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Povzetek

Naslov: Uporaba mobilnih senzorjev za identifikacijo kompleksnosti opravil

Pametni telefoni so postali zelo zmogljive in osebne naprave, vendar v

veliki meri ostajajo neizkorǐsčene. Samodejna identifikacija uporabnikove

mentalne vključenosti v trenutno početje vse do danes še ni bila raziskana in

bi lahko koristila na različnih področjih – od mobilnih aplikacij do sistemov

za upravljanje s človeškimi viri. V tem magistrskem delu razǐsčemo možnost

samodejne identifikacije zahtevnosti trenutnega uporabnikovega opravila z

uporabo senzorjev v dostopnih pametnih telefonih. V ta namen razvijemo

sistem za zbiranje podatkov, ki temelji na mobilni aplikaciji. Le-to javno

objavimo in distribuiramo med uporabnike, zberemo podatke na strežniku

in jih kasneje uporabimo pri metodah strojnega učenja. Najprej s pomočjo

linearne regresije in nato še s klasifikacijo potrdimo obstoj šibke povezave

med zajetimi podatki in kompleksnostjo uporabnikovega početja. Odkrijemo

tudi, da so personalizirani modeli strojnega učenja bolj natančni od splošnih.

Ključne besede

pametni telefon, mobilno zaznavanje, strojno učenje, kompleksnost opravil





Abstract

Title: Mobile Sensing for Task Engagement Inference

Smartphones have become very powerful and personal devices, but still

have to live up to their potential. To date, we have no automated means of

uncovering a user’s task engagement, which would be beneficial in numerous

areas – from mobile applications to human resource management systems. In

this thesis, we explore the possibility of automated task engagement inference

using smartphone sensors. We try to find an answer by developing a data

collection system based on a mobile application. We deploy and distribute

the app among volunteers to collect data on our server. We then use machine

learning approaches on collected data to uncover a weak link between task

engagement and smartphone usage data and find out that the collected data

is highly personalized.
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Razširjen povzetek

Uporaba pametnih telefonov in z njo povezanih storitev v zadnjih letih skoko-

vito narašča. Pametni telefon danes težko opredelimo le kot komunikacijsko

napravo, saj nam poleg osnovnih možnosti klicanja in pošiljanja sporočil

omogoča vrsto drugih uporab: vse od priporočanja restavracij in socialnega

mreženja do navidezne resničnosti. Z nadaljnjo uveljavitvijo interneta stvari

se bo število funkcionalnosti in mobilnih storitev le še povečevalo. Ker pa

vsaka elektronska naprava zahteva uporabnikovo pozornost, je avtomatsko

prepoznavanje uporabnikovih čustvenih in kognitivnih stanj zelo pomembno,

saj bi se s tem lahko izognili nezaželenim učinkom – jezi in frustracijam.

Eno takih stanj je uporabnikova mentalna vključenost v početje. V ko-

likor bi bila naprava zmožna prepoznati kompleksnost trenutnega uporabni-

kovega opravila, bi se to odražalo v dodatnih funkcionalnostih pri obstoječih

aplikacijah in razvoju povsem novih. Sporočilne aplikacije bi lahko zakasnile

dostavo nepomembnih sporočil, kar bi uporabniku omogočalo ohraniti visok

nivo koncentracije. Aplikacije, ki uporabnikom strežejo informacije, bi vse-

bino posodabljale le, ko bi uporabnik opravljal manj zahtevna opravila, kar

bi lahko zmanǰsalo porabo baterije in mobilnih podatkov. Razvili bi se lahko

povsem novi sistemi za upravljanje s človeškimi viri, ki bi omogočali optimal-

neǰso porazdelitev dela med zaposlene in posledično znižali stroške podjetja,

povǐsali delovno učinkovitost ter zadovoljstvo zaposlenih.

V sklopu tega magistrskega dela najprej opravimo pregled področja in

ugotovimo, da je sorodno kognitivno stanje – uporabnikovo prekinljivost –

mogoče zaznati tudi s pomočjo senzorjev vgrajenih v pametne telefone, pred-



vsem podatkov pospeškomera. Odkrijemo tudi, da je vpliv na kognitivno

stanje odvisen od vsakega posameznika, na kar v veliki meri vpliva upo-

rabnikova zmožnost večopravilnosti. To nas vodi do kognitivnega vpliva na

izvedbo opravil in študijo, ki odkrije, da je kompleksnost opravila možno za-

znati s pomočjo spremljanja velikosti zenice, kar zahteva uporabo posebnih

naprav. Še vedno pa ni bila raziskana možnost zaznave zahtevnosti opra-

vila s pomočjo dostopnih naprav. Na podlagi tega se odločimo za snovanje

sistema, ki bi omogočil razkritje povezave med kompleksnostjo opravil in

podatki pridobljenimi s senzorji dostopnih pametnih telefonov.

Najprej predstavimo snovanje predlaganega sistema za zbiranje podatkov,

ki temelji na mobilni aplikaciji TaskyApp. Omejimo se na opravila znotraj

pisarnǐskega okolja in definiramo merljivo kompleksnost opravila. Odločimo

se za pet-stopenjsko Likertovo lestvico: “zelo lahko”, “precej lahko”, “niti

lahko niti zahtevno”, “precej zahtevno” in “zelo zahtevno”. Zanašamo se na

subjektivne ocene udeležencev raziskave, ki se dodajo posameznemu odčitku

senzorjev. Na podlagi obstoječih del določimo tudi množico senzorjev, ki bi

lahko vplivali na sklepanje zahtevnosti uporabnikovega početja: pospeškomer,

žiroskop, Bluetooth, WiFi, lokacijski in časovni podatki ter nekateri drugi.

Zaznavanje senzorjev mora biti zasnovano tako, da ne vpliva na delovanje

operacijskega sistema in je čimbolj prijazno do porabe baterije. Nadalje

določimo kdaj se posamezno zaznavanje sproži. Definiramo dve možnosti:

ročni zagon zaznavanja s klikom na gumb in avtomatsko proženje ob zaznavi

spremembe uporabnikove aktivnosti. Zaznani podatki se najprej shranijo na

telefon, da jih ob slučaju ponovnega zagona sistema ne izgubimo, kasneje pa

pošljejo na strežnik za uporabo pri postopkih podatkovnega rudarjenja in

strojnega učenja.

Zavedamo se, da sama aplikacija ni dovolj za pridobivanje podatkov,

temveč je zelo pomembno, da jo uporabniki redno uporabljajo. Z namenom

aktivne uporabe aplikacije se poslužimo naslednjih prijemov: opominjanja

na uporabo aplikacije preko sistemskih obvestil, uporabe metod igrifikacije,

izdelave prijaznega in enostavnega uporabnǐskega vmesnika ter nagrade v



obliki 50e kupona za enega od najbolj aktivnih uporabnikov.

Mobilna aplikacija je razvita v skladu s principi iterativnega razvoja, zato

testiramo in analiziramo nove funkcionalnosti že tekom razvoja. Poleg tega

se pred končnim zbiranjem podatkov odločimo za pilotno raziskavo, v kateri

želimo celoten sistem testirati in izbolǰsati na podlagi mnenj uporabnikov.

TaskyApp naložimo na dve napravi in po desetih dneh dobimo nekaj ko-

ristnih napotkov. Na podlagi mnenj in lastnih ugotovitev se odločimo za

celovito prenovo obveščanja uporabnikov preko obvestil, popravimo nekatere

dele uporabnǐskega vmesnika, odpravimo težave s strežnǐsko implementacijo

in omogočimo uporabnikom določitev časa, ki ga preživijo v pisarni. Ugo-

tovimo namreč, da je veliko odčitkov zaznanih v času, ko uporabniki niso v

pisarnah (npr. ob vikendih in pozno zvečer), zato želimo, da se avtomatsko

zaznavanje v tem času izklopi. Podatki zajeti ob tem času bi nam one-

mogočali kvalitetno analizo podatkov v sklopu strojnega učenja, poleg tega

pa bi z nepotrebnim zaznavanjem trošili baterijo.

Ko imamo dobro testirano in delujočo mobilno aplikacijo z želenimi funk-

cionalnostmi, jo distribuiramo desetim prostovoljcem. V namen lažje distri-

bucije postavimo spletno stran s splošnimi napotki uporabe aplikacije in na-

menom naše raziskave, aplikacijo pa javno objavimo v trgovini Google Play.

Po poteku pettedenske raziskave na našem strežniku zberemo skupno 3035

senzorskih odčitkov, od teh 232 z oznako kompleksnosti. Na podlagi opisnih

statističnih podatkov ugotovimo, da dva uporabnika aplikacije nista upora-

bljala in da je večina, kar 82.3%, označenih odčitkov delo treh udeležencev.

Nadalje ugotovimo, da je večina zbranih podatkov pridobljenih ob delavnikih

med 8:00 in 17:00. K temu pretežno pripomore izklop avtomatskega zaznava-

nja aplikacije ob urah, ko uporabnik ni v pisarnǐskem okolju. Dnevna analiza

zbranih podatkov kaže na to, da so bili uporabniki bolj aktivni v začetku te-

dna, medtem ko so oznake zahtevnosti pretežno konstantne od ponedeljka

do petka. Nadalje analiza po urah pokaže, da je največ označenih podat-

kov zbranih med 10:00 in 11:00 ter da so poslane oznake rahlo zahtevneǰse v

popoldanskem času.



V naslednjem poglavju najprej opǐsemo postopke podatkovnega rudar-

jenja, s čimer iz pridobljenih podatkov izluščimo značilke. Le-te nam ka-

sneje v postopkih strojnega učenja omogočijo pridobiti rezultate tega dela.

Odločimo se za nekaj lahko izračunljivih značilk, kot so število Bluetooth in

WiFi naprav v bližini, ura zaznavanja, pripeta oznaka težavnosti opravila

in povprečne vrednosti surovih podatkov amplitude šuma in vseh treh osi

pospeškomera ter žiroskopa. Podatke slednjih dveh uporabimo še za izračun

povprečnih jakosti vseh treh osi, njenih varianc in števila prečenj srednje vre-

dnosti. Zvočne signale in signale osi pospeškomera ter žiroskopa s hitro Fou-

rierevo transformacijo preslikamo tudi v frekvenčno domeno in izračunamo

spektre moči ter entropijo spektra. Rezultat podatkovnega rudarjenja je

datoteka z vsemi izluščenimi značilkami.

Zadnji korak je modeliranje z algoritmi strojnega učenja. Najprej upo-

rabimo linearno regresijo, ki nam razkrije podatkovno odvisnost od komple-

ksnosti opravila. V tem postopku določimo tudi značilke, ki najbolj vpli-

vajo na končni rezultat. Izkaže se, da so premiki telefona, zaznani s po-

speškomerom, vezani na lažja opravila. To je logična posledica tega, da smo

se osredotočili na pisarnǐsko okolje, kjer uporabniki večino delovnega časa

sedijo, ob prostem času pa se verjetno premikajo. Na drugi strani se značilke

žiroskopa in pozneǰsa ura v dnevu odražajo v težjih opravilih. Prva verjetno

zaradi rotacij naprave ob njeni uporabi, ko le-ta leži na mizi, medtem ko

utrujenost uporabnikov ob koncu delavnika vpliva na zahtevneǰso percepcijo

početja.

Izluščene značilke v postopku regresije uporabimo še pri klasifikaciji. Naj-

prej vse naloge razvrstimo v dva razreda. Najlažji dve stopnji razvrstimo med

“lahke” naloge ter vse ostale med “zahtevne”. Tako razvrstimo 232 podatkov

v 107 lahkih in 125 zahtevnih nalog. Uporabimo tri različne metode klasifi-

kacije, kjer smo najbolj pozorni na natančnost napovedi in kritične napake.

Kot kritične vrednotimo napake, pri katerih klasifikator razvrsti zahtevno

nalogo kot lahko. Iz praktičnega vidika je taka napaka kritična, ker pov-

zroči, da nam sporočilna aplikacija pošlje sporočilo v trenutku, ko smo zelo



zaposleni in nedovzetni do prekinitev. Kot referenčni klasifikator izberemo

večinski klasifikator, ki je uspešen v 53,9%, in ga primerjamo z rezultati na-

ivnega Bayesovega klasifikatorja in metode naključnih gozdov. Naivni Bayes

se izkaže kot uspešneǰsi, saj je v 63,8% primerih natančen pri napovedi in

ima hkrati razmeroma nizek odstotek kritičnih napak (13,8%).

Navade pri delu se med uporabniki lahko precej razlikujejo, zato se odločimo

še za modeliranje podatkov uporabnika, ki izstopa po številu prispevanih

označenih senzorskih odčitkov. Na podatkih uporabnika, ki prispeva 83

označenih odčitkov, uporabimo iste postopke, kot smo jih na skupnih po-

datkih, in dobimo natančneǰse rezultate. Linearna regresija ponovno kaže

na obstoj povezave med zbranimi podatki in zahtevnostjo opravil ter potrdi

ugotovitev, da se rotiranje telefona in kasneǰsa ura odražata v zahtevneǰsih

opravilih. V nasprotju s splošnim modelom se značilke pospeškomera to-

krat odražajo v težjih opravilih. Razlog za to so lahko drugačne delovne

navade ali drugačno pisarnǐsko okolje tega uporabnika v primerjavi z osta-

limi. Izluščene značilke ponovno klasificiramo v dva razreda in uporabimo

večinski klasifikator kot referenco, ki je tokrat uspešen v 43 primerih (51,8%).

Naivni Bayesov klasifikator se ponovno izkaže za bolj uporabnega od metode

naključnih gozdov, saj je natančneǰsi pri napovedih (62,7%) in ima zelo nizek

odstotek kritičnih napak (9%).

Magistrsko delo zaključimo z našimi predlogi za izbolǰsanje sklepanja o

zahtevnosti opravil in pregledom omejitev dela. Osredotočili smo se le na

pisarnǐsko okolje in zato zbrali malo senzorskih odčitkov. Zato smo pred-

postavili, da so vsi odčitki označeni pravilno in zbrani v pisarnǐskem okolju

(npr. niso bili zbrani v času vožnje s kolesom). Poleg označenih odčitkov

smo v raziskavi zbrali večjo količino neoznačenih, ki bi jih lahko z algoritmi

delno nadzorovanega učenja vključili v podatkovno analizo. Korak naprej

pri sklepanju o zahtevnosti uporabnǐskega početja vidimo v uporabi noslji-

vih naprav, npr. pametnih zapestnic. Integracijo dveh takih zapestnic z

mobilno aplikacijo TaskyApp smo že pričeli. Sledi identifikacija in diskusija

o področjih, ki bi že lahko imela koristi od dobljenih rezultatov, ter pregle-



dom opravljenega dela. Glavna rezultata naloge sta razkritje povezave med

uporabo pametnega telefona in kompleksnostjo uporabnikovih opravil, ter

ugotovitev, da so personalizirani modeli podatkovnega učenja bolj natančni

od splošnih.



Chapter 1

Introduction

Smartphones, nowadays, are very powerful and affordable devices that are

normally kept close by their owners throughout the day, due to their pocket-

size and usability. We can merely call them communication tools, providing

us with a wide range of services: from online social networking, restaurant

recommendations, tracking our exercise routine, over navigation in a new

environment and immersing into virtual reality to name a few. The predic-

tions show that close to a third of the whole world’s population will be using

one by the end of this year [18]. Further cohesion with other mobile devices

into the Internet of things indicates that the reliance on mobile computing

services is yet to grow.

In his 1991 manifesto, Mark Weiser outlined the need for the “stealth”

ubiquitous computing device – the one that quietly blends with the lifestyle

of its user [38]. We already depend on modern devices to notify us about

important events, help us establish new friendships, take notes and other

aspects that enable us to live interactive lives. However, our attention is

required at times that are not suitable by beeping and flashing notifications.

These unsuitable times can be very disruptive if a user is highly concentrated

on a challenging task [28]. Thus, the user’s current level of task engagement

is of paramount importance in a number of ubiquitous computing scenarios.

For example, a device knowing that a user is highly engaged in a task could

1



2 CHAPTER 1. INTRODUCTION

defer the delivery of an unimportant message, and notify the user only when

the level of task engagement is lowered, thus reducing frustration and im-

proving receptivity of the user to messages. On a bigger scale, inferring task

engagement would be instrumental in human resource management systems,

where it could help to equally distribute the workload among workers, result-

ing in stress reduction of the busiest workers, higher life quality and lower

expenses of the company.

Up to recently, the inference of a user behavior has been outside of the

scope of mobile computing. However, two factors, the increasingly personal

use of devices and the ever-increasing sensing capabilities of devices, have

opened up the opportunity for the automatic inference of certain aspects of

human behavior, including mobility, physical activity, and even emotional

state of a user. However, the automatic detection of task engagement, to

the best of our knowledge has not been explored, yet. Thus, the goal of

our work is to explore the possibility of automated task engagement inference

using commodity smartphones. To fulfill the goal, we have to overcome the

following challenges:

• Provide a measurable definition of task engagement levels.

• Collect sensor readings from users’ mobile devices at moments pertain-

ing to different task engagement levels.

• Label the collected data with the user-perceived task engagement levels.

• Apply machine learning algorithms to uncover a potential link between

the sensed data and the task engagement quantifiers.

In this thesis, we tackle the above problems experimentally. We design

and develop a smartphone sensing application that collects data from built-

in sensors and, at the same time, interacts with the user to obtain the task

engagement label – i.e. whether a user is engaged in an easy or a difficult

task at the moment when sensors are read. We first review work related to

our research and then focus on the app’s designing process, implementation



3

of its main features, discuss overcome challenges and review our study, which

we ran in order to collect sensor readings. In the study, we concentrate on

the office setting and distribute the app to 10 users, who have collected a

total of 232 data points. Next, we build machine learning models for task

engagement, first using regression and then classification. In our findings,

we show that there is an existing link between task engagement and smart-

phone’s sensor data and present the most informative features. We manage

to predict task engagement level with 63.8% accuracy (10% higher than our

baseline). We then set a hypothesis that data tailored to an individual would

yield more accurate predictions, and end up confirming it. Finally, we pro-

pose our guidelines for improved results on non-exploited collected data and

identify additional sensors that could boost task engagement inference.

A part of the work presented in this thesis was published in a peer-

reviewed paper presented at the UbitTention workshop in conjunction with

ACM UbiComp 2016 [35]. This thesis, however, includes a more detailed

description of the background and the experimental methodology we em-

ployed, and includes additional results obtained after the workshop paper

has been published. Finally, in this thesis, we discuss further opportunities

for automatic task engagement inference.
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Chapter 2

Related work

In the interactive world where we are surrounded by many devices, each

competing for a highly perishable commodity – user’s attention [6] – human

attention management is of great importance. Using “shadowing” technique

González et al. showed that an information worker (analysts, software devel-

opers and managers) experience a high level of discontinuity in the execution

of their activities [10]. They found out that an average worker spends three

minutes working on any single event before switching to another. Further,

the study showed that people spend on the average somewhat more than

two minutes on any use of an electronic tool, application, or paper document

before they switch to use another tool.

The above work indicates that multitasking has become a big part of our

daily activities, hence very likely correlated with a user’s cognitive involve-

ment in a task. Salvucci and Taatgen proposed the idea of threaded cognition

– an integrated theory of concurrent multitasking [32]. In threaded cogni-

tion, each task is represented with a cognitive thread. For example, writing

an article and answering a phone call, one cognitive thread would be typing,

and another operating the mobile phone. The theory provides explicit pre-

dictions of how multitasking behavior can result in interference for a given set

of tasks. The perceived complexity of a task, which can be lowered through

memory rehearsal, is critical for (concurrent) task performance [33]. It has

5



6 CHAPTER 2. RELATED WORK

been shown that intermediate information, which is necessary for performing

a task, is a bottleneck in multitasking [4]. In their study, Borst et al. define

problem state resource, information that is directly and instantly accessible

for the task at hand. While, on the other hand, it takes time to retrieve facts

from declarative memory [2].

A cognitive state that determines the user’s level of susceptibility to inter-

ruptions is interruptibility. Pejović et al. researched the relationship between

task engagement and interruptibility using experience sampling method [28].

The study showed that although notifications allow users to defer interrup-

tions for a later moment, the engagement with the current task still played a

significant role in determining users’ interruptibility. Some early works indi-

cate that it is possible to detect interruptibility using dedicated sensors. In

an office setting Horwitz et al. used camera and microphone to detect user’s

availability [12]. Fogarty et al. used “Wizard Of Oz” technique (a researcher

– the “wizard” – analyzed long-term digital audio and video recordings of

each participant’s working environment) to figure out that interruptibility in

an office setting could be detected using speech detector sensors [7]. Lilsys

was developed as one of the first systems to detect interruptibility on-the-

fly [3]. The system used ambient sensors (i.e. motion and sound), in order

to infer certain cases of lower availability through machine interpretation.

However, in the meantime, smartphones came on the market with vari-

ous built-in sensors. A novel machine-learning approach using smartphone

sensors was proposed by Pielot et al. for predicting whether a user will see

a notification message within the next few minutes [29]. In their two weeks

study, data of 24 volunteers using Android mobile phone was collected and

achieved 70.6% accuracy on predicting user’s attentiveness using only seven

easily-computed features (e.g. hour of day, screen status, volume settings). A

smartphone library InterruptMe was used to recognize an opportune moment

for interruption by training a personalized online classifier based on features

of the accelerometer, location and time of day among others [26]. The classi-

fier is updated on each user’s feedback provided on a four-point Likert scale.
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InterruptMe-based notifications result in shorter response times compared

to randomly distributed notifications. Adamczyk et al. show that different

interruption moments have different impacts on user’s emotional state [1].

By predicting the best points for interruption, they consistently managed to

produce less annoyance, frustration, and time pressure, required less mental

effort, and were deemed by the user more respectful of their primary task.

They suggest guidelines for an attention manager system which could enable

a user to maintain a high level of awareness while mitigating the disruptive

effects of interruptions.

The above works demonstrate that smartphones, with their sensing ca-

pabilities, are very practical and can be utilized to detect different cognitive

states of a user. In another study, a high accuracy for detecting user’s bore-

dom was reached using Borapp mobile application [30]. The researchers

collected data from 22 volunteers and developed machine learning models

to automatically classify users in high or low boredom proneness with over

80% accuracy. Based on their findings it seems that a bored person is very

likely less engaged in a task. O’Brien and Toms deconstructed the term

engagement as it applies to peoples’ experiences with technology [24]. They

proposed a model of task engagement that focuses on the properties of a task

that would compel more or less engagement, including the degree to which

tasks are challenging, interactive, rich in feedback, aesthetically pleasing,

enduring, and varied or novel.

Task engagement is challenging to infer, and to date, attempts have been

made to infer task engagement by using physiometric sensors. Iqbal et al.

used eye-tracker to predict task difficulty based on pupil dilation [20]. They

show that a more difficult task demands longer processing time, induces

higher subjective ratings of mental workload, and reliably evokes greater

pupillary response at salient subtasks. However, to devise a practical, scal-

able task inference system, our goal is to explore whether commodity smart-

phones can be used for this purpose.



8 CHAPTER 2. RELATED WORK



Chapter 3

Task engagement inference

system

The possibility of detecting certain human cognitive states (e.g. interrupt-

ibility) with specialized equipment, using special techniques (e.g. shadowing

technique, Wizard of Oz) and lately using a smartphone has been shown in

the previous chapter. However, despite these advances, task engagement is

yet to be reliably detected by commodity devices. Knowing task engagement

would allow improved attention management systems and open a range of

new possibilities for mobile apps. We decide to utilize powerful, personal and

ubiquitous smartphones in order to build a system based on a data collec-

tion mobile application and back-end server for persistent data storage. In

this chapter, we present the most important decisions in our data collection

system design. We do so by defining a measurable definition of task engage-

ment levels and providing the main features of our data collection app. The

detailed implementation of the system is presented in Chapter 4.

3.1 Measurable definition of task engagement

A task is a rather broad term and for the purpose of our study we limit it

to (mental) tasks performed in an office setting. Without such restriction,

9
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we wouldn’t be able to collect enough data points to extract meaningful and

generalized results at the end. Furthermore, offices are rich environments

in task dynamics (many different tasks with various difficulties) and office

workers usually keep their smartphone close to them, or even use it, while

working [39]. We define the following measurable five-level Likert scale (en-

coded in numeric values from 1 to 5, respectively): “very easy”, “pretty easy”,

“neither easy nor hard”, “pretty hard” and “very hard”.

We are interested in the subjective experience of the task. Thus, we decide

to rely on explicit task engagement labels provided by a user who answers

a question about the perceived difficulty of the current task. There will be

no default value, so the user will always have to choose a level of difficulty.

We design TaskyApp, a mobile app that runs data sensing on background

threads and enables users to provide a label for each sensing session.

3.2 Reading sensors

Next, we determine which data is most likely to be correlated with user’s task

engagement. According to the findings in the related work [3, 7, 26, 29, 30]

and intuitively, we decide to obtain the following data per each sensing:

• Accelerometer : to detect phone movements

• Gyroscope: to detect phone rotations

• Bluetooth: whether enabled or not and the number of nearby devices

• WiFi : whether enabled or not and the number of access points available

• Location: longitude and latitude

• Time

• Screen status : capturing screen on and off events

• Calendar events : the number of active Google Calendar events
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• Sound : ambient noise level

• Ambient light level

• Phone volume settings

• Charging status : the phone is being charged or not

• Type of activity : user’s activity recognized by Google Activity Recog-

nition API (“In Vehicle”, “On Bicycle”, “On Foot”, “Walking”, “Still”,

“Tilting”, “Running” or “Unknown”)

The sensing must be robust, crash-free and run periodically sampling

in the background, which makes it difficult for efficient battery and system

resources usage. One thing we must keep in mind is also building our system

to be maintainable and easy to upgrade with new features – e.g. additional

sensors.

3.2.1 Sensing strategies

Having a set of data to read from smartphones’ sensors we need to design an

approach how to initiate a sensing session. We come up with two different

approaches, each having its pros and cons. Sensing on demand is done

on user’s request by a click of a button in our mobile application. The user

is presented with a task engagement level chooser (with correspondent task

engagement level descriptions) and an option to select a timeout before the

start of a manually requested sensing session. This approach should get

us more accurate task labels provided by the user, as she knows exactly

what she will be doing at the time of the sensing. On the other hand, this

approach will probably result in less labeled tasks and will require higher

user’s engagement.

With the other approach, automatically initiated sensing, we detect

the user’s context switch (e.g. the user picked his phone up from a desk) and

initiate a new sensing session. We consider changes in user’s activity (de-

tected by Google Activity Recognition API) and location changes as suitable
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indicators to detect a context switch. We also configure interval triggers (i.e.

initiate sensing every half an hour) in order to be sure that we start adequate

sensing sessions. The advantage of automatically initiated sensing approach

is that we are guaranteed to get sufficient amount of sensor readings and

equips us with an option to notify users to retroactively label detected tasks

and engage them in using the app. However, as time passes since the sensing

session, recall bias (users might not be able to correctly remember the cor-

related task engagement levels) should increase. Also, there is a possibility

of a significant influence on draining the battery.

3.2.2 Long-term data storage

In our study, we greatly depend on the collected sensor readings and user-

provided labels, so we cannot afford to lose any data points. Hence, we first

introduce data caching in mobile app’s local database, which ensures us that

we do not lose data even if the user kills the app, restarts the operating

system or the phone’s battery gets drained. The cached data is later sent to

our server via a WiFi connection in order to keep the user’s mobile data plan

untouched. On the server, data is persistently stored, so we can use it later

for data mining and machine learning in order to find a possible correlation

between the sensor readings and the user’s task engagement.

For the fact that we are handling with sensible personal data, we decide

to have our server, together with the database, located at our faculty. Each

user has to agree to our terms of use at the very first launch of the mobile

application, allowing us to send retrieved, anonymized data to our server.

No matter when the user has an option to opt-out of our research and even

delete all his data persistently stored on our server.

3.3 Engaging users

Since the main goal of the app is to collect labeled sensor readings we need

active users to provide labels. Thus, we decide to make use of the following
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four approaches for more frequent usage of the app:

• Reminders via notifications: we exploit notifications in a way to

engage our users in using the app frequently and providing labels for

detected tasks. The way of showing notifications reasonably changed

after the pilot case study (Section 4.4). In case the user has not used

the app for more than a day (and no other notifications were shown

to her), we show her a simple notification. Clicking this notification

opens the main screen of the mobile app with an option for sensing on

demand. Alternative use of notifications is to inform the user right after

an automatic sensing session concludes. Clicking on that notification

redirects the user to a screen to provide a label.

• Gamification: positive effects of gamification have been shown by

most of the empirical studies [11]. Therefore, we design a simple leader-

board, where each participant is compared relatively to others and gets

a message (e.g. you are among top 20% of all participants). Further, we

use user’s collected data to show some statistics of her daily activities

and plot her movements on a map.

• Raffling a voucher: as an incentive to provide the data and in order

to boost the use of the gamification model, we decide to give away a

50e voucher among active participants of the app (i.e. those who label

the data regularly).

• Intuitive user interface: our priority is bringing the best possible

user experience, therefore we keep user interface clean, simple and con-

sistent with the design guidelines of the operating system.
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Chapter 4

TaskyApp implementation

In this chapter, we present the implementation of our data collection system

in detail. The programming code discussed in this chapter is available in

our GitHub repository [37]. We decide to build the app on top of Android

operating system. The system enables us to read the sensors we need, is

reasonably easy for development and distribution, has a good programming

API and, according to Statista, has the biggest market share, with a growing

trend [17]. Since we need many system calls for the implementation of effi-

cient sensing we develop a native Android application in Java programming

language. Due to the support of low energy consumption standard – Blue-

tooth Low Energy – and distribution of over 70% in Android ecosystem [14],

we decide to target our app to Android versions of 4.3 and above.

We reckon the data collection as the key phase in our research, thus we

spend a significant amount of time designing and discussing key concepts

of the app. We introduce a system architecture consisting of a mobile app

for data collection and a server for centralized, persistent data storage. In

Figure 1 we show all of the crucial architecture’s components discussed in

this chapter. User interface and user experience decisions are described at

the beginning. Then, we talk more about TaskyApp’s core features – sensing

and data caching. At the end, we show app’s communication with the server

and persistent data storage.

15
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Figure 1: TaskyApp system’s brief architecture diagram. The archi-

tecture shows the data flow in our system – from user interface interactions

and sensing components in the app to persistent storage and data mining

scripts on the server. User initiated actions are marked with solid connec-

tions, whereas dashed indicate actions instrumented by the system. The four

most important connections are denoted with numbers: 1 = User provides a

label for a task, 2 = User manually requests a new sensing session, 3 = New

sensor data, 4 = User’s context switch detection.

4.1 User interface

Designing the user interface (UI) proves to be difficult as some of our users

do not have a deep knowledge of our task engagement study. Hence, we keep

the app’s UI minimalistic, with the background execution mostly abstract

to the user. We decide to design our app according to Android’s conven-

tions, following the latest Material design guidelines [15], which makes the
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UI familiar and understandable to our users. The UI should be positive and

vibrant, therefore we, consistently throughout the app, use blue as a primary

and yellow as a secondary (accent) color. For most of the texts, we use darker

accents on white surfaces for good readability.

Figure 2: TaskyApp’s user interface views. Rectangles indicate An-

droid Activities, diamonds decisions and circles entry points to TaskyApp.

The two most important views for data collection are colored in blue.

The UI of our app is mostly build of Android activities, shown in Fig-

ure 2. Activity1 is an Android component that provides a screen through

which users can interact with the application. Each Activity is given a

window in which to draw its user interface. The window typically fills the

screen, but may be smaller than the screen and floats on top of other win-

1We denote Android Activity with a different font to distinguish between the oper-

ating system’s components and a user’s activity.
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dows [13]. TaskyApp is made of eight Activities, loosely bound to each

other. Only two are essential for the fundamental purpose of the app (col-

ored in blue), data collection. Other Activities deal with guiding a user

through the app, providing help and managing application settings. The

purpose of each Activity and transitions between them are described in

the following paragraphs.

MainActivity is the main view of the application (Figure 3). It enables

a user to manually start a new sensing session and has buttons to access other

screens. MainActivity shows up every time (except for the initial launch)

the app is opened via Android’s application launcher. An essential part is

an option for sensing on demand. We want to emphasize this option, thus

we make the button for sensing on demand raised and others flat. The user

can choose a difficulty on the Likert scale, using the provided slider, and the

time when the task commences (e.g. “I am starting a pretty hard task in

15 seconds”). The explanation of the available Likert scale (Section 3.1) is

available to the user in a pop-up window with a click of the button next to the

slider. By clicking the “Start sensing” button the countdown starts (Figure 4)

and the sensing invokes right after the given timeout. On completion of

the sensing session, we inform the user and label the sensed data with the

provided task engagement label.

LabelTaskActivity is, along with MainActivity, the core feature

of TaskyApp’s user interface. The user is provided with an option to label

sensed task, using the same component as in MainActivity, or discard it

(Figure 5). We again use a raised button to change user’s focus towards la-

beling the task rather than discarding it. We provide information regarding

that task as it is difficult to remember what you were doing at a certain time

of a day. We show the task’s location on a map, time of sensing and detected

phone state (whether the phone was tilting, being still and other activi-

ties captured by Google Activity Recognition API). LabelTaskActivity

is accessible either via ListDataActivity or directly via a notification

shown to the user right after an automatic sensing.
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Figure 3: TaskyApp’s main view –

MainActivity

Figure 4: MainActivity’s view

after click on “Start sensing” button
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Figure 5: LabelTaskActivity Figure 6: StatisticsActivity
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ListDataActivity contains a simple list of up to ten, randomly se-

lected, non-labeled sensed activities throughout the last two days. We decide

to limit the number of tasks, so a user can feel that some progress has been

made after labeling a task. By clicking any of the tasks, the user gets redi-

rected to the LabelTaskActivity. ListDataActivity was developed

with retroactive labeling in mind, which proved to be inefficient in the pilot

case study, thus it is not frequently used. The Activity is accessible via

MainActivity’s “Label tasks” button.

StatisticsActivity is developed to engage users with a simple gam-

ification model (Figure 6). The user can see a heat map of his movements

over the last two days, his daily statistics and aggregated data on a histogram

since the beginning of the study. Besides, one can also check his progress rel-

atively to other participants of our study on a leaderboard. The leaderboard

component is completely configurable from the server, i.e. we can modify the

title and the message or completely hide that component.

SplashScreenActivity is the first screen shown to the user after the

app’s installation. The user is provided with instructions on how to use the

app, a short description of the research, what the app is about, an option to

select his office hours and to provide an optional contact email. Moreover,

the purpose of the study and terms of use are presented, to which each user

has to agree.

GoogleMapFullScreenActivity is a simple view containing only a

map and options to show a heatmap of user’s movements or absolute loca-

tions as pins. Clicking a pin provides details about that task. If the task

has not been labeled yet, the user has an option to provide one by using

LabelTaskActivity.

SettingsActivity has some important features and equips a user

with options to modify details provided in SplashScreenActivity, to

change notifications settings and opt-out of the study. AboutActivity

serves only static information about the authors and a link to the app’s

website [36].
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Apart from the conventional Android app’s launch, we also provide op-

tions to launch the app via notifications. Clicking on a notification to remind

users of TaskyApp usage opens the MainActivity. The other, shown right

after an automatic sensing, opens LabelTaskActivity to provide a label.

4.2 Background sensing

TaskyApp’s preeminent functionality is data collection – sensor readings and

user labels. In the previous section, we discuss how we attempt to get users’

labels, while in this section we focus on how TaskyApp handles getting sensor

readings and related challenges we tackle. There are few requirements we

need to consider: the app must work fast, be battery efficient and sense

data seamlessly – the app should not interrupt other running apps or block

the system. Hence, we introduce sensing running simultaneously on several

background threads (Figure 7). This persuades us to build a loosely bound

sensing component, hence we take advantage of IntentService class in

Android. The class handles asynchronous requests on demand in its main

method, onHandleIntent, which runs on a worker thread and stops itself

when it runs out of work. We extend it to SenseDataIntentService

class (Figure 1) to handle all the sensing, independently of other components,

in TaskyApp.

The sensing method is called on every manual sensing request and on

automatically detected context switches. We also configure an alarm to au-

tomatically call the method every half an hour, in case no context switches

are detected. Once called, if the sensing session has been initiated auto-

matically, we first decide whether the time is appropriate to start sensing,

if not, we stop the initiated sensing session to preserve battery and system

resources. All of the following conditions must apply, listed by importance:

1. Right now are office hours

2. No less than 10 minutes have passed since the last sensing session.
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3. The user’s activity, detected by Google Activity Recognition API, has

changed or location changed for more than 35 meters (both values, if

available, are checked at the start of each sensing session)

Next, sensing shown in Figure 7 initiates. It is vital that we get various

sensor readings concurrently, thus we implement SensorThreadsManager

class to take care of thread management. It exploits two Java classes,

ExecutorService and CompletionService, for parallel thread exe-

cution. Its main methods are submit and take. The first submits a task

(a Callable object) for execution, whereas take retrieves and removes the

next completed task, waiting if none are yet present.

In order to read sensors efficiently, we take advantage of the open-source

third-party library and its pivotal class ESSensorManager. The main

goal of the library is to make accessing and polling for Android smartphone

sensor data easy, highly configurable, and battery-friendly [21]. We config-

ure ESSensorManager to sense accelerometer, gyroscope and microphone

(colored in gray) in a ten seconds long window, while Bluetooth and WiFi

(colored in yellow gradient) sensors stay turned on only until we get all nearby

devices – to save battery, as this is usually less than ten seconds. Next, we

Figure 7: Parallel execution of data collection in TaskyApp. Each

row represents a process thread. Colored in green is the main sensing thread

which invokes other threads for parallel data retrieval.
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create a Callable object for each of those five sensors and submit it to

SensorThreadManager. The sensors are sensed immediately and simul-

taneously.

All mentioned sensors in the previous paragraph are of type pull – turned

on only if an application requests so. Other available are push, Android

broadcasts changes to all applications, and environmental sensors. We sub-

scribe to screen status (push) and ambient light sensor (environmental) events,

both are colored in blue. We do so by using ESSensorManager at the be-

ginning of the ten-second sensing window to listen for value changes and

unsubscribe after that window ends.

Apart from sensors discussed so far, we also retrieve other data directly

using operating system APIs (colored in green): time, location, Google Activ-

ity, active Google Calendar events, charging status and volume settings. That

data is captured at the beginning of the ten-second sensing window. All of

the captured data is then stored in a single object – SensorReadingData.

We also add additional informative fields of the sensing session: time of

completion, start time in a readable form, sensing policy (how the sens-

ing was initiated) and the app’s version. We wrap the object in a new

SensorReadingRecord object and cache it in our SQLite database. At

this point we broadcast an Android Intent object, notifying other com-

ponents (e.g. MainActivity and ListDataActivity) that sensing has

just finished.

4.2.1 Robust sensing

One important feature of TaskyApp is also keeping sensing alive even after

the operating system reboots or the user kills the app. The implementa-

tion of this functionality is presented in the bottom left corner of system’s

architecture diagram (Figure 1). KeepSensingAliveReceiver extends

BroadcastReceiver class and keeps the sensing components up and run-

ning. We configure its IntentFilter to listen for system boot events

and custom defined action “KeepAliveAction”. Apart from receiving oper-
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ating system’s start-up events we also configure an alarm, which uses the

custom action to wake up the device every half an hour. On each call we

check the status of sensing and rerun it, in case it is stopped, by utilizing

SensingInitiator class. The class sets up context switch detection by

subscribing to location and Google Activity Recognition API changes. It

also starts an interval alarm, ensuring us to get at least one sensor reading

approximately every half an hour. KeepSensingAliveReceiver gets

called also on every app’s launch.

4.3 Persistent data storage

All sensed data is cached in the app’s local database for at least two days.

During that period, we endeavor users to retroactively label the data. After-

ward, the data is either sent to our server for persistent storage or discarded.

To that end, we implement another IntentService, which is called (at

least) once a day. First, we check if there is any available cached data older

than two days to run our data aggregation method. The average label,

number of all and number of labeled readings are derived out of each day’s

collected data and saved into DailyAggregatedData object. The ob-

ject is stored in the local database and used later to build the histogram in

StatisticsActivity (Figure 6).

Subsequently, we try to send available data to our server for persistent

data storage. Therefore, we first check for WiFi availability, in order to pre-

serve the user’s mobile data plan. In case the device is connected to a WiFi

connection, we query the local database for all sensor readings older than

two days, otherwise quit the IntentService and listen for WiFi connec-

tivity changes to call the service once again. We then select all labeled and

eight randomly selected non-labeled tasks per day (the decision is discussed

in Section 4.4) and do an HTTP POST request to one of our REST API end-

points at our server (Figure 1). We put a raw JSON in the POST header,

which is of the same structure (only without the “ id” attribute) as shown in
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Listing 4.1. The server responds with another JSON, confirming all success-

fully stored sensor readings by sending an array of integers, “database id”s.

On response, TaskyApp deletes all records with confirmed ids from the local

database.

4.3.1 Server-side implementation

An empty virtual machine on the faculty’s VMware vCenter server has been

allocated to us. We decide to implement our server-side programming logic in

PHP scripting language and exploit NoSQL database management system,

MongoDB. In our case both provide us with a simplicity of use, adequate

performance and efficient manipulation with data in the JSON format. Con-

sidering that, we install Apache server on Ubuntu operating system, PHP,

MongoDB and set up FTP and SSH for remote access.

In total, we differentiate between three REST API calls (Table 1). All of

them are available through the same URL, where we route each call based on

a GET parameter named “action”. HTTP POST method is used for all calls

since we have to identify the request’s source device. Every request sends

a JSON payload in the HTTP header of the same structure as presented in

Listing 4.1. The payload always contains an authentication object (attribute

“auth”), consisting of a device id along with an optional contact email, and

related data (attribute “data”).

action method attributes

Post records post records POST auth, data

Opt out opt out POST auth

Leaderboard message leaderboard message POST auth

Table 1: List of all server REST API endpoints. In the “action”

column we list values of a GET parameter used for routing to the desired

functionality. The “attributes” column indicates at the JSON structure,

while “method” denotes the type of endpoint’s HTTP request method.
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{
” i d ” : ObjectId ( ” 570 f fd5ebe4c7371c6357ae f ” ) ,

”auth” : {
” d ev i c e i d ” : ”309a3c10d19a8b3a” ,

” emai l ” : ” anonymous@server.s i ”

} ,
”data” : [{

” acce l e romete r ” : {
”meanX” : −0.49076846 ,

”meanY” : 0.6094682 ,

”meanZ” : 9.4937525 ,

” va lues ” : [

[−0.50315857 , 0.51475525 , 9 .440842 ] ,

. . .

]

} ,
” a c t i v i t y ” : {

” type” : ” S t i l l ” ,

” con f idence ” : 100

} ,
” app ver s ion ” : 7 ,

” database id ” : 3 ,

” environment” : {
” ambient l i gh t ” : {

”max” : 27 ,

”max range” : 10000 ,

”mean” : 25.61514 ,

”min” : 24

} ,
” b lue tooth turned on ” : true ,

” ba t t e ry cha rg ing ” : false ,

” num bluetooth dev ices nearby ” : 5 ,

” num wi f i dev i c e s nearby ” : 0 ,

” w i f i t u rn ed on ” : false

} ,
” gyroscope ” : {

”meanX” : 0.002849017 ,

”meanY” : −0.0025972922 ,

”meanZ” : −0.0016012477 ,

” va lues ” : [

[ 0.0030975342 , 0.00012207031 , 0.00062561035 ] ,

. . .

]

} ,
” l a b e l ” : 2 ,

” l o c a t i o n ” : {
” accuracy ” : 49 ,

” a l t i t u d e ” : 339 ,

” l a t ” : 46.0536117 ,

” lng ” : 14.5196431

} ,
”microphone” : {

” ampl itudes ” : [ 3903 , . . . ] ,

”max amplitude” : 9994 ,

”mean amplitude” : 2917.9191919191917 ,

”min amplitude ” : 0

} ,
” s c r e e n s t a t u s l i s t ” : [ ] ,

” s e n s i n g p o l i c y ” : ”USER FORCED” ,

” t ended ” : ” 1461052528246” ,

” t s t a r t e d ” : ” 1461052517940” ,

” t s t a r t e d p r e t t y ” : ”09 : 55 : 17 19/04/2016 ”

} ]
}

Listing 4.1: Structure of a document in MongoDB for each user.

This example shows one user’s sensor reading data. Post records API’s call

payload has the same structure, except for the MongoDB specific id field.

The ellipses at the end of each array indicate more values.
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We design a very simple database data model, which enables us to easily

store sensor readings in form as we get them. MongoDB is an open-source

document database that provides high performance, high availability and

automatic scaling. A record in MongoDB is a document, which is a data

structure composed of field and value pairs [16]. We keep the same structure

to the JSON payload sent via the app – except for automatically created

identification field “ id” (Listing 4.1).

Post records is the main endpoint of our REST API. It permanently

stores sensor readings sent from the mobile application. On each request, we

validate received payload and use “auth” JSON field to check if the particu-

lar user already exists in our database. We do so by checking the “device id”

value. If the user does not exist we create a new document with the same con-

tent as the received payload, otherwise we merge values in “data” array with

existing values in the MongoDB document (omitting possible duplicates).

Besides, we always update “auth” field in the database to be identical to the

one received. This comes handy when a user changes his contact email in

TaskyApp’s settings.

Other two implemented endpoints are less frequently used, but still impor-

tant for TaskyApp’s functionalities. Leaderboard message API call runs

our simple gamification model and provides a simple message that reports to

the user how many labeled sensor readings has she provided proportionately

to the other participants in the research. If the user provides enough labels

to be among top 20% of the study’s participants, this call would generate

the following message:

“Well done! You are among 20% of all TaskyApp users. Your

chances of winning the voucher are very high, keep up the good

work.”

Apart from the message we also send an optional title and an attribute that

hides the leaderboard component in TaskyApp if set to false. The user is

again identified by device id found in “auth” field of the received payload.

In the same way, we use the identification process in the opt-out call. It
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is a simple call that removes all of the user’s content, all of his MongoDB

documents, stored in the server’s database.

4.4 Pilot case study

We develop TaskyApp using an iterative approach, where we test and analyze

its functionalities throughout the development process. After the app was

developed with functions we considered to be important, we ran a small,

preliminary study, to test the system for bugs and to improve the app’s

user experience. Since we want to collect quality data, distribute a crash-

free app and engage users into actively using the app both are of particular

importance. For crash reporting, we take advantage of Crashlytics, available

in the Twitter’s Fabric suite [19].

We installed TaskyApp on two mobile phones and kept it running for ten

days. During that period, we noticed several bugs and UI glitches in the app.

We fixed most of the crashes detected by Crashlytics and thoroughly tested

the server’s REST API implementation and persistent data storage.

In the first version of the app, we did not include the office hours option,

so automatic sensing took place throughout the day, also on weekends. That

resulted in a lot of inappropriate sensor readings for our purpose of recog-

nizing task engagement in an office setting (e.g. a sensing session took place

while jogging), making it difficult to learn from the data. In addition, that

caused higher battery consumption than necessary. Consequently, we have

provided users with an option to select office hours, defaulting from 8:00 to

16:00, and an option to exclude weekends.

More importantly, we noticed that it is very easy to forget about the

app and not provide much needed task labels. Back then, we relied on

retroactive labeling. We sent two notifications per day – one sent at midday

and the other in the evening to remind users of task labeling. That proved

to be inefficient since it is difficult to recall in the evening which task exactly

you were doing several hours ago, and resulted in incorrect labels and less
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Figure 8: TaskyApp notification. A notification we send after an au-

tomatically initiated sensing session, the message’s content changes between

notifications to make it less monotonous. At the bottom, a user can find an

option to stop sensing if she is not in the office that day.

labeled tasks. Hence, we have decided to notify users more actively and to

send a notification right after an execution of automatically initiated sensing.

Recurrence of those notifications can be changed in the settings and defaults

to three per day. We introduce a simple algorithm that randomly distributes

these notifications during one’s office hours – meaning that notifications will

not be sent at the same time each day. That proves to be more efficient, as

users are reminded immediately, resulting in more accurate labels. In case

the user is not in the office that day, we provide an action button embedded

in the notification that stops sensing and removes all non-labeled tasks for

that day (Figure 8). The user can disable such notifications, but will still get

one notification per day, during her office hours, not to forget about the app.

Apart from mentioned glitches, we have also fixed user interface based on

the received users’ feedback, resulting in a nicer and smoother UI for manual

sensing, cleaner statistics screen and more consistent UI across the app. We

even identified some data, which could prove to be effective in inferring user’s

task engagement – phone volume settings and the user’s active calendar

events at the time of sensing.

Server’s implementation fairly quickly started failing, which was detected

by checking the server’s log files. Sending too many non-labeled records re-

sulted in exceeding MongoDB document’s size limit of 16MB for a user, hence

not saving sent records. As all records, until the limit hit were saved, but
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not confirmed in the response, the mobile app did not delete them from the

local database, thus sending them again in the next request. That resulted

in several duplicated records in the server’s database. We then make the

server’s implementation more fail-safe, with checks for duplicate entries. As

a consequence, before sending to the server, we randomly select only eight

(which is approximately 25% of all daily sensor readings on average) non-

labeled data points per day, delete the others and send the chosen to the

server. Duplicated entries in the database are later filtered out in the feature

extraction.
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Chapter 5

Data collection

Having a working and thoroughly tested mobile application, our next step

is making it publicly accessible and to distribute it to end users. In this

chapter we discuss the distribution of TaskyApp, running a study and show

descriptive statistics of collected data.

5.1 TaskyApp’s distribution

First, we develop and deploy a website [36] with the aim of helping with

distribution and advertisement of the app (Figure 9). On the website, we

first explain what the app is about, why it is worth installing it and a link

for downloading the app. Next, we provide short instructions, backed with

the app’s screenshots, on how to exploit the app’s main features. At the end,

we show the consent form explaining the purpose of the study (the same

as on the initial launch of TaskyApp) and contact details. The website is

hosted on the same server as the REST API and is developed using Bootstrap

framework, responsive – mobile first – design, because it is linked in the app

and very possibly accessed via a mobile phone.

We make TaskyApp available through Google Play [34], the official app

store for the Android operating system (Figure 10). First, we create an

application entry in the store, enabling us to get a signing key needed for

33
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Figure 9: TaskyApp’s website. Figure 10: Google Play store list-

ing of TaskyApp.
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building and publishing the app. We then edit store listing information,

upload promotional graphics and the signed APK to Google Play.

The crucial step was to find volunteers working in office settings and in-

stall the app on their mobile phones. We choose to distribute the app in

person, which give us an option to further explain instructions on how to

use the app properly, resulting in more quality sensor readings. That step

proved to be more difficult than expected. We attempt to recruit partic-

ipants through personal contacts. However, our potential users’ concerns

about the application’s impact on the phone’s battery life, the use of alter-

native smartphone platforms (e.g. iOS), and employment in professions that

are not exclusively tied to an office setting prevented a wider distribution of

TaskyApp through such a direct recruitment method. At the end, we dis-

tribute TaskyApp to ten different users (devices). Participants were from 23

to 56 years of age, four females and six males.

5.2 Conducting the full-scale study

After the app’s distribution, we run a full-scale study for five weeks and

collect data points from eight different devices (two users uninstall the app

or decide to opt-out of the research in the first two days). We have kept the

app running on some phones even after, so we got some additional data after

that period.

User 1 2 3 4 5 6 7 8 Total

Num. of labels 83 57 51 15 11 8 4 3 232

Average label 2.51 2.68 3.47 1.93 2.55 3.38 2.25 1.67 2.74

Table 2: Per user task label distribution. Tasks are labeled with nu-

meric values from 1 (“very easy”) to 5 (“very hard”).

In total, we collect 3035 unique sensor readings stored on our server, of

which 232 include task difficulty labels. We show labeled task distribution per
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user in Table 2. Since users’ data is anonymized in our study, we use digits

from 1 to 8 to identify users in the table, sorted by the number of labeled

tasks provided. We can see that most of the labeled tasks were provided by

three users – 191 (82.3%). On average the task complexity is just 0.26 short

of the medium label – “Neither easy nor hard”. Most of the tasks are labeled

as “Pretty easy” (31,9%), followed by 24,6% and 24,1%, “Neither easy nor

hard” and “Pretty hard”, respectively. We are short of tasks labeled as “very

easy” (14,2%) and “very hard” (5.2%).

Figure 11: All collected data distributed daily.

We further analyze the collected data with daily and hourly distributions

of collected data and their average difficulties. In case we use two accents,

the darker color signifies labeled tasks and the lighter non-labeled, whereas

both together show the total number of data points. On a simple histogram

(Figure 11) we show the ratio between labeled and non-labeled data per day,

from Monday to Sunday. We can clearly see that almost no data is collected

during weekends. This is mainly due to the standard working hours – from

Monday to Friday – and the office hours selection feature in TaskyApp (dis-

abled automatic sensing on weekends). The data collected on weekends is
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Figure 12: Average task difficulty distribution per day aggregated for all

users.

either because of manually initiated sensing (Sunday) or by selecting week-

ends as office (working) days resulting in automatic sensing (Saturday). The

figure shows us that the collected data is more or less evenly distributed over

the weekdays. The number of labeled tasks differs from 24 on Fridays to 56

on Tuesdays. It looks like the users are not able to provide the same amount

of labeled data on Fridays, where we see workload or tiredness (last working

day of the week) as the main reasons. The number of non-labeled data points

is fairly constant, it only differs due to the context switch detection feature in

TaskyApp, from 503 collected on Fridays and 616 collected on Wednesdays,

which may again indicate that users are more active at the start of the week.

Further, we analyze which day of the week is reported as the hardest

(Figure 12). We encode tasks with numeric values from 1 (very easy) to 5

(very hard). The average task engagement level (dashed line) seems pretty

constantly close to the mean value over the days, with Sunday being slightly

easier and Monday slightly harder compared to the others.

We also investigate what time of the day we get the most data at (Fig-
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Figure 13: All collected data distributed per hour of the day.

Figure 14: Average task label distribution per hour of the day aggregated

for all users.

ure 13). Due to the office hours feature in TaskyApp, we collect most of the

data during the default period from 8:00 to 16:00. The highest number of

labeled data points, 40, is provided between 10:00 and 11:00. The number
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drops to a single sensing until 19:00. The number of non-labeled tasks is

constant between 9:00 and 17:00, meaning that most of the users work in the

office during that time, whereas some might have changed the end of office

hours to 18:00.

Knowing the amount of data collected over the day we also investigate the

average task difficulty of reported labels per hour (Figure 14). The dashed

line denotes the average task difficulty of the data points. Hours, in which

we collect only one labeled task (e.g. 18:00-19:00), are left out. It looks like

tasks reported at the end of office hours are slightly more difficult than in

the mornings, but just by looking at the hour of the day we cannot predict

if a task is going to be difficult or not.
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Chapter 6

Data analysis

After successful data collection, we need to mine the data for features and

find the desired correlation between task engagement and smartphone usage.

As we have shown in the Section 5.2 we have a fairly small dataset with one

user standing out for the number of provided labeled tasks. This leads us to

do machine learning first on the whole dataset and then also only for that

particular user, to test if we can find a better link. In this chapter, we discuss

both, data mining and machine learning approaches we use in order to find

the desired link.

6.1 Feature extraction

For this data mining process, we use Python programming language, as it has

good programming libraries for data manipulation and an API to connect

to the server’s MongoDB. We write a script to generate two ARFF files for

WEKA machine learning toolbox, one for a single user and another for the

whole dataset of collected labeled tasks. The features we extract are the

same in both files. Those files are later used for task engagement modeling.

We extract simple numeric features like number of WiFi and Bluetooth

devices nearby, a number of active calendar events, an hour of the day and

most importantly – the task’s label. More complex numeric features are

41
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extracted out of raw data collected using the accelerometer, gyroscope, and

microphone. Accelerometer and gyroscope both have three axes (x, y and

z), enabling us to extract similar features. First, we calculate arithmetic

means for each axis since they are easy to compute and give us the first

insights of how actively the phone is used. Next, as both sensors would

need to be calibrated before the first sensing to get the exact features of

phone movements and rotations, we decide to extract mean intensity (6.1),

combining data of all three axes into a single value.

I =
N∑
i=1

√
x2i + y2i + z2i

N
(6.1)

Next, we extract average variance of the intensity (6.2) to get a notion of

how far the data is spread around the mean value.

σ2 =
1

N

N∑
i=1

(Ii − Ĩ)2 (6.2)

We also extract mean intensity’s crossing values (6.3) to get a degree

of phone’s level of movement during the ten-second sensing window. We

denote it with mcr and define it similarly to zero-crossings rate. The higher

the output number is, the more the phone was moving (accelerometer data)

or rotating (gyroscope data).

mcr =
N∑
i=2

R<0[sgn(Ii − Ĩ)sgn(Ii−1 − Ĩ)] (6.3)

The mean-crossing rate is used also with microphone data. The data has

a one-dimensional array of sound amplitudes, therefore we do not calculate

intensities.

All the described features are from the time domain, thus we transform

data to the frequency domain using Fast-Fourier Transform (FFT) and ex-

tract additional features for speech and activity recognition [27]. We calculate
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mean of frequency power spectrum (6.4) and spectral entropy (6.8) for each

axis and the microphone amplitude.

P̃S =
1

N

∑
(|FFT (x)|)2 (6.4)

(6.5)

To calculate spectral entropy, we again use FFT to calculate Power Spec-

tral Density (PSD(f)). Then, we normalize that signal to get PSDn(f) and

compute its Shannon entropy to get the feature’s value (6.8). The entropy

gives us a sense of unpredictability characteristics – information contained –

in the power spectrum.

PSD(f) = |FFT (x)|2 (6.6)

PSDn(f) =
PSD(f)

2

√
|PSD(f)|2

(6.7)

EPSD = −
∑

PSDn(f)log2[PSDn(f)] (6.8)

Apart from numeric values we extract also nominal values, such as: is

screen turned on, is phone being charged and activity detected by Google

Activity Recognition API.

6.2 Task engagement modeling

The ARFF file computed on the whole dataset in the data mining process

is used to build machine learning models in this section. We mainly rely

on open source machine learning software WEKA. It contains tools for data

pre-processing, classification, regression, clustering, association rules, and

visualization [25]. In this section, we first focus on linear regression and later

on classification models to test whether the collected data is (and how) linked

with users’ task engagement.
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6.2.1 Linear regression

We first attempt a fine-grain inference of task engagement using linear regres-

sion. In linear regression we look for data correlations between dependent

variable – task label – and independent variables, the rest of extracted fea-

tures. That is done by fitting a linear line through cloud of our data points.

Task label is encoded as a numeric value from 1 to 5 (“very easy” to “very

hard”).

Figure 15: Error visualization of linear regression run on the whole

dataset. Y-axis presents predicted and X-axis actual task labels. The bigger

the appropriate X sign, the bigger the error.

We run the regression on only some of the extracted features. We choose

them with first using WEKA’s built-in attribute selection algorithm and

then experimentally add and remove some to pick the features that together

yield the highest R2 parameter. We get the first confirmation that there is

an existing link between task engagement and smartphone sensor readings.

Some desired regression information reporting is not available in WEKA,
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Variable Coefficient t

(Std. Err.) (Sig.)

Accel. Y-axis mean -.038 -1.84

(.02) (.068)

Accel. Z-axis mean .026 1.43

(.02) (.153)

Accel. mean intensity -.711 -3.04**

(.23) (.003)

Gyro. mean intensity crossing rate .003 4.06**

(.00) (.000)

Gyro. intensity variance .200 1.24

(.16) (.217

Hour of day .067 3.49**

(.02) (.001)

(Regression Constant) 8.385 3.63

(2.31) (.000)

N 232

R2 0.19

F 8.64 (p=.000)**

Table 3: Linear regression model built on top of some extracted features

from the collected dataset.

thus we use statistical analysis program PSPP [8] to get all desired coefficients

(Table 3). Statistically, there is a significant correlation with task engagement

(F = 8.64 and p =.000). However, the R2 value is fairly small, meaning

that the model explains the variability of data only in 19% – there may be

other factors that also affect task engagement. Further, the model predicts

tasks with a mean absolute error of 0.845, which may be acceptable for
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many practical purposes. Missing prediction by less than a task difficulty on

the five-level scale is not critical (e.g. the biggest mistake here tends to be

predicting a “neither easy nor hard” task as either “pretty easy” or “pretty

hard” and vice versa). The error distribution scatter plot (Figure 15) is a

bit more concerning. X-axis presents actual task labels on the scale from 1

to 5, whereas Y-axis presents values of predicted labels from 0.75 to 3.87.

The model never predicts “very hard” task and only a few “very easy” tasks.

The most of the predicted labels are around the mean value, consequently,

the absolute error is reasonably low.

Further, we are interested in which variables are most correlated with

inferring task engagement. Regression variables’ coefficients indicate that

when the phone moves a lot (accelerometer features’ coefficients are negative,

especially mean intensity) the task engagement label value leans towards

easier tasks. This result is intuitive – as we are limited to the office settings,

we expect that the phone is mostly on the table or in the user’s pocket while

the user is working. Movements of the phone indicate that the user has

some free time to interact with the phone (e.g. checking phone calls, social

media, etc.). Gyroscope’s intensity variance has the second most significant

coefficient, but much less strong than the accelerometer’s mean intensity.

Phone’s rotations most likely result in harder tasks (e.g. the phone is flat

on a desk and the user plays with it). A small role in inferring user’s task

engagement plays also the time of the day. Later in the day users tend to

report harder tasks. The regression model consists of six variables, where

three of them have significance lower than the common alpha level of 5%

(denoted by **). This means that there is only a very small probability we

got those variable values by chance.

6.2.2 Classification

Although the above regression analysis points out to a link between task

engagement levels and sensor data readings, a fine-grain distinction among

engagement levels is difficult. Therefore, we decide to re-encode our labels
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into only two classes: “easy” and “difficult”. Previously labeled “very easy”

and “pretty easy” tasks are now labeled as “easy” and all the other label

values are labeled as “difficult”. This classification gives us a balanced set of

data – 107 labeled as “easy” and 125 as “difficult”.

We test our data using informative features, reported by linear regression,

on three different classifiers in WEKA:

• ZeroR

• Naive Bayes

• Random Forest

We then evaluate each classifier by performing a ten-fold cross-validation.

In a 10-fold cross-validation, the data is randomly divided into ten equal-sized

pieces. Each piece is used as the test set with training done on remaining

90% of the data. The test results are then averaged over the ten cases.

In discussing each classifier’s result, we pay the most attention to the

overall prediction accuracy and Type 1 errors – predicting difficult tasks as

easy. For practical purposes, such mistakes are expensive. A messaging app

based on a classifier with a high percentage of Type 1 errors would predict

that a highly engaged user is free for an interruption, and would disturb the

user at an inappropriate moment. Moreover, a health care human resource

management system would predict that a very busy doctor is not engaged

in a difficult task and would assign her to an urgent intervention. The other

type of errors, Type 2, are less critical. The messaging app would not disturb

the user, at most, it would annoy her for showing the message with delay.

ZeroR

First, we run majority class classifier – ZeroR. It is a very simple classifier

that always predicts the majority class in a dataset. We use it in our study

as a baseline to evaluate the performance of other classifiers. The majority

class of our dataset is “difficult” (Table 4). We denote predicted values with
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an apostrophe (’). Therefore, ZeroR classifier is successful in 53,9%, resulting

in no Type 1 errors and 46,1% of Type 2.

easy’ difficult’

0 (0%) 107 (46,1%) easy

0 (0%) 125 (53,9%) difficult

Table 4: Confusion matrix gained by running the baseline classifier – ZeroR.

Naive Bayes

Naive Bayes is a probabilistic classifier based on applying Bayes’ theorem

with strong (naive) independence assumptions between the features. Rish

demonstrates that naive Bayes works best in two cases: completely indepen-

dent features and functionally dependent features [31].

easy’ difficult’

55 (23,7%) 52 (22,4%) easy

32 (13,8%) 93 (40,1%) difficult

Table 5: Confusion matrix of Naive Bayes classifier.

Off the shelf naive Bayes classifier in WEKA provides us with the pre-

diction accuracy of 63,8%, which is superior to the baseline for 9,9%. The

confusion matrix (Table 5) shows that the classifier fails in correctly labeling

difficult tasks in 13,8% of predictions, which we deem as acceptable. On

the other hand, it has 22,4% of Type 2 errors (more than 20% less than the

baseline).

Random forest

We then try random forest classifier, which is a divide-and-conquer approach

used to improve performance. The main principle behind is that a group of
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“weak learners” (decision trees) are joined to form a “strong learner” (forest).

At first the algorithm builds a few decision trees, each based on around 66%

of randomly selected subset of the same data. Each tree, especially deep,

is usually overfitted to data, due to low bias, but high variance properties.

After a large number of trees are generated, they vote for the most popular

class [5].

easy’ difficult’

66 (28,4%) 41 (17,7%) easy

57 (24,6%) 68 (29,3%) difficult

Table 6: Random forest’s confusion matrix.

Random forest implementation in WEKA results in 57,8% correctly pre-

dicted tasks (Table 6), which is again better than the baseline prediction, but

inferior to the prediction of naive Bayes. Also, the error distribution indi-

cates that this classifier is not as practical as naive Bayes is. The percentage

of critical error is higher by almost eleven percent, whereas, non-critical error

percentage is lower by nearly five percent.

6.2.3 Individual task engagement modeling

Task engagement modeling indicates at a (very weak) link between smart-

phone sensor readings and user’s task engagement level. There is a potential

for improved results with an individual user’s data analysis [3, 26]. The col-

lected data is of eight different users, each having their own habits on where

to put a phone during sensing and how actively they use it during office hours

among others. Thus we decide to study the data provided by a user that

stands out with the most reported labeled tasks. In this section, we load the

other ARFF file in WEKA and run the same machine learning algorithms on

83 records of user 1 (Table 2) to test if we can achieve more accurate results.
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Linear regression

We again use the same approach to choose the most informative features

and end up building a linear regression model using five different features

(Table 7). The individual’s regression model explains data variability much

better (R2 is 36,4%) and has a lower mean absolute error. Looking at coeffi-

cients’ significance levels, only hour of day, accelerometer intensity crossing

rate and intensity variance have the significance lower than 5% (denoted **).

Variable Coefficient t

(Std. Err.) (Sig.)

Accel. mean intensity -1.64 .97

(-1.69) (.095)

Accel. mean intensity crossing rate 0.01 2.44**

(.00) (.017)

Accel. intensity variance 3.25 2.85**

(1.14) (.006)

Gyro. Z-axis mean 15.43 1.81

(8.53) (.074)

Hour of day .11 3.60**

(.03) (.001)

(Regression Constant) 15.925 1.57

(10.14) (.120)

N 83

R2 0.364

F 8.81 (p=.000)**

Table 7: Linear regression model applied to the top provider’s data

features. Three variables are significant.
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The latter feature affects the end result the most, with a coefficient of 3.25,

meaning that movements indicate at harder tasks. This is contrary to the

general model in the previous section. A possible reason could be different

working habits or a different type of work of that particular participant com-

pared to the others. Gyroscope Z-axis readings affect the end result in the

same way as the general model does – phone rotations are related to harder

tasks. The same goes with the hour of day feature, the latter in the day the

harder the reported task.

Classification

Again, we first define a baseline using the built-in WEKA’s majority class

classifier – ZeroR. We now get 40 labeled as “easy” and 43 as “difficult”

tasks, thus the baseline (Table 8) is now at 51,8%, lower by 2,1% compared

to the general model. All classifiers are ran on the same features and are

chosen from the individual’s linear regression model (Table 7). We use the

same built-in classifiers in WEKA as for the general model and evaluate

them using the ten-fold cross-validation method. Then, we run naive Bayes

easy’ difficult’

0 (0%) 40 (48,2%) easy

0 (0%) 43 (51,8%) difficult

Table 8: Top provider’s confusion matrix gained by running ZeroR, baseline,

classifier.

classifier to reach 62,7% prediction accuracy (Table 9). It is again higher

compared to our baseline, in this case by 10,9%, but lower by 1,1% than

naive Bayes model on the whole dataset. At first glance, this is inferior,

but comparing the differences between corresponding baselines, this model

achieves a higher accuracy by one percent. Also, it has a significantly lower

rate of critical errors (9%), making this model more practical and safer to

use. On the other hand, Type 2 error rate is higher by 10,1%.
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easy’ difficult’

13 (15,7%) 27 (32,5%) easy

4 (4,8%) 39 (47,0%) difficult

Table 9: Confusion matrix of Naive Bayes classifier for the single partici-

pant.

Next, we use Random forest algorithm and achieve 61,4% accuracy (Ta-

ble 10). This is, again, higher than the baseline by nearly 10%. Naive Bayes

is not only more accurate, but also has a lower critical error rate by almost ten

percent. Comparing the results of Random forest algorithm ran on the data

of the single user with the general model, we achieve 3,5% higher accuracy

for the personalized classifier.

easy’ difficult’

20 (24,1%) 20 (24,1%) easy

12 (14,5%) 31 (37,3%) difficult

Table 10: Random forest’s confusion matrix for the single participant.
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Limitations and future work

Smartphones were not originally envisioned for inferring cognitive states, nor

are used in a manner that makes such an inference straightforward. There-

fore, we limit our study to users working in offices, as such environments are

rich in task dynamics, with many different tasks of various difficulties. We

manage to find only 10 suitable participants willing to participate and collect

only 232 labeled sensor readings. Also, we depend on subjectively reported

task labels and assume that all the collected data is labeled correctly. In-

stead, we could use some smart filters to exclude inappropriately reported

data points from task engagement modeling (e.g. detect that a particular

sensor reading was sensed while the user was riding a bike). Moreover, sen-

sor calibration in the app would enable us to extract more quality features,

e.g. exact rotation of the phone. The calibration, of accelerometer and gyro-

scope in particular, could improve the end result, but would require higher

user engagement.

Certain avenues have not been explored in our research and could im-

prove the end result. Aside from 232 labeled data points, we have also

collected 2802 non-labeled sensor readings that have not been analyzed yet.

Therefore, semi-supervised learning could be applied to build more accurate

classifiers [41]. Besides, there is an unlimited number of features available

to be extracted from the collected data and it is possible that we did not
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extract the most relevant ones. Due to the small dataset collected, we did

not extract features from location data, which could be used at least for

personalized classifiers. Since we identify the phone movements as the most

informative features, some features proposed by Lester et al. for their ac-

tivity recognition system [22] could potentially boost the inference of task

engagement.

The importance of features coming from accelerometer and gyroscope

point us towards our next step – task engagement inference using automated

sensing on wearable devices. Smartphones are usually held somewhere close

to the user, but are not always physically involved in the ongoing tasks

(e.g. the phone is in a bag while the user is writing an email). Hence, the

user’s activity recognition during a task could be much better modeled using

on-body sensor devices, such as smartwatches and fitness tracker wristbands.

Not only they are worn all the time, but also offer alternative types of sensors.

Affordable wristbands offer heart rate monitoring, skin temperature, and step

counters among others, whereas more sophisticated devices equip us with

detection of electrodermal activity and enable stress inference [9]. We have

already started upgrading TaskyApp with the integration of two wristbands –

AngelSensor and Xiaomi Mi Band. The main advantages of AngelSensor are

its open communication protocols, API/SDK, and sensor data streams [23].

It has a wide range of sensors, where, in the integration with TaskyApp, we

utilize heart rate and skin temperature readings at the moment, but we also

plan to read raw accelerometer data in the future. However, the wristband

is not widely used and has a fairly high price tag at $99 USD, hence we also

consider Xiaomi Mi Band 1S [40]. At around five times lower price, Mi Band

is a very affordable device and has a larger community of users, but does not

have a publicly available API and has only a limited range of sensors. Its

accelerometer cannot be read via smartphones, thus we have only managed

to use its heart rate monitor by using a reverse engineered API.



Chapter 8

Conclusion

Most modern mobile applications do not pay attention to users’ availability,

thus end up in their annoyance and failure of reaching the common goal – user

engagement. This may reflect in a user ignoring the app’s request for input

(e.g. a notification or an ad), in a lower monetization of the app, higher

usage of system resources, bad reviews on stores, app uninstalls or other

unwanted consequences. Inferring task engagement could be beneficial in

particular for messaging apps (to defer an unimportant message), news apps

(users tend to read the news when bored [30]) or personal assistance apps

like Google Now or Siri to update nonessential content when less engaged in

a task, thus saving battery and mobile data usage. Elsewhere, being able

to infer task engagement could largely benefit human resource management

systems, helping distribute workload and reduce costs.

In this work, we explore task engagement detection through mobile sens-

ing in office settings. We develop TaskyApp, a mobile application to collect

data from various built-in sensors shipped in modern smartphones. We run

the app among volunteers and collect 232 labeled sensor readings of 8 dif-

ferent users. We use the collected labeled data to extract features and build

machine learning models. First, we use linear regression to confirm that the

link between user’s task engagement and sensor readings exists and identify

movement and time as the most informative features. Afterward, we build

55



56 CHAPTER 8. CONCLUSION

classification models and predict task engagement with an accuracy of up to

63,8% using off the shelf classifiers. We are further interested in whether we

can build a better model using individual’s data. We repeat the modeling

process on 83 data points of a single user’s data and reach an even higher

accuracy compared to the baseline. Again, we confirm similar informative

features as for the whole dataset.

Conducting the study lead us to some more and some less anticipated

results. During the study, we discovered how different functionalities in the

app engage users into using the app and the effect of our UI decisions on

its usage. We further discover that it is very challenging to engage users in

using the mobile application and provide sufficient amount of labeled data.

We also find out that collected data is highly personalized, probably due to

different working habits and environments among users. Linear regression

models confirm that task engagement mostly depends on accelerometer and

gyroscope features as well as the time of the day. Surprisingly, features like

the number of nearby Bluetooth and WiFi devices, features of accelerometer

and gyroscope in the frequency domain, ambient sound, calendar events,

charging status and volume settings do not improve our inference model.

Although the prediction accuracy at this point is still fairly low, some apps

could already benefit from the results, e.g. news apps for determining the

time of updates to save battery and mobile data. Nevertheless, with the

expected growth of sensor devices in our everyday environment the potential

for automatic task engagement is yet to grow.
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