparison to the nominal position, however, the

second peak is early relative to the nominal position. Note that out corre-

lation based timestamping methods use a fixed template and that the peaks

are spaced apart nominally. The case where one peak is early and the other

one is late causes the correlation template to miss at least one of them, re-

sulting in a poor performance. Please mind that the occurrence of early/late

peak pairs is something we observed in a lot of packets from different air-

craft and is not an isolated anomaly. Our peak-position based methods are

far less sensitive to the effect of the early/late peaks because peak position

differences are averaged and early/late pairs are somewhat canceled out.

Another reason why correlation based methods perform worse than peak-
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position based methods is that peak amplitudes are not equal - there are

some stronger peaks. Since correlation operates on the value/magnitude

of the whole signal (contrast to peak-position based method that works on

the position/time of the peaks in the signal), it tends to be pulled towards

stronger peaks and worsen the fit at lower level peaks.

Furthermore, correlation based timestamping methods work on the whole

signal (the whole chunk of samples containing the packet) and are more

affected by the noise and interference as the correlation is computed over

areas where no useful signal is present. Peak-position based timestamping

methods are better in that regard. The peak finding process is limited only

to a small interval (around the nominal position) where the signal should be

present.

Lastly, correlation based methods suffer greatly when Doppler shift has

occurred. Even if peaks were perfectly timed at the transmitter, they would

get stretched out by the Doppler effect, and the fixed correlation template

would fit very poorly. Peak-position methods are more robust as they still

produce a meaningful timestamp, although it can be shifted in time be-

cause of the Doppler effect. This could be tracked and counteracted in post-

processing, but is out of scope for this thesis.
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Chapter 6

Cancellation and improving

packet decoding

One of the advantages of software defined radio is the possibility of running

multi-pass processing algorithms on the incoming signal, or parts thereof.

For example, we can extract only a certain part of the incoming signal and

run multiple passes of the same algorithm without penalty of requiring more

hardware. Furthermore we can employ computer libraries (for example, poly-

nomial fitting) that would be very difficult or very expensive to implement in

hardware or data-flow architectures. Leveraging those benefits we wanted to

develop a method for improving packet decoding by resolving certain cases

where a normal decoder would not yield useful results. One of those situa-

tions is when two aircraft transponders access the wireless channel (transmit)

at the same time and both signals are merged together - packets collide.

In order to develop a system for packet collision resolution, we must be

able to perform packet cancellation - cancel out of the packets. One of the

packets needs to be estimated in enough detail so that cancellation techniques

can be applied.

This chapter describes how we estimated signal attributes, how the packet

encoding is done and how it all comes together as a method for Mode-S reply

packet cancellation.
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6.1 Estimating physical signal properties

In order to achieve decent packet cancellation, the cancellation signal that

is to be subtracted from the source needs to be as close to the actual signal

of the packet. Consider a case where there are two packets colliding. Lets

call them packet A and packet B, the source signal S and the cancellation

signal C. If the packets A and B have collided the source signal S would

contain the sum of both signals. In this case we want the cancellation signal

C be as close as possible to A, in order to obtain something resemblant of

B when we subtract A from S. If we knew A or B in advance, this would

be a trivial task. Because we do not know A or B, we must try to estimate

A from the source signal S, packet payload data and external information

about the signal format. This includes the modulation scheme used as well

as data encoding. We must gather as much properties of A just by observing

S. In this work we focused on observing the following properties:

• Amplitude,

• Phase,

• Frequency offset (from the nominal 1090 MHz),

• Peak locations and accurate/precise timestamping,

• Packet payload 1

6.1.1 Estimating Amplitude

In previous chapter we described the method for high precision timestamping.

A part of this method is also determining the peak positions and values at

these peaks. This is also useful for estimating peak signal amplitude. Because

we already know where the signal is present, we can use these points to sample

amplitude values. Nominal peak positions are calculated from the decoded

1This is not actually a physical property of the signal. It could also be summarized

into the previous bullet point since peak positions are dependent on the payload data.
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data, and actual peak positions are determined by searching for a maximal

value in the vicinity of the nominal peak positions.

In our approach we have opted to use the average peak amplitude as the

signal amplitude estimate. Peak amplitude is kept constant at this level for

generating the amplitude template. Because the peak template is generated

with the peak amplitude of 1.0, it is only required to multiply the templates

with the peak value determined by amplitude estimation.

6.2 Estimating phase and frequency offset

When trying to replicate the signal as closely as possible in order to apply

cancellation, the amplitude signal is not the only thing that must be matched

closely. Perhaps even more important is the phase progression of the signal.

Even if the estimated amplitude shape is identical to the signal, we would not

be able to successfully cancel out the packet if phase progression was wrong.

In fact, we would likely achieve an opposite effect - making the packet signal

even stronger.

Figure 6.1: Typical packet I/Q signal with frequency offset
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It is important to mention that we are dealing with real system that

consists of real, imperfect hardware. That includes transmitters (transpon-

ders) on the aircraft as well as the receiver used for capturing the signal.

Transmitters used on the aircraft are often old, containing imprecise clock

oscillators. That can lead to mismatch in transmit and receive frequency,

manifesting itself as a non-zero frequency of the received (down-converted)

signal. This can also be seen as oscillations of the I and Q sample values

though time (figure 6.1). Please note that this frequency offset does not af-

fect the amplitude signal, only the phase progression. Instead of constant

phase, there is a mostly linear progression of the phase (constant frequency

offset). Because the amplitude is unchanged this is not a problem when only

decoding the packet payload, considering that with the particular modula-

tion scheme adopted in Mode-S, namely (B)PPM, the encoded information

is borne exclusively by the signal amplitude, not phase.

If there was only one transmitter (aircraft) this issue could be addressed

by tracking this frequency offset and adjusting the receive frequency accord-

ingly. However, we are interested in capturing packets from as much aircraft

as possible. That poses a restriction on altering the receive frequency - it

must remain fixed. To combat the problem of frequency offset we can try to

estimate it on per aircraft and per packet basis.

If we observe figure 6.2 where there are amplitude and phase signals of

a packet, we can see a regular amplitude shape and a rather chaotic phase

signal. Should our estimation be based directly on the phase signal, we would

be making a rather large error. The reason behind the big estimation error

is the seemingly random phase signal.

This is caused by the fact that the signal of interest is not present all the

times. The amplitude of the signal goes below the noise on some parts of the

packet. At these spots we are essentially observing the phase of noise, which

is almost certainly random (if there is no other interference). The samples

with random phase and the actual phase of the packet signal are weighted

equally and this causes a large error in estimation and more importantly it
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Figure 6.2: Phase of a packet

prevents phase unwrapping. To avoid processing random phase of noise we

have taken a slightly modified approach. We already know the peak positions

- sample positions where signal of interest is very likely to be present instead

of noise. To get a better input for the next stage of phase (and frequency)

estimation we only consider the phase samples near the peak positions and

only if the amplitude is strong enough (a threshold determined empirically

to be 77% of average peak amplitude). On figure 6.3 we can now observe

a much clearer phase signal. There are also clearly visible spots where the

phase has been wrapped. At this point we were able to unwrap the phase of

the peaks and obtain a set of training points for the next stage. Unwrapped

phase can be observed on figure 6.4.

When phase training points are determined, we proceed with fitting a

polynomial over the training points (figure 6.5). In our case, linear polyno-

mial yielded the best results. Its coefficients give us estimates for the initial

phase and frequency offset.
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Figure 6.3: Phase of Peaks - Wrapped

Figure 6.4: Phase of Peaks - Unwrapped
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Figure 6.5: Fitted phase on training points

6.3 Packet encoder and signal generator

In order to generate packet signals from estimated signal properties and pay-

load data we must be able to encode the payload data with pulse position

modulation, append the preamble and generate pulses according to the esti-

mated properties.

The packet encoding or packet signal generation is done in multiple stages.

Firstly we must interpret the payload data from the input encoding and

convert it into a string of bits. The string of bits is then encoded with the

pulse position modulation. For each bit there are two possible positions that

it can occupy within its designated slot. If the bit value is 0, then it will

produce a pulse at the earlier (left) position, similarly, if the bit value is

1, it will produce a pulse in the later (right) position. When a string of

pulse positions is generated from bits, the encoder prepends the signature

preamble (like the one on figure 2.1). This creates a packet frame that is a

valid Mode-S reply packet.

The next stage in signal generation is to generate an amplitude envelope
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from the string of pulse positions created in the previous step. Each pulse

should be shaped according to estimated signal properties (amplitude, peak

width) or, in case of generating signals for (potential) transmission, with ac-

cordance to ICAO specifications [5]. Detailed explanation of pulse templates

is described in the next subsection.

Figure 6.6: Fragment of the generated amplitude envelope

Generated amplitude envelope is valid packet baseband signal with con-

stant phase (figure 6.6). However, in the case of cancellation, we must also

apply phase and frequency offset to the signal in order to estimate the re-

ceived signal. The whole encoding process can be observed on figure 6.7.

6.3.1 Pulse template

In the process of modulating we need to transform the (B)PPM impulses into

actual pulses. To achieve this we replace the impulse with a pulse template.

To generate a suitable pulse template we use a raised cosine function. This

allows us to adjust and tune multiple parameters of a pulse template: rise

time and hold time. We can adjust these two parameters to best fit the



6.3. PACKET ENCODER AND SIGNAL GENERATOR 61

"8d34221060b503205bd1ccd90143"

100101011010011001...10010101011010

1010000101000000100101011010011001...10010101011010

Encode bits using PPM

Prepend preamble

Apply pulse template

Phase and frequency 
transformations

Figure 6.7: Encoding process
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source signal when applying cancellation, or when generating a new packet,

to keep the signal bandwidth in the limits specified in the ICAO specifications

[5]. When generating the template, amplitude is kept at unitary value to

allow easier further processing of the signal. We generate two different pulse

templates, one for type I peaks and another, wider, for type II peaks.

6.4 Packet cancellation

In the previous sections we have argued and showed how to estimate relevant

signal attributes that are essential for packet cancellation. Furthermore,

we have described the Mode-S reply packet encoding and signal generation

process. In this section we will show how we employ the estimated attributes

and signal generation in order to generate a packet signal that we can subtract

from the signal trace to cancel out the packet.

The cancellation process consists of multiple steps:

• Successfully decode the packet (or one of the packets if a collision has

occurred),

• Estimate amplitude - based on payload, find the peak positions and

values,

• Estimate phase and frequency offset,

• Encode the payload into string of pulses and generate amplitude enve-

lope,

• Apply phase and frequency offset transformation,

• Subtract the generated signal from the original trace,

• Process the remainder again through the receiver chain.

The process stated above can be applied to cancel out the packet signal.

This is useful for collision resolution that is discussed in the next section.
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Figure 6.8: Generated packet signal

Figure 6.9: Remaining signal after cancellation

However, to be able to use the cancellation method for collision resolution,

it must be able to cancel out packets when there are no collisions. Figure 6.1

shows a packet that can be cancelled out by the method. Signal attributes
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are estimated like discussed above and a signal approximation is generated

(figure 6.8) that is used to subtract from the original signal. The result is

visible on figure 6.9. We can observe that the signal power is greatly reduced

and is comparable to noise. There is, however, some residual signal, but

this is due to the difference of estimation and the real signal. Improving the

quality of the signal estimation is a possible future work improvement.

6.5 Packet collision resolution

The main application of packet cancellation is packet collision resolution. In

areas with lots of air traffic (around busy airports) it commonly happens that

two aircraft transmit at roughly the same time. This results in both signals

being added together. In cases where both signals have similar amplitude

and/or are completely or mostly overlapped, the receiver has a very little

chance of successfully decoding even one of the packets. However, there are

cases when one of the packets is quite stronger than the other, as it is often

encountered when aircraft are at very different distances (one very far, one

very close) from the receiving antenna. The signal received from the closer

aircraft2 is much stronger and the receiver is able to successfully decode the

packet. In conventional receivers, the weaker packet would be lost because it

was overridden by the stronger packet. This opens up a potential for collision

resolution by employing packet cancellation.

6.6 Results, discussion and future improve-

ments

As a proof of concept, lets observe the results on a synthetic collision of two

packets on figure 6.10, where a stronger and a weaker packet have collided.

The receiver was able to successfully decode the stronger packet in the first

2 Due to free-space signal loss, the further-away aircraft has much lower signal, and

similarly, the closer aircraft produces much stronger signal.
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Figure 6.10: Packet collision - Stronger (first) packet collided with a weaker

(second) packet

pass. The packet payload data and estimations of signal attributes were

used to generate an estimation of the signal of the first packet. Then, packet

cancellation method described in previous section was applied. The result

can be seen on figure 6.11. We can observe that the amplitude of the stronger

(first) packet has been greatly reduced. Furthermore, the weaker packet is

now fully exposed and in the second pass our receiver was able to decode the

payload successfully. This shows that packet cancellation techniques can be

successfully applied in the sense of packet collision resolution.

Because we shown that collisions can be resolved in certain scenarios, and

have also shown that our cancellation techniques work on real world packet

signals3, we applied our cancellation procedure to every successfully decoded

packet from the captured trace. After cancellation, the trace was processed

again through the receiver chain. Unfortunately, we have observed no new

successfully decoded packets after the second pass (after cancellation). This

indicates that the developed method was unable to resolve collisions between

3Packet cancellation section show cancellation on real world packet signal.
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Figure 6.11: Resolved packet collision - second packet now visible and

decodable

real world packets. We are certain that the lack of success is due to rather

simplistic cancellation technique. This goes to show that generating a can-

cellation signal i.e. reconstructing a signal that closely matches the one that

was transmitted, is a complex task. We have noticed multiple deviations

from our model in real world packets.

Firstly, the amplitude peak height can vary quite significantly and spo-

radically throughout the packet. Use of a constant amplitude estimate works

well on certain (well behaved) transmitters, but fails on some. We have con-

sidered that amplitude peak values gathered in the timestamping process

could be used to reconstruct the amplitude on a per-peak basis, but this

approach would fail when the peak values are influenced by the signal of the

other colliding packet.

Additionally, for certain transmitters it is very hard to estimate the phase

and frequency offsets, due to presence of strong phase noise. In certain

cases it is significant enough that it can be used to fingerprint aircraft or

transponder models based on it, as it was demonstrated in the article [18].
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It is important to note that as long as the amplitude of the signal is formed

correctly, the transmitter complies with the specifications. Phase noise is

therefore not a problem for decoding the packets, however, it makes the task

of reconstructing the signal significantly harder. In the future, we consider

developing multiple phase estimation models and a heuristic that would allow

us to choose the best model on a per aircraft basis. The best fitting model,

once determined, could be remembered and recalled when a new packet from

the same aircraft is encountered and processed for cancellation.

Another reason to why the developed cancellation method was unsuccess-

ful can be sought in the fixed pulse template used to construct the pulses.

Due to relatively permissive specifications, there are appreciable differences

in pulse shapes between different transmitters. We believe that employing a

customized pulse template that suit only a particular aircraft or transmitter

model would greatly reduce the residual packet signal left behind after can-

cellation. This goes hand in hand with gathering and learning transmitter

signal properties proposed in section 3.3 and plays well with the evolvable

design of our receiver.

On top of the discussed things, there might still be an unknown phe-

nomenon at play in the real world data that was not considered while produc-

ing synthetic data. This poses a new challenge and presents an opportunity

that is worth investigating in future research work.

It is also worth investigating the possibility of performing partial cancel-

lation i.e. performing cancellation only on a part of a signal. This would

alleviate the requirement that the packet that is considered for cancellation

is decoded correctly. Given a facility for identifying the aircraft without

successfully decoding the payload, we could leverage previously learnt infor-

mation about the aircraft’s signal properties (we would know the preamble

and at least the unique address of the aircraft) to perform partial cancel-

lation. On top of that, collision resolution could be performed iteratively,

gaining more and more information at each iteration, in turn gaining enough

information to successfully decode one of the colliding packets. This could
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be used to resolve even the type of collisions, where none of the packets have

been successfully decoded, making our receiver not only evolvable but also

cognitive.



Chapter 7

Conclusion and future work

In this thesis we presented an advanced software-defined receiver, capable

of receiving and decoding ADS-B/Mode-S packets that are emitted by air-

craft and used by traffic control. We described in-detail the components of

the software receiver chain and laid out the basis for researching, designing,

implementing and evaluating advanced features not present in state of the

art ADS-B/Mode-S receivers. These features include high precision packet

timestamping (that can be used in conjunction with multilateration algo-

rithms for passive aircraft position tracking) and packet collision resolution

by means of packet signal cancellation. We have specifically designed our

receiver to be extendable and evolvable and have implemented the two ad-

vanced features to demonstrate that. Additionally, we have presented our

vision of a cognitive receiver and stated the features and improvements that

would make it so, specifically the cognitive cache that would hold information

about each aircraft/transmitter and would allow for development of iterative

decoding procedures and could provide the necessary data for timestamping

using only partial packet payload data.

To show the evolvability and extensibility of our receiver we implemented

several timestamping methods. This includes correlation-based methods and

our novel approach of peak-position-based method, that is not only rather

simple and elegant, but also relatively computationally efficient. We have

69



70 CHAPTER 7. CONCLUSION AND FUTURE WORK

shown that our peak-position-based timestamping method can achieve times-

tamp error variance of 2.2 ns (equivalent to 66 cm at the speed of light) and

when considering the packet strength classes, down to awe-inspiring 1.2 ns,

which is equivalent to 36 cm at the speed of light. This would allow for

high-precision passive positional pinpointing and tracking of aircraft when

coupled with appropriate downstream algorithms.

Furthermore, we have investigated packet collision resolution. We have

developed a proof of concept technique for packet signal cancellation by esti-

mating physical signal attributes and recreating the packet signal from them.

We have shown that the present implementation of our packet cancellation

method works in a synthetic (proof of concept) environment, but struggles

on real world data. This limited success allowed us to gain invaluable insight

into the complex problem of packet signal cancellation. We have realized

that signal model needs to be built separately for each individual aircraft.

This goes hand in hand with the proposed future development of transmitter

profile cache that would allow the receiver to learn the attributes of indi-

vidual transmitter and apply cancellation techniques accordingly. On top of

that we have argued about the methods (suitable for future research) that

would perform iterative and partial decoding and allow timestamping and

cancellation techniques to be used on partial data and thus alleviate one of

the main shortcomings of traditional receivers and making a step towards a

cognitive receiver for ADS-B/Mode-S messages.



Bibliography

[1] Gnuradio mode-s/ads-b radio, https://github.com/bistromath/

gr-air-modes, accessed: 2016-11-17.

[2] Gnu radio, http://gnuradio.org/, accessed: 2016-11-17.

[3] R. Kaune, C. Steffes, S. Rau, W. Konle, J. Pagel, Wide area multilatera-

tion using ads-b transponder signals, in: Information Fusion (FUSION),

2012 15th International Conference on, IEEE, 2012, pp. 727–734.

[4] G. Galati, M. Leonardi, I. Mantilla-Gaviria, M. Tosti, Lower bounds of

accuracy for enhanced mode-s distributed sensor networks, IET Radar,

Sonar & Navigation 6 (3) (2012) 190–201.

[5] ICAO, Aeronautical Telecommunications Volume IV, Surveillance and

Collision Avoidance Systems - annex 10 to the convention on interna-

tional civil aviation, 2007.

[6] G. Baldini, T. Sturman, A. R. Biswas, R. Leschhorn, G. Godor,

M. Street, Security aspects in software defined radio and cognitive radio

networks: A survey and a way ahead, IEEE Communications Surveys

& Tutorials 14 (2) (2012) 355–379.

[7] L. Michael, M. Mihaljevic, S. Haruyama, R. Kohno, Security issues for

software defined radio: Design of a secure download system, IEICE

Transactions on Communications E85-B (12) (2002) 2588–2600.

71

https://github.com/bistromath/gr-air-modes
https://github.com/bistromath/gr-air-modes
http://gnuradio.org/


72 BIBLIOGRAPHY

[8] S. Grönroos, K. Nybom, J. Björkqvist, J. Hallio, J. Auranen, R. Ekman,

Distributed spectrum sensing using low cost hardware, Journal of Signal

Processing Systems 83 (1) (2016) 5–17.

[9] C. J. Bernardos, A. De La Oliva, P. Serrano, A. Banchs, L. M. Contr-
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