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Povzetek

Naslov: Trajno napovedovanje krvnega tlaka iz signala PPG

Krvni tlak je pomemben pokazatelj hipertenzije. Razvili smo sistem,

ki krvni tlak ocenjuje iz fotopletizmograma (PPG), kakršen je že vgrajen v

večino modernih senzorskih zapestnic. Zaradi šuma in motenj, ki se v signalu

PPG pojavijo kot posledica uporabe zapestnice, smo razvili metodo čǐsčenja

in segmentiranja signala PPG na cikle. Nato smo izračunali množico značilk,

ki smo jih uporabili v regresijskih modelih. Sistem smo izbolǰsali z uporabo

algoritma RReliefF za izbor najbolǰsih značilk in z uporabo dela podatkov

vsake osebe za učenje personaliziranih napovednih modelov. Sistem smo

vrednotili na dveh podatkovnih množicah, eni iz kliničnega okolja in drugi

zbrani med rutinskimi dnevnimi aktivnostmi posameznikov. V poizkusu,

kjer model vsakič naučimo na vseh osebah razen eni in ga nato testiramo

na izpuščeni osebi, smo z uporabo klinične množice (podatkovna baza MI-

MIC) dosegli najnižjo povprečno absolutno napako (MAE) 5,61 mmHg za

sistolični in 3,82 mmHg za diastolični krvni tlak, oboje pri največji stopnji

personalizacije. Za množico, zbrano med rutinskimi dnevnimi aktivnostmi,

smo dosegli najnižjo MAE 8.40 mmHg za sistolični in 4.20 mmHg za dia-

stolični krvni tlak, ponovno pri največji stopnji personalizacije. Najbolje sta

se obnesla algoritma globoka regresija in “naključni gozd”. Rezultati skoraj

dosegajo zahteve dveh glavnih standardov za ocenjevanje krvenga tlaka.

Ključne besede

krvni tlak, fotopletizmografija, strojno učenje, regresija, obdelava signalov





Abstract

Title: Continuous blood pressure estimation from PPG signal

Blood pressure (BP) is an indicator of hypertension. We developed a

system in which photoplethysmogram (PPG), which is commonly integrated

in modern wearables, is used to continuously estimate BP. A preprocess-

ing module was developed and used for cleaning the PPG signal of noise and

artefacts, and segmenting it into cycles. A set of features describing the PPG

signal was then computed to be used in regression models. The RReliefF al-

gorithm was used to select a subset of relevant features and personalization of

the models was considered to further improve the performance of the models.

The approach was validated using two distinct datasets, one from a hospital

environment, and the other collected during every-day activities. Using the

clinical dataset (MIMIC database), the best achieved mean absolute errors

(MAE) in a leave-one-subject-out (LOSO) experiment were 5.61 mmHg for

systolic and 3.82 mmHg for diastolic BP, at maximum personalization. For

everyday-life dataset, the lowest errors were 8.40 mmHg for systolic and 4.20

mmHg for diastolic BP. Deep learning regression and Random Forest algo-

rithm achieved the best results. Our results borderline meet the requirements

of the two most well-established standards for BP estimation devices.

Keywords

blood pressure, photoplethysmography, machine learning, regression, signal

processing
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Razširjeni povzetek i

I Uvod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

II Sorodno delo . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

III Metodologija . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

IV Podatki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

V Poizkusi in vrednotenje . . . . . . . . . . . . . . . . . . . . . . vii
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Razširjeni povzetek

I Uvod

Bolezni srca in ožilja so bile leta 2015 skupno gledano najpogosteǰsi bolezenski

vzrok smrti [1]. Povǐsan krvni tlak je glavni simptom, ki nakazuje tovrstno

bolezensko stanje, zato bi ljudje morali redno spremljati svoj krvni tlak.

Redno spremljanje krvnega tlaka je sploh ključno pri bolnikih, ki že trpijo za

takšnimi boleznimi, in tistih, ki imajo povečano tveganje za pojav le-teh.

Tradicionalna metoda za ocenjevanje krvnega tlaka z uporabo napihljive

manšete ni uporabna za spremljanje krvnega tlaka med fizično aktivnostjo

ali spanjem, saj sama naprava resno omejuje bolnikovo gibanje. Poleg tega

protokol merjenja zahteva specifičen položaj manšete v vǐsini srca, kar je

dodatna omejitev [2].

Postopek merjenja z manšeto tipično izvaja osebje v bolnǐsnicah, kar

lahko povzroči občutek nelagodja in stresa pri bolniku in lahko posledično

vpliva na dejansko vrednost krvnega tlaka [3]. Poleg tega kompleksnost mer-

jenja povzroča odklonilen odnos bolnikov, ki si zato tlaka ne merijo tako

pogosto, kot bi morali [4].

Zaradi opisanih dejavnikov bi bilo smiselno razviti sistem, ki bi omogočal

natančno in stalno spremljanje krvnega tlaka na neinvaziven način, torej

brez potrebe po napihljivi manšeti. To bi poenostavilo proces merjenja in

posledično verjetno zmanǰsalo odklonilnost bolnikov do le-tega. Poleg tega

bi omogočilo merjenje v primerih, ko uporaba manšete ni možna (npr. aktiv-

nost, spanje). Razširjene možnosti uporabe in manǰsa odklonilnost bolnikov

i
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bi povečala njihovo osveščenost o trenutnem zdravstvenem stanju.

Dober kandidat za razvoj takšnega sistema so senzorske zapestnice z vgra-

jenim senzorjem za merjenje fotopletizmograma (PPG), ki se pogosto upo-

rablja za ocenjevanje srčnega utripa. PPG je osnovan na presvetljevanju

tkiva (v zapestnicah tipično z zeleno svetlobo [5], ki je bolj odporna proti

motnjam) in merjenju sprememb absorbcije svetlobe. Z vsakim srčnim utri-

pom srce potisne kri proti robnim točkam v telesu. Vsak utrip srca se kaže

v pripadajočem ciklu signala PPG, ki prikazuje tudi trenutno količino krvi

v tkivu. Sprememba količine krvi v tkivu vpliva na krvni tlak (npr. ko je

v žili več krvi je pritisk na stene žil večji) in zato je ta signal uporaben za

ocenjevanje krvnega tlaka [6, 7].

II Sorodno delo

Sorodno delo na tem področju večinoma obravnava enega izmed dveh pristo-

pov, ki sta se uveljavila za ocenjevanje krvnega tlaka iz signala PPG.

Prvi je osnovan na času, ki je potreben, da se kri prenese od srca do neke

periferne točke v telesu v okviru enega srčnega utripa. Ta čas se imenuje

“pulse transit time (PTT)”, povezava sprememb tega časa s spremembami

krvnega tlaka pa je dokazana in uveljavljena [8, 9, 10, 11]. Ta čas je kraǰsi v

primeru, ko so stene žil bolj čvrste, kar pospeši pretok krvi in implicira večji

pritisk krvi na stene žil. Slabost tega pristopa je potreba po uporabi dveh

senzorjev, tipično senzorja za elektrokardiogram (EKG) in senzorja za PPG.

Drugi pristop, ki je v zadnjih letih raziskovalno vse bolj zanimiv, stremi

k odpravi dveh senzorjev in poskuša ocenjevati krvni tlak samo iz signala

PPG. Prvi večji problem tega pristopa je stik med senzorjem zapestnice in

kožo, ki je med aktivnostjo zaradi premikanja roke, zapestja in zapestnice

pogosto moten. Drugi problem je manjko jasne klinično potrjene povezave

med PPG-jem in krvnim tlakom. Ob določenih predpostavkah se korelacija

med PPG-jem in krvnim tlakom kaže v sorodnih delih, vendar je še vedno

predmet aktivnih raziskav in te magistrske naloge [12, 13, 14, 15, 16].
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III Metodologija

Sistem sestoji iz dveh modulov, modula za predprocesiranje signala in modula

za strojno učenje. Prvi je odgovoren za segmentacijo signala PPG na cikle in

odstranjevanje ciklov z morfološkimi spremembami zaradi šuma. Drugi skrbi

za izračun značilk, ki opǐsejo PPG signal. Poleg tega izbere podmnožico rele-

vantnih značilk in jih uporabi v regresijskih algoritmih strojnega učenja z na-

menom učenja napovednih modelov za sistolični in diastolični krvni tlak. Ta

modula dopolnjuje spletna storitev, ki omogoča interakcijo med zapestnico

oz. pametnim telefonom in omenjenima moduloma. Opisana arhitektura je

prikazana na sliki 1.
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Slika 1: Predlagana arhitektura sistema za ocenjevanje krvnega tlaka.

Črtkani pravokotniki predstavljajo korake, ki so potrebni le enkrat ali pe-

riodično (učenje prvega modela ali personalizacija).

V prvi fazi predprocesiranja se odstranijo 5-sekundni segmenti signala

PPG, ki ustrezajo skrajnim ali pa klinično nemogočim vrednostim krvnega

tlaka (npr. krvni tlak 0 mmHg ali nenadna sprememba v 5 sekundah za več

kot 50 mmHg). Meje za razumne vrednosti krvnega tlaka so bile povzete

po sorodnem delu [16] in nato rahlo prilagojene glede na opažanja v naših

podatkih.

V drugi fazi se odstranijo 5-sekundni segmenti PPG signala, ki imajo zelo

nizko samokorelacijo. Zaradi periodične narave PPG signala in podobnosti

ciklov je pričakovano, da bo samokorelacija segmenta, ki vsebuje nekaj ciklov,

postala ob zamiku za trajanje enega cikla zelo visoka. V primeru, da kratek
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PPG segment vsebuje veliko šuma, samokorelacija nikoli ne bo zelo visoka,

ne glede na zamik.

V tretji fazi se signal PPG segmentira na cikle, ki ustrezajo srčnim utri-

pom. Uporabili smo algoritem, ki so ga prvi predlagali Lazaro et al. [17] in

je specializiran za zaznavo sistoličnih vrhov PPG signala. Algoritem je osno-

van na filtru, ki zazna nenadne strme vzpone v signalu, ki tipično nakazujejo

bližino sistoličnega vrha. Ta filter je dopolnjen z algoritmom za dinamično

določanje amplitude, nad katero mora biti vrh, da ga algoritem sprejme kot

pravi vrh in ne kot šum ali diastolični vrh. Ko so vrhovi zaznani, na pre-

prost način zaznamo še začetne in končne točke ciklov, ki ustrezajo najnižjim

dolinam med vrhovi.

Ko so cikli zaznani, se v četrti fazi ustvarijo t.i. “vzorci” (angl. templates

– T ) ciklov. Najprej se s pomočjo samokorelacijske analize določi najbolj

verjetna dolžina cikla v 30-sekundnem PPG segmentu, ki jo označimo z L.

Nato se od vsake začetne točke cikla vzame L vzorcev signala in se izračuna

T kot povprečje vrednosti signala vseh ciklov ob enakem času. Ko je T

izračunan se izračuna podobnost vsakega cikla s T -jem glede na tri mere

kakovosti cikla (angl. signal quality indices – SQIs):

1. SQI1 – direktna linearna korelacija z uporabo Pearsonovega koefici-

enta, kjer se vzame L vzorcev od začetne točke vsakega cikla,

2. SQI2 – direktna linearna korelacija, ponovno z uporabo Pearsonovega

koeficienta, vendar je tokrat vsak cikel prevzorčen na dolžino L,

3. SQI3 – korelacija med ciklom in T -jem z uporabo tehnike “Dynamic

Time Warping (DTW)”.

Zahtevane vrednosti za vsak SQI so bile povzete po sorodnem delu [18].

Tisti cikli, ki niso dosegali zahtevanih vrednosti, se zavržejo. Rezultat čǐsčenja

je prikazan na sliki 2.
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Slika 2: Zgornja slika prikazuje PPG signal z očitnimi artefakti, medtem ko

spodnja prikazuje rezultat po predprocesiranju, ki uspešno odstrani artefakte.

Ker klinično pričakovana oblika PPG cikla sestoji iz dveh zaporednih vr-

hov (sistoličnega in diastoličnega), se posamezen cikel da modelirati z vsoto

dveh Gaussovih funkcij [15]. Z upoštevanjem določenih omejitev (npr. sis-

tolični vrh mora biti pred diastoličnim, sistolični vrh mora biti vǐsji kot di-

astolični itd.) lahko najdemo le takšne cikle, ki se dobro prilegajo klinično

pričakovani obliki z dvema vrhovoma. Takšna oblika je pomembna za izračun

značilk, ki upoštevajo diastolični vrh.

Ko smo uspešno pridobili kvalitetne cikle, smo iz njih izračunali množico

značilk. Osnovno množico smo povzeli po sorodnem delu in jo dopolnili z

lastnimi značilkami, kot so ploščine ter značilke iz frekvenčnega prostora in

iz analize kompleksnosti signala [12, 13, 14, 15, 16]. Nato smo izmed vseh

značilk izbrali najbolǰse z uporabo algoritma RReliefF [19].

Izbrane značilke smo uporabili v regresijskih algoritmih za učenje napo-

vednih modelov. Uporabili smo širok nabor algoritmov iz klasične regresije

(regresijska drevesa, modelna drevesa, naključni gozd itd.), simbolično regre-

sijo z genetskim algoritmom [20] ter regresijo globokega učenja [21].
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IV Podatki

Uporabili smo dve podatkovni množici, eno iz kliničnega okolja in drugo

zbrano med rutinskimi dnevnimi aktivnostmi posameznikov.

Prvo smo pridobili iz prosto dostopne podatkovne baze MIMIC [22], v

kateri so fiziološki signali bolnikov, ki so bili zbrani v bolnǐsnici. Uporabili

smo podatke vseh bolnikov, ki so imeli na voljo PPG in krvni tlak.

Druga podatkovna množica je bila zbrana med dnevnimi aktivnostmi

zaposlenih na Institutu Jožef Stefan. PPG se je meril z uporabo senzorske

zapestnice Empatica E4, medtem ko se je referenčni krvni tlak periodično

meril z uporabo digitalnega merilnika krvnega tlaka Omron.

Prva množica je bila mnogo večja in signal je bil v splošnem bolj kvalite-

ten, medtem ko je bila druga množica manǰsa in bolj šumna, kar je posledica

merjenja z zapestnico v nenadzorovanem okolju.

V Poizkusi in vrednotenje

Uporabili smo tri oz. štiri poizkuse za vrednotenje napovednih modelov, in

sicer enega za simbolično regresijo ter tri za ostale regresijske algoritme. Prvi

in drugi poizkus sta učno in testno množico ustvarila iz primerov enega osebka

s preprosto delitvijo 66% - 34%, tretji je uporabil prečno preverjanje (angl.

cross-validation – CV), zadnji pa je vedno izpustil en osebek za testiranje in

se učil na vseh ostalih (angl. Leave-one-subject-out – LOSO).

V vseh poizkusih smo za mero uspešnosti uporabili povprečno absolutno

napako (angl. Mean Absolute Error – MAE), ki kaznuje tako pozitivna

kot negativna odstopanja napovedi od dejanskih vrednosti s tem, da vzame

absolutno vrednost odstopanja.

Simbolična regresija se že v bolj preprostem poizkusu z delitvijo podatkov

na učno (66%) in testno (34%) množico ni izkazala, zato smo jo za ostale

poizkuse opustili.

Med ostalimi je poizkusalno najbolj zahteven in zanimiv poizkus LOSO,

saj poskuša ustvariti splošen model in ga vedno testira ne nekem osebku ki ni



viii

bil nikoli uporabljen med učenjem. Sprva je ta poizkus v primerjavi z osta-

limi dosegal slabše rezultate, vendar smo modele izbolǰsali s personalizacijo.

To smo dosegli tako, da smo v učno množico dodajali manǰse število prime-

rov izpuščenega testnega osebka (10% – 50%) in tako splošen model rahlo

prilagodili temu osebku. Takšen poizkus simulira situacijo v kateri si osebek

nekajkrat sam pomeri krvni tlak z natančnim merilnikom in ga nato vnese v

sistem, ki sproti meri tudi njegov PPG. Sistem se tako prilagodi dotičnemu

osebku.

Z uporabo klinične podatkovne množice se je v poizkusu LOSO najbolje

obnesla regresija globokega učenja, ki je dosegla najnižjo MAE 5.61 mmHg

za sistolični in 3.82 za diastolični krvni tlak, oboje pri največji stopnji per-

sonalizacije, kar je prikazano v tabeli 1.

Najbolǰse v poizkusu 2

Algoritem MAESBP STDSBP MAEDBP STDDBP

Random Forest 6.23 6.92 4.53 3.62

Najbolǰse v poizkusu 3

Algoritem MAESBP STDSBP MAEDBP STDDBP

Random Forest 7.83 7.47 3.84 3.63

Najbolǰse v poizkusu 4

MAESBP STDSBP MAEDBP STDDBP

Algoritem 0% / 50% 0% / 50% 0% / 50% 0% / 50%

Random Forest 18.66 / 6.32 14.16 / 6.02 10.07 / 4.32 6.31 / 3.37

Deep learning 17.12 / 5.61 15.22 / 6.12 9.82 / 3.82 5.42 / 2.91

Tabela 1: Primerjava najbolǰsih algoritmov v poizkusih 2, 3 in 4 za klinično

podatkovno množico. Podane so povprečne absolutne napake in standardni

odkloni. Vsi rezultati so v mmHg. Odstotki pomenijo količino podatkov

uporabljenih za personalizacijo.

Za podatkovno množico, zbrano med dnevnimi aktivnostmi uporabnikov,

regresija globokega učenja ni bila smiselna, saj je bilo v trenutni fazi zbiranja
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na voljo premalo podatkov. Posledično se v poizkusu LOSO najbolj izkazal

algoritem Random Forest, ki je dosegel najnižjo MAE 8.40 mmHg za sis-

tolični in 4.20 mmHg za diastolični krvni tlak, ponovno pri največji stopnji

personalizacije, kar je prikazano v tabeli 2.

Najbolǰse v poizkusu 3

Algoritem MAESBP STDSBP MAEDBP STDDBP

Random Forest 8.92 8.49 4.27 3.99

Najbolǰse v poizkusu 4

MAESBP STDSBP MAEDBP STDDBP

Algoritem 0% / 50% 0% / 50% 0% / 50% 0% / 50%

Random Forest 12.81 / 8.40 11.03 / 7.53 7.19 / 4.20 5.29 / 3.18

Tabela 2: Primerjava najbolǰsih algoritmov v poizkusih 3 in 4 za podat-

kovno množico, zbrano med dnevnimi aktivnostmi. Podane so povprečne

absolutne napake in standardni odkloni. Vsi rezultati so v mmHg. Odstotki

pomenijo količino podatkov, uporabljenih za personalizacijo.

VI Zaključek

Primerjava s sorodnim delom je težka, saj so različni avtorji uporabljali

različne podatkovne (pod)množice in različne mere uspešnosti ocenjevanja,

najpogosteje povprečno napako (angl. Mean Error – ME) namesto MAE. Po-

sledično smo se osredotočili na primerjavo z dvema standardoma, ki podajata

zahteve za klinične merilnike krvnega tlaka.

Najbolǰsi rezultati so dosegli zahteve standarda Advancement of Medical

Instrumentation (AAMI). Obenem so glede na standard British Hyperten-

sion Society (BHS) za diastolični krvni tlak dosegli najvǐsjo oceno A in za

diastolični tlak srednji oceni B in C [23].

Sistem deluje dobro za ocenjevanje diastoličnega in zmerno dobro za oce-

njevanje sistoličnega krvnega tlaka. V prihodnje je potrebno dodatno testira-



x

nje predvsem s podatki, zbranimi med dnevnimi aktivnostmi, ki so zaenkrat

količinsko skromni.



Chapter 1

Introduction

Blood pressure (BP) measurement is the most important commonly per-

formed medical office test [24]. It is a direct indicator of hypertension, an

important risk factor for a variety of cardiovascular diseases, which were the

most common cause of death in 2015, responsible for almost 15 million deaths

worldwide [1], as shown in Figure 1.1.

1.1 Motivation

Given the importance of BP, people should actively monitor it and be mindful

of its changes. It is traditionally measured using an inflatable cuff, as shown

in Figure 1.2. This method is still considered the “golden standard” and is

preferred over digital BP monitors by doctors. It requires some effort from

the user, as the sensor must be placed directly above the main artery in the

upper arm area, at approximately heart height [26, 2].

1
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Figure 1.1: Most common causes of death in 2015, according to the World

Health Organization [1]. Hypertension is the most common indicator of

cardiovascular diseases such as stroke and coronary artery disease [25].

The traditional cuff-based method cannot be used during sleep and during

most activities that involve movement. It may also introduce anxiety in the

patient, which can affect the BP. This is commonly known as “white coat

syndrome”, as this method is most often used by medical personnel [3].

Patient non-adherence has been shown [4] to be a major challenge and

a barrier in ensuring effective medical treatment, sometimes even causing

significant health risks as well as economic burdens. Regular BP measur-

ing is critical when dealing with potentially hypertensive patients, as non-

adherence in such cases can have fatal consequences [4]. Patients with hy-

pertension are often given threshold BP values which must not be exceeded

in order to be allowed certain activities.

Due to the combination of the factors described above, it would be useful

to develop a robust mobile health (m-health) [27] system that would offer

accurate and continuous BP estimation in a non-invasive way. It should ide-
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Figure 1.2: Traditional blood pressure monitoring device using an inflatable

cuff [26].

ally offer accuracy in accordance with the requirements given by the British

Hypertension Society (BHS) [23] and the Association for the Advancement

of Medical Instrumentation (AAMI) standard [23], which require a device to

have mean absolute (MAE) or mean error (ME) around 5-10 mmHg com-

pared to a reference ground-truth BP value. Both standards are discussed in

great detail in Section 5.4. Omitting the cuff would simplify the measuring

process and thus likely increase user adherence as well as reduce potential

anxiety. Furthermore, it would allow for measurements in cases where apply-

ing a cuff is not possible, and also increase the awareness of the user about

their current medical state.

1.2 Problem description

In order to achieve the proposed low invasiveness and continuous measure-

ment, wearable devices are considered a prime candidate. Such devices are

commonly used, affordable and equipped with a plethora of sensors provid-
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ing a variety of signals, however, there are also many problems related to the

quality of the collected signals, as summarized at the end of Section 1.2.2.

Photoplethysmogram (PPG) is one such signal often used in modern wear-

ables to estimate the heart rate. It requires simple and inexpensive technol-

ogy and can be easily and continuously acquired in a non-invasive way by

wearing a wristband. Due to the highlighted advantages, the PPG signal will

be used to estimate BP in our work.

1.2.1 Photoplethysmogram (PPG)

Photoplethysmography is based on illumination of the skin and measurement

of changes in its light absorption [6]. In its basic form it requires a light source

(light-emitting diode – LED) to illuminate the tissue (skin), and a photode-

tector (photodiode) to measure the amount of light either transmitted or

reflected to the photodetector. Typically, red (wavelength 645 nm) or green

(wavelength 530 nm) light is used. Red penetrates the tissue deeper, while

green is more robust against artefacts [5]. With each cardiac cycle the heart

pumps blood towards the periphery of the body, thus producing a periodic

change in the amount of light that is absorbed or reflected from the skin, as

the skin changes its tone based on the amount of blood, or more precisely

blood volume (BV), in the tissue [7].

As mentioned above, PPG can be measured in either transmission or

reflectance mode as shown in Figure 1.3.

Figure 1.3: Light source (LED) and photodetector (PD) placement for both

photoplethysmography modes [28].
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An example of the final raw PPG signal as produced by the Empatica

E4 wristband [29] is shown in Figure 1.4. It is important to note that this

segment represents the PPG signal collected in a controlled environment,

with the subject sitting and not moving his arm or wrist.

Figure 1.4: An example PPG signal as produced by the Empatica E4

wristband in a stable position, without any arm or wrist movement.

As briefly highlighted earlier, the PPG signal waveform is periodic in

nature and consists of cycles, with one cycle corresponding to a single heart

beat. The ideal cycle shape comprises of two peaks, systolic and diastolic.

First is the systolic peak, which is higher in amplitude and corresponds to the

oxygenated blood pushed from the heart traversing towards the periphery of

the body. Second is the diastolic peak, which is weaker and thus lower in

amplitude, and it corresponds to the deoxygenated blood returning from the

peripheral point towards the heart. Two PPG cycles are shown in Figure 1.5

and the aforementioned peaks are marked.

1.2.2 BP estimation using PPG

1.2.2.1 Medical background

Xing et al. [16] discussed the medical background behind the relationship

between BP and PPG. Using several assumptions, they described how blood

pressure changes with blood volume due to elastic properties of blood vessels.

The elasticity of the blood vessels determines the possible amount of blood
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Figure 1.5: Two PPG cycles separated with vertical dashed lines. The

corresponding systolic peaks and diastolic peaks are marked.

(blood volume, which is measured by PPG) and the pressure exerted on the

walls of the vessels. With changes in the structure of the vessels (e.g., older

people have stiffer vessels) and the response of the cardiovascular system

(e.g., vessels contract or expand during stress or activity), there also come

changes in both the amount of blood (shown by PPG) in the vessels, and

the pressure (BP) exerted by this blood on the vessel walls. This pressure on

the arterial wall is generally resisted by collagen, elastin and smooth muscle.

Their combined Young’s modulus of elasticity determines the stiffness of the

blood vessels, which in turn influences the BP.

There are two main approaches to estimate BP from PPG. The first

approach is based on pulse arrival time (PAT) or pulse transit time (PTT)

and is well established [9, 10, 11]. It requires the usage of two sensors,
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typically an electrocardiogram (ECG) and a PPG sensor. PTT is shorter

when the vessels are stiffer, which indicates a higher BP. The second approach

is based on a postulated complex relationship between PPG and BP and

requires the usage of PPG sensor only, and is thus less obtrusive. This

approach is the subject of recent research and this thesis.

1.2.2.2 Approach using two sensors (ECG and PPG)

The first approach was proposed in 1981 by Geddes et. al. [8]. It requires one

ECG sensor to be placed near the heart and another ECG or PPG sensor to

be placed on a peripheral point of the body. It is based on measuring the

PAT or PTT between the same R peak in both ECGs or between the R peak

and the corresponding peak for the same individual pulse in the PPG signal.

This time is shown to be well correlated with BP.

1.2.2.3 Approach using a single sensor (only PPG)

Recent studies from the past decade, which are discussed in detail in Chapter

2, show good correlation between PPG and BP without the use of ECG.

This is very practical as it omits the requirement for an extra (commonly

ECG) sensor, requiring only the collection of the PPG signal, which can be

easily and continuously obtained in a non-invasive way with a wristband.

Researchers who explore this approach assume the existence of a complex

relation between PPG and BP, which they try to deduce in different ways.

Since most studies are limited in some way, finding a general relation between

PPG and BP remains an open problem which we address in our work.

By using PPG signal only, the first problem arises from the nature of the

collection mechanism described in Section 1.2.1, namely the contact between

the light-emitting diode, sensor and the skin. Due to this mechanism and the

required high sensitivity of the sensor in order to detect tiny changes in light

absorption, the signal is very prone to movement artefacts and anomalies.

This issue will be resolved by extensive preprocessing with focus on artefact

removal. This will be followed by precise segmentation of the PPG signal
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into cycles, where one cycle corresponds to one heart beat.

The unknown general relation between PPG and BP poses the second

problem. To resolve it, features describing the PPG signal must be proposed

and evaluated and then effectively used in a suitable regression algorithm.

1.2.2.4 Practical considerations

Finally all the considered datasets and suitable algorithms must be evaluated

and the best among them implemented as a web service, which must address

the problem of real time processing. The system should provide periodic

updates about their BP to the user, with a relatively high frequency. This

will be resolved with near-real time micro batch system architecture.

1.3 Thesis outline

The remainder of this thesis is organized as follows:

• Chapter 2 - Related work. Two major approaches in related work

are analyzed, based on the signals used (PPG + ECG or PPG only).

This thesis is placed in the context of the related work.

• Chapter 3 - Methodology. All modules of the system are described

in detail, starting with signal preprocessing methods, continuing with

feature extraction and ending with the analyzed regression algorithms.

• Chapter 4 - Materials. Two datasets (a clinical dataset and an

everyday-life dataset) are described in detail.

• Chapter 5 - Experiments and evaluation. The experimental setup

and evaluation procedure are discussed in detail.

• Chapter 6 - Web service. Implementation of the developed system

as a web service, which serves the periodic BP prediction to the user’s

wristband.
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• Chapter 7 - Conclusions. The work of this thesis is summarized,

contributions and limitations are discussed, and future work is pro-

posed.
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Chapter 2

Related work

The following sections provide a literature overview in which we focus on

the work describing previously undertaken efforts to estimate BP from PPG

signal. Our main focus is on computer science and engineering methods

while also analyzing some works that describe the underlying physiological

mechanisms, explaining the specifics of PPG signal morphology.

In each referenced related work, we report the results in the same form

as given by the authors. A common form of results, which can be found in

several works discussed in the following Section, is

ME ± STD, (2.1)

where ME is the mean error, and STD is the standard deviation of the error.

In case of using absolute errors, such as MAE [30], the notation typically

omits the ± sign, and the STD is reported separately.

ME differs from MAE in the fact that the considered errors are not abso-

lute values. This can lead to potentially negative ME, and symmetrical large

positive and negative errors can cancel each other out.

In accordance with the two main approaches highlighted in Section 1.2.2,

we first analyze the literature regarding BP estimation using two sensors

(commonly PPG and ECG) where PTT is evaluated. We then focus on the

literature regarding BP estimation from PPG signal only. The chapter is

concluded by placing this thesis in the context of related work.

11
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2.1 Approach using two sensors (ECG and

PPG)

Pioneer work related to BP estimation from PPG was done in 1981 by Geddes

et al. [8]. They evaluated the relationship between pulse-arrival times and

diastolic blood pressure in 10 anesthetized dogs. The R peak of the ECG at

heart location was used as a reference point, and the time it took for this

pulse to be shown in carotid and femoral pulses was measured. They further

chemically manipulated the dogs’ BP and found good correlation (near linear

relationship) between changes in diastolic BP and PTT.

In 1999, potential clinical applications of PTT were studied by Smith et

al. [9]. They highlighted the inadequate and expensive techniques used for

clinical studies of sleep disorders, which required the patient to be taken into

a controlled laboratory environment. They further explained the relationship

between changes in BP and sleep disorders while also reiterating the good

correlation between PTT and BP. PTT was praised due to its simplicity and

low cost, and its potential uses were proposed.

Poon et al. [10] proposed explicit equations for systolic (SBP) and dias-

tolic BP (DBP) based on Moens–Korteweg formula, which was derived in

the 19th century and models the relationship between pulse wave velocity

(PWV) and the incremental elastic modulus of the arterial wall. They con-

ducted experiments with 85 subjects and obtained promising results with

ME as low as 0.6±9.8 mmHg. The evaluation method using ME instead

of MAE is questionable, since it may display superior results compared to

actual performance of the model, as large symmetrical positive and negative

errors can cancel each other out in the final reported ME.

Recent work was published by Kachuee et al. [11] in 2017 in which BP

was estimated using PTT from ECG and PPG signal. They evaluated sev-

eral regression methods, such as Linear Regression, Random Forest, Support

Vector Machine (SVM), etc. They achieved MAE of 11.17 mmHg for SBP

and 5.35 for DBP, with the corresponding STD of 10.09 mmHg for SBP and
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6.14 mmHg for DBP, using AdaBoost regression. They reported their re-

sults meet the Association for the Advancement of Medical Instrumentation

(AAMI) and the British Hypertension Society (BHS) standards for DBP,

however, SBP has proven to be more difficult to estimate.

Further research has been conducted using the PTT approach, showing

promising results. In recent years, however, the focus of researchers is be-

ing shifted towards BP estimation using only the PPG signal, due to the

requirement of two sensors to measure the PTT being more obtrusive.

2.2 Approach using a single sensor (only PPG)

As mentioned previously, a great deal of recent research effort has been di-

rected towards BP estimation using only the PPG signal. Obtaining the

PPG signal typically requires the user to wear a small simple device with

an LED light and a photodetector. In a hospital or laboratory setting, such

a device is commonly placed on the tip of the finger or in the earlobe area,

as the tissue there is rather translucent. Despite the requirement for only

a single sensor, wearing such a device can still be obtrusive, due to its lo-

cation. It would be highly beneficial, if the PPG signal could be obtained

in a less obtrusive way, allowing the user to conduct most activities without

limitations.

It has recently become common for the PPG collection sensor to already

be embedded in most popular wristbands (e.g. Apple Watch [31], Microsoft

Band 2 [32], etc.), as it is so simple and inexpensive to implement. Further-

more, this approach is becoming increasingly popular with the recent surge

of m-health wearable devices and applications, as users are very comfortable

with using such devices [27]. A wristband seems like an optimal wearable

device for PPG collection, since it does not limit the user in almost any ac-

tivity. Despite this, research dealing with BP estimation using a wristband is

scarce, while research dealing with BP estimation using only the PPG signal

is more plentiful.



14 CHAPTER 2. RELATED WORK

An early attempt at PPG only approach was conducted by Teng et al. [12]

in 2003. They examined the relationship between arterial blood pressure

(ABP) and certain features of the PPG signals obtained from 15 young

healthy subjects. The data was collected in a highly controlled laboratory

environment, ensuring constant temperature, no movement and silence. Us-

ing correlation analysis four best features were chosen and used in a linear

regression model to predict the BP. The ME between the estimated and the

measured blood pressure were 0.21 ± 7.32 mmHg for SBP and 0.02 ± 4.39

mmHg for DBP. Again, these results are given with ME instead of MAE,

which might not reflect the actual performance of the derived model.

A paper was published in 2013 by Lamonaca et. al [13] in which they used

data from Multiparameter Intelligent Monitoring in Intensive Care (MIMIC)

waveform database [22] to extract 21 time domain features and use them as

an input vector for artificial neural networks (ANN). The data was obtained

from a higher number and variety of patients in a less controlled environment

compared to previous work. Patients from the MIMIC database were treated

in a hospital environment where the signals were measured during their stay

without any strict movement, temperature or sound restrictions. The PPG

was measured with a fingertip hospital device, while ABP was measured

invasively using a catheter in the artery. The authors defined some additional

time domain features that were not commonly used before and are shown to

describe the PPG cycle shape well. They reported lowest MAE of 3.80 mmHg

for SBP and 2.21 mmHg for DBP, with corresponding STD of 3.46 mmHg

for SBP and 2.09 mmHg for DBP, meeting the AAMI standards. The exact

data used from the MIMIC database is not disclosed and the research is still

based solely on data collected in a hospital, using hospital equipment, albeit

with less strict limitations regarding the patients.

As user and manufacturer attention shifts increasingly towards mobile

devices, several approaches were proposed which rely on such devices for BP

estimation.

Lamonaca et al. [14] published another research in 2013 in which they
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used a smartphone camera to capture the PPG signal using the camera flash

as the light source and phone camera as the photodiode. PPG features were

again extracted and fed to a neural network which estimated the SBP and

DBP. All the data processing and BP evaluation was done in a cloud in order

to reduce the computational burden on the device. The results were again

promising with the maximum error not exceeding 12 mmHg, however, such

a method requires additional user effort, as the user must place and hold

his finger over the camera and LED light. This prevents any other activities

during this time.

In a recent 2015 paper, Banerjee et al. [15] emphasized the importance

of signal preprocessing in order to greatly improve the BP estimation accu-

racy. They suggested several signal improvement methods such as filtering,

baseline drift removal and cycle selection based on cycle quality assessment.

They further proposed additional features based on Gaussian modelling of

each cycle. These features were then used in a neural network and improve-

ments were shown in comparison to their previous work on the same data,

which consisted of signals gathered by 15 subjects using their phones. Sim-

ilar limitations apply, as the users had to hold their finger over the camera

and LED light of the phone.

Xing et al. [16] were the first to propose a normalization algorithm, for

which they claim that it removes subject-specific or device-specific contri-

butions to the PPG signal. This makes the BP estimation algorithm com-

pletely independent of subject or device. Amplitudes and phases are ex-

tracted from the FFT transformation of the PPG signal and used to train

an ANN. Their approach was validated using 69 patients from the MIMIC II

database. They reported good correlations between the predicted and actual

BP values, where 86% of SBP and 95% of DBP cases had absolute error ≤
10 mmHg.
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2.3 Related work summary

Tables 2.2 and 2.3 presents a summary of the related work described in

the previous sections. The related work is grouped based on the two BP

estimation approaches mentioned earlier, and the following key perspectives

are identified and summarized where applicable:

• The data that was used for the evaluation. How much and what type of

data was used, was it collected from a constrained or an unconstrained

environment.

• The methods that were used to derive the relationship model between

input signals and the BP. Which method was chosen based on the best

results.

• The reported results. Which metric was used for the evaluation, what

were the best results.
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Approach using two sensors (ECG and PPG)

Study Data Methods Reported

results

Geddes et al. [8] ECG signal

alongside

reference BP

from dogs in

constrained env.

Correlation

analysis

between changes

in PTT and BP

Good, near

linear

correlation of

changes in PTT

and BP

Smith et al. [9] ECG and PPG

signal alongside

reference BP

from unknown

nr. of subjects

in constrained

env.

Analysis of

potential

applications of

PTT based on

established

research

PTT proposed

as a promising

alternative to

current

complicated

tests

Poon et al. [10] ECG and PPG

signal alongside

reference BP

from 85 subjects

in constrained

env. with

calibration

Explicit

equations for

SBP/DBP

derived from

Moens-

Korteweg

formula

ME of 0.6±9.8

mmHg for SBP

and 0.9±5.6

mmHg for DBP

Kachuee et al. [11] ECG and PPG

signal alongside

reference BP

from MIMIC II

database from

roughly 1000

unique subjects

in a constrained

env.

PTT and

additional

features used in

5 regression

algorithms

MAE 11.17 for

SBP and 5.35

for DBP with

STD of 10.09

mmHg for SBP

and 6.14 mmHg

for DBP, using

AdaBoost

Table 2.2: Summary of related work based on the two sensors approach.
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Approach using a single sensor (only PPG)

Study Data Methods Reported

results

Teng et al. [12] PPG signal

alongside

reference BP

from 15 subjects

in highly

constrained env.

Best of 4

features used in

linear regression

ME of

0.21±7.32

mmHg for SBP

and 0.02±4.39

mmHg for DBP

Lamonaca et al. [13] PPG signal

alongside

reference BP

from MIMIC

database in

constrained env.

Extracted 21

time domain

features and fed

them in an ANN

ME of

3.80±3.46

mmHg for SBP

and 2.21±2.09

mmHg for DBP

Lamonaca et al. [14] PPG signal

from phone

camera and

reference BP

from unknown

nr. of subjects

Extracted 21

time domain

features and fed

them in an ANN

Maximum error

< 12 mmHg
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Banerjee et al. [15] PPG signal

from phone

camera and

reference BP

from 15 subjects

in constrained

env.

PPG signal

modelled with a

sum of 2

Gaussian

functions,

denoising, and

temporal

features

computed and

fed into an ANN

Notable

improvements

compared to

their previous

work.

Xing et al. [16] PPG signal and

reference BP

from 69 patients

from MIMIC II

database

Normalization

of PPG,

amplitudes and

phases extracted

from the FFT of

the PPG and

then fed into an

ANN

86% of SBP and

95% of DBP

with absolute

error ≤ 10

mmHg

Table 2.3: Summary of related work based on the PPG only approach.
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2.4 Thesis in the context of related work

There are several common themes to the related work we have reviewed.

Firstly, the PTT approach is well established and understood, however,

due to the requirement of two sensors, recent research effort shifts towards the

single sensor PPG only approach, which is less obtrusive and more suitable

for modern wearable devices.

Secondly, the data used in experiments is often limited to a low number

of subjects or limited by the strict collection process requirements imposed

upon the subjects in constrained laboratory or hospital environments. To

our current knowledge, an everyday-life dataset collected with a wristband

has never before been thoroughly analyzed.

Finally, substantial progress has been made in BP estimation using mo-

bile smartphone cameras with LED flash, however, this limits the user and

requires his full attention for the entirety of the estimation process and is

not suitable for use during many activities.

This thesis aims at developing a general approach which can be used on

any input data. Accordingly, two datasets will be used and evaluated:

1. All the patients having both PPG and BP signal from the MIMIC

database are considered [22] as the clinical dataset.

2. A custom dataset is being collected by as many subjects as possible

during their everyday activites, using the Empatica E4 wristband.

It is important to note that a replication of the results reported by some of

the current state of the art approaches reviewed in Chapter 2 was attempted

with all eligible MIMIC database data. The results as given in some related

work could not be replicated. We suspect that in some cases, a subset of all

the available MIMIC data was chosen in the related work. We tried contact-

ing some of the authors regarding their work, but we had limited success in

obtaining the details regarding their work. In other cases, the results might

be replicated, however, the reported error metrics are considered inadequate.
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We consider reporting only the ME as inadaquate, since it might not re-

flect the actual performance of the derived model very well, as symmetrical

positive and negative errors cancel each other out.

This indicates that a general approach to BP estimation using only PPG

signal is still required and will be proposed in this thesis.
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Chapter 3

Methodology

The proposed system for BP estimation consists of two main modules, namely

the signal-preprocessing and the machine-learning module. The former mod-

ule is responsible for producing segmented high-quality PPG signal cycles as

the output, given an arbitrary noisy PPG signal as the input. Each PPG

cycle on the output corresponds to a single heart beat, and should have min-

imal or no morphological alternations due to artefacts. The latter module

first extracts a number of features describing the PPG signal on a per-cycle-

basis. A subset of relevant features is then determined using the RReliefF

algorithm [19]. Finally, the performance of several regression algorithms is

evaluated using several experiments. The best among them is chosen for the

creation of predictive models for SBP and DBP. These two modules are com-

plemented by the web service, which allows for the interaction between the

user’s wristband and the predictive model. The proposed system architecture

is summarized in Figure 3.1.

In this chapter, we overview the methods used in our work. We focus on

the ideas behind each method, while the exact parameters, experiments and

results, are discussed in Chapter 5.

23
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Figure 3.1: Proposed architecture of the BP estimation system. The rect-

angles with the dashed lines correspond to steps, that are only executed once

or periodically (initial model creation or personalization).

3.1 Signal preprocessing

As mentioned earlier, the PPG sensor must be highly sensitive in order to

detect tiny variations in light absorption of the measured tissue. This in

turn makes the sensor highly susceptible to movement artefacts, which can

notably distort the signal. This problem is exacerbated by using a wristband

as the measuring device, since the contact between the sensor and the skin

can be compromised during arm movements. The use of green light partially

alleviates the problem, as described in Section 1.2.1, however, notable arte-

facts often remain in the signal. Subsequently, substantial effort is directed
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towards the PPG preprocessing in order to obtain the signal of the highest

possible quality.

3.1.1 Cleaning based on established medical criteria

The possible amplitude values of the PPG signal are not medically deter-

mined, but rather dependent on the specific device [33, 34], while the ABP

values are known to only be possible within a certain range (e.g., between

0 mmHg and 300 mmHg, etc.). We can thus typically eliminate some seg-

ments in each ABP recording due to the signal values being extreme and

beyond anything realistic. This is often the result of unexpected movement

of the catheter in the artery, or removal/replacement of the catheter. It is

thus advisable to first inspect the ABP signal and remove these segments.

Extreme values of BP (e.g., over 300 mmHg) are clinically established to be

impossible, and segments with such values can be safely removed.

A 5-second sliding window with no overlapping is used to detect extreme

BP values or extreme changes of BP in a short time period. Thresholds

for extreme values and changes are selected based on established medical

criteria as given in related work [16]. Some criteria were slightly modified

in accordance with empirical observations in our data, and are summarized

in Table 3.1. We have made the criteria slightly less strict, as large parts of

our data would be excluded by the original criteria (e.g., the original criteria

excludes all data with SBP > 180, while we observed some segments with

SBP between 180 mmHg and 200 mmHg).

3.1.2 Cleaning based on autocorrelation analysis

As mentioned before, both the PPG and ABP signal are periodic in their

nature. Using autocorrelation analysis, it is expected for the maximum au-

tocorrelation of a signal segment (a short excerpt of the signal) to be rather

high, if the signal is actually periodic in this segment. A low maximum

autocorrelation indicates a lack of a periodic pattern in this segment, thus
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Criterion Threshold

SBP > 220 or < 60

DBP > 150 or < 30

SBP – DBP < 20

∆SBP or ∆DBP > 50

Table 3.1: Modified established medical criteria and thresholds for rough

signal cleaning. The ∆SBP and ∆DBP signify a change of BP value between

two subsequent 5-second PPG segments. All 5-second segments meeting any

of these criteria are removed from the signal.

indicating an exceptionally noisy segment.

Autocorrelation analysis measures the correlation of a signal with a de-

layed copy of itself. It is defined as the correlation between yi and yi+k,

where k = 0, ..., K. K is the maximum lag in samples at which the sample

autocorrelation function (SACF) is computed. SACF at lag k is defined as:

rk =
ck
c0
, (3.1)

where

ck =
1

N

N−k∑
i=1

(yi − ȳ)(yi+k − ȳ), (3.2)

c0 is the sample mean given as:

ȳ =
1

N

N∑
i=1

yi, (3.3)

and N is the total number of samples in the given time series [35].

Again, a 5-second sliding window was used and the SACF within the win-

dow was computed. It is expected that a 5-second window contains from 3

(during sleep) to 9 (during intense activity) heart beats [36], whose morphol-

ogy should be similar, and the maximum autocorrelation should be relatively

high. A threshold was determined empirically. It was set to be notably lower
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than the average maximum autocorrelation of the segments containing clean

periodic signal, as only the most noisy signal should be removed in this phase.

An example is shown in Figure 3.2, where the top-left subplot shows

an example 5-second PPG segment, and the bottom-left shows this same

segment with added white Gaussian noise. The right subplots show the

corresponding autocorrelations at maximum 1-second lag (125 samples with

125Hz sampling frequency (Fs)).

Figure 3.2: Top-left subplot shows an example PPG segment obtained from

a real patient in a hospital environment, and the top-right shows the obvious

peaks in autocorrelation, corresponding to one cycle lag. The bottom-left

subplot shows the same segment with added white Gaussian noise, while the

bottom-right shows the decreased autocorrelation of such a noisy segment.
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It can be clearly seen that the autocorrelation maximum for the clean sig-

nal segment reaches a peak at just under 100-sample lag, which corresponds

to one cycle. The autocorrelation maximum value is close to 1, as the signal

is highly periodic. On the other hand, the maximum autocorrelation value

for a noisy signal segment is extremely low, at just over 0.1. The average

maximum autocorrelation value of a realistic noisy PPG segment obtained

from a wristband is around 0.5. We have thus empirically determined a

threshold of 0.8 which must be met in order to not discard a PPG segment.

It is important to note that the autocorrelation starts at value 1, cor-

responding to 0-sample lag and complete autocorrelation, meaning identical

signal segment. With very small values of lag, the autocorrelation typically

remains high, even for a slightly noisy signal. Thus, we search for the maxi-

mum value only after 13-sample lag, which corresponds to 0.104-second lag

(at Fs = 125Hz).

3.1.3 Peak and cycle detection

In order to do continuous BP estimation, the BP could be estimated on a

per-cycle basis. Subsequently, we should derive features that describe each

individual PPG cycle, as is common in the vast majority of the related work

discussed in Chapter 2. One PPG cycle corresponds to a single heart beat.

A robust segmentation of the PPG signal into cycles is thus mandatory.

We have used a two-phase pulse detector algorithm proposed by Lazaro

et al. [17] to detect the prominent PPG systolic peaks. The first phase is a

linear filtering transformation and the second phase is a dynamic thresholding

operation. After the peaks are detected, finding the cycle start-end locations,

which correspond to the dominant valleys, is simpler.

3.1.3.1 Linear filtering transformation

The purpose of the filtering transformation is to enhance the prominence of

the abrupt upslopes of systolic PPG peaks over the smoother upslopes of di-

astolic or dicrotic peaks. This ensures that only systolic peaks are considered,
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while diastolic peaks are ignored.

The transformation is based on a linear-phase finite impulse response

(FIR) low-pass-differentiator (LPD) filter.

The key characteristic of a FIR filter is that its response to any finite

input is of finite duration. The response settles to zero in a finite time, as it

has no internal feedback. Such a filter is also said to be non-recursive. FIR

filters are commonly linear-phase, meaning that they shift all the frequency

components of the input signal in time by the same constant amount. This

constant amount is known as the phase delay. Importantly, this does not

cause phase distortion, meaning the shape of the waveform is preserved [37].

The idea behind low-pass filter is to remove all the high frequency com-

ponents from the signal and allow only the low frequencies in the specified

range to pass.

A differentiator is a filter designed such that the output of the filter is ap-

proximately directly proportional to the rate of change (the time derivative)

of the input. The rate of change corresponds to the slope of the waveform

and is the highest at the systolic rise area of each PPG cycle.

3.1.3.2 Dynamic thresholding

In order to avoid the detection of potential double peaks, and more impor-

tantly the detection of diastolic peaks, dynamic thresholding is used. Let us

denote the threshold value at point n as yt(n), and the peaks in the filtered

signal as nA. A time-varying threshold is used between the detections of nA.

The threshold keeps the value of the previous detected peak nAi−1
during

a refactory period lasting for 150 ms or Nr = 0.15·Fs samples. After this

period, it begins to gradually decrease in a linear manner. If no new peak

detection occurs in a time period m̂AAi
, then the threshold will drop to a

percentage α < 1 of the previous detected peak nAi−1
, and then maintain its
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value. The described logic can be formulated as

y(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y(nAi−1

) ; (n− nAi−1
) < Nr

(α−1)y(nAi−1
)

m̂AAi
−Nr

(n− nAi−1
−Nr) + y(nAi−1

) ;Nr ≤ (n− nAi−1
) < m̂AAi

αy(nAi−1
) ; (n− nAi−1

) ≥ m̂AAi

,

(3.4)

where

m̂AAi
= median{(nAi−4

− nAi−3
), (nAi−3

− nAi−2
), (nAi−2

− nAi−1
)}. (3.5)

Next, the detected peaks nA from the FIR-LPD filtered signal are used

in the original PPG signal to determine the location of the steepest abrupt

upslope, corresponding to the PPG systolic rise. Then the maximum peak

is detected in the 300-ms interval in the PPG starting at the location of

nA. The actual systolic PPG peaks are found and marked as n∗
A. This final

procedure is shown in Figure 3.3.

Finally, we determine the indices of the cycle start-end locations, which

correspond to the dominant valleys in the interbeat interval (IBI) between

the peaks. A simple algorithm is employed, which moves sample by sample

between the detected peaks. In this area of the signal, it searches for the last

valley before the next systolic peak. The search area is limited to 70% of

the whole IBI by ignoring the first 20% and last 10% of the IBI, as shown in

Figure 3.4. These values were chosen empirically, as it never happens in our

data, that a true cycle start-end valley is located just a few samples (10%

of IBI before or 20% of IBI after) from the systolic peak, while an anomaly

valley could be located there. A larger amount (20%) is ignored at the start

of the IBI compared to the end (10%), since the morphology of a PPG cycle

is such that the part of the cycle after systolic peak is always longer compared

to the part before the systolic peak, as seen in Figure 3.4.
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Figure 3.3: Systolic peak detection procedure. The top subplot shows a

PPG segment, while the bottom subplot shows the FIR-LPD-filtered version

of the same segment. The peaks in the FIR-LPD-filtered PPG, denoted as

nA, correspond to the steepest systolic rise areas in the PPG.

3.1.4 PPG cleaning using cycle templates

As mentioned earlier, artefacts and noise in the PPG signal are a major

problem. In order to be able to use features that describe the signal on a

per-cycle basis, only high-quality cycles should be considered.

We propose a cleaning procedure based on the work of Li et al. [18] that

creates an average cycle template T from all the cycles in a 30-second window.

The window was chosen to be long enough to contain a notable amount of

cycles for template creation, while being short enough to allow for continuous

estimation of BP. A prediction every 30 seconds is nearly continuous, as BP

does not typically change very abruptly, except in extreme cases such as

arterial bleeding. The correlation of each individual cycle with the template

is then computed, and which cycles should be kept or discarded is determined.

This is based on two assumptions. First, we expect a useful average 30-second

segment of the PPG signal to contain a notable number of cycles without

artefacts or noise, otherwise the segment is too noisy to be of use. Second,
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Figure 3.4: Cycle start-end locations detection, which correspond to the

dominant valleys in the IBI.

we assume that the very noisy segments of the PPG signal do not contain

prolonged periodic wave-like patterns.

3.1.4.1 Average cycle length

In order to create the template by averaging all the cycles in a 30-second

segment, the same number of samples for each cycle must be taken. In reality,

cycle length can vary by a few samples from cycle to cycle. At average PPG

sensor sampling frequencies ranging from 16Hz (lower quality sensor) to 64Hz

(higher quality sensor), this results in a few hundredths of a second difference

in duration. We resolve this discrepancy in cycle lengths by determining the

most likely cycle length in the current segment. This is once again achieved

using the autocorrelation analysis described in Section 3.1.2.

Considering the periodic nature of the PPG signal, we can expect the
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first autocorrelation peak to be located at one-cycle duration lag. This can

be clearly seen in Figure 3.2. This number of samples L is taken as the most

likely length of a cycle for a given 30-second segment.

3.1.4.2 Template generation

Once the cycle start-end locations are known, L samples are taken from each

cycle starting point. Considering that L is the expected length of a cycle

for a given segment, all the key morphological characteristics, most notably

the systolic and diastolic peak, are preserved for each cycle. The template is

then generated by taking the mean of cycle values at the same time.

An example template resulting from the described procedure is shown in

Figure 3.5.
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Figure 3.5: The top subplot shows a random PPG segment. The bottom-

left subplot shows the individual detected cycles in this segment, and the

bottom-right shows the computed template of all the cycles, which is com-

puted as the mean of cycle values at the same time.

3.1.4.3 Cycle quality assessment

Once an initial cycle template is created for a given segment, each individual

cycle within this segment is compared with the template. Each cycle quality

is assessed using several signal quality indices (SQIs), which are defined as

follows:

1. SQI1: direct linear correlation using the Pearson’s correlation coeffi-
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cient, given as

ρ(A, T ) =
1

N − 1

N∑
i=1

(
Ai − µA

σA

)(
Ti − µT

σT

)
, (3.6)

where A and T are a cycle and the template, µA and σA are the mean

and standard deviation of A, µT and σT are the mean and standard

deviation of the template, and N is the total number of samples [38].

The length of each cycle is fixed to L samples from it’s starting point

in order to be able to compute the correlation to the template of the

same length.

2. SQI2: direct linear correlation, again using the Pearson’s correlation

coefficient, as defined in Equation 3.6, however, this time each cycle is

linearly resampled to length L, using piecewise linear interpolation.

3. SQI3: The correlation between each time-warped cycle and the tem-

plate, as given by Dynamic Time Warping (DTW) [39], using the Eu-

clidian distance metric. DTW allows for non-linear time series match-

ing, meaning it will recognize two signals having the same characteris-

tics delayed in time, as shown in Figure 3.6.

Figure 3.6: Dynamic time warping example for two time series.
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If we consider two cycles A and B of lengths n and m as

A = a1, a2, ..., an and

B = b1, b2, ..., bm,
(3.7)

then to align these sequences of different lengths using DTW, a matrix

D is first constructed. The element of the matrix at location (i,j)

contains the distance d(ai, bj) between the points ai and bj. The aim

of the DTW is to find an optimal path from (0,0) to (n,m), which

minimizes the sum of the distances on the path. This total distance

is inversely proportional to the similarity between the two signals, and

the warping path through the matrix of distances tells us the optimal

time warping of the signals.

An example of this procedure using a PPG cycle and a template is

shown in Figures 3.7 and 3.8.
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Figure 3.7: The left subplot shows the original PPG cycle and template.

The right subplot shows the time-warped versions. We can see in the right

subplot that signal 2 is warped in the area around the diastolic peak in order

to increase the fit of the downslope.
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Figure 3.8: The matrix showing a warping path. The rows correspond

to samples of the blue signal on the left, while the columns correspond to

samples of the red signal at the bottom. Darker squares signify smaller

distance, while lighter squares signify greater distance. The white line is the

warping path. An obvious warp denoted by the vertical line in the warping

path is seen between 50th and 60th sample of the blue signal. It signifies

that these samples of the blue signal are all compared to the signle sample

of the red signal. This is also seen in Figure 3.7.



3.1. SIGNAL PREPROCESSING 39

Thresholds for all three SQIs are set in accordance with related work [18]

and those cycles that meet the required thresholds are kept, while others are

discarded. Additionally, if more than half of detected cycles in a 30-second

PPG segment are discarded, then the whole segment is considered unreliable

and is discarded in entirety. The successful removal of artefacts as the result

of the described procedure is shown in Figure 3.9.

Figure 3.9: The top subplot shows a random PPG segment with an ob-

vious artefact. The bottom plot shows this same segment with the artefact

successfully removed by our cleaning procedure.

3.1.5 Gaussian template modelling

The ideal shape of a PPG cycle waveform, as detailed in Section 1.2.1 and

shown in Figure 1.5, is expected to contain two peaks. The higher-amplitude

systolic peak should be followed by a lower-amplitude diastolic peak. More

than two peaks present in a cycle signify either an anomaly in the signal or

an incorrectly detected cycle. On the other hand, it is common for a cycle

in our data to contain just a single true peak, corresponding to the systolic

peak, while the diastolic peak is often not present or cannot be clearly seen

in the waveform. As the diastolic peak is important for the description of the

waveform, we attempted to obtain only the cycles of expected shape, having
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the diastolic peak expressed.

It was shown by Banerjee et al. [15] that a PPG cycle can be suitably

modelled for the purpose of BP estimation with a sum of two Gaussian

functions given as

yG(n) = a1 ∗ e−(
n−b1
c1

)2
+ a2 ∗ e−(

n−b2
c2

)2
, (3.8)

where yG(n) is the Gaussian modelled cycle value, n is a given cycle sample,

a1 and a2 are the first and second peak amplitudes, b1 and b2 are the first and

second peak locations, and c1 and c2 are the first and second peak widths.

Using empirical analysis of our data alongside the expert knowledge about

the PPG cycle morphology obtained from the related work, we have deter-

mined restrictions for each of the six parameters that must be met. We have

set the restrictions as follows:

1. the systolic peak must precede the diastolic peak (b1 < b2),

2. the systolic peak amplitude must be larger than diastolic peak ampli-

tude (a1 > a2),

3. the width of both peaks must be suitably small for them to be clearly

shown.

All the parameters with the corresponding explicit restrictions are given

in Table 3.2.
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First Gaussian

Parameter Restriction (From - To)

a1 0.8 ∗max(T )− 1.2 ∗max(T )

b1 0.1 ∗ L− 0.4 ∗ L
c1 0.05 ∗ L− 0.15 ∗ L

Second Gaussian

Parameter Restriction (From - To)

a2 0.2 ∗max(T )− 0.6 ∗max(T )

b2 0.5 ∗ L− 0.9 ∗ L
c2 0.05 ∗ L− 0.15 ∗ L

Table 3.2: The explicit restrictions for each of the six parameters defining

the Gaussian model of a PPG cycle waveform 3.8. T is the current tem-

plate, max(T ) is the maximum amplitude, and L is the length of the current

template.

Once the parameter restrictions were determined, each cycle template

was modelled with the sum of two Gaussians with the restrictions applied.

The coefficient of determination R2 was used to measure the goodness of the

fit. It tells us the proportion of the total variation that is explained by the

model and is defined as

R2 =
SSR

SST
= 1− SSE

SST
, (3.9)

where SSR is the sum of squares regression, which is the sum of the squared

differences between the prediction for each observation and the mean of all

samples. SSE is the sum of squares of error, meaning the sum of all squared

prediction errors. SST is the sum of squares total, meaning SSR + SSE .

R2 can take values between 0 and 1. If a given cycle was close to the

expected shape, having visible systolic and diastolic peak in the expected

order, the R2 is high and close to 1. Otherwise, the R2 is low. A threshold was

empirically set at 0.9, which dictates a high matching requirement between
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the cycle template and the restricted Gaussian model. An example is shown

in Figure 3.10.

Figure 3.10: Gaussian modelling of PPG templates with restrictions as

given in Table 3.2.

3.2 Feature analysis

In machine learning, a feature is a measurable property or characteristic of

the observed phenomenon [40]. In our case, the features should describe the

PPG waveform and should include the underlying connection between the

PPG and BP.

3.2.1 PPG amplitude

The term ”plethysmogram” is derived from the Greek root ”plethysmos”,

meaning ”to increase”. The signal is not given a unit designation, and the

amplitude cannot be used to compare one patient waveform to another, as it

is typically device-specific and related to the auto-gain found in most PPG

measuring devices [33]. Subsequently, a change in amplitude is most often

attributed to the automatic gain controller or bad contact between the sensor

and the skin. Even though the raw signal amplitude does contain useful
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information regarding the current state of the cardiovascular system, the

amplitude of the signals obtained via commercial devices should not be used

as a feature [34].

Recently, some effort has been made to normalize the PPG signal across

patients, even when measured by different devices [16]. The authors reported

successful use of the PPG amplitude as a feature for BP estimation, however,

several assumptions were made and the limitations were highlighted.

Accordingly, we have decided to omit any amplitude-related features from

our work, since we are dealing with two datasets originating from different

devices. The first was recorded using different hospital devices and the second

was recorded using a wristband, however the aim is to have a general system

applicable to any PPG, independent of the recording device.

3.2.2 Feature extraction

PPG features commonly describe the morphology of an individual cycle in

the time domain, using durations of certain characteristic shapes within the

PPG waveform, or areas above and under certain parts of the waveform. A

large number of time-domain features, which include the mentioned durations

and areas of the waveform, were initially computed in accordance with the

related work [12, 13, 14, 15]. These features are given in Table 3.3 and shown

on an example PPG segment in Figure 3.11.
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Feature Description

Tc Cycle duration

Ts Time from start of cycle to systolic peak

Td Time from systolic peak to end of cycle

Tnt Time from systolic peak to diastolic rise

Ttn Time from diastolic rise to end of cycle

S1 Area under the curve (AUC) from start of cycle to max

upslope point

S2 AUC from max upslope point to systolic peak

S3 AUC from systolic peak to diastolic rise

S4 AUC from diastolic rise to end of cycle

AUCsys S1 + S2

AACsys Area above the curve (AAC) from start of cycle to sys-

tolic peak

AUCdia S3 + S4

AACdia AAC from systolic peak to end of cycle

Table 3.3: Elaborations of the time-domain features that were used and are

shown in Figure 3.11.

In addition to the features describing the morphology of the PPG wave-

form, the following features describing the state of the cardiovascular system

were computed:

1. AI - Augmentation Index : a measure of wave reflection on the arteries.

AI =
diastolic rise amplitude

systolic peak amplitude
(3.10)

2. LASI - Large Artery Stiffness Index : an indicator of arterial stiffness,

which is denoted as Tnt in Table 3.3 and Figure 3.11.
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Figure 3.11: Time domain features describing the morphology of the PPG

signal on a per-cycle basis. The features are described in more detail in Table

3.3.

The set of features was further expanded with additional features from

the complexity-analysis [41] and frequency [16] domains.

1. Complexity analysis features : signal complexity and mobility are com-

puted for the 30-second PPG segment containing the current cycle as

E0 =

√∑N
i=1 PPG(i)2

N
, (3.11)

E1 =

√∑N−1
j=2 d2j

N − 1
, (3.12)

E2 =

√∑N−2
k=3 g2k

N − 2
, (3.13)
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where PPG is the PPG signal, d is the first order derivative of x and

g is the second order derivative of x.

Complexity =

√
E2

2

E2
1

− E2
1

E2
0

, (3.14)

Mobility =
E1

E0

(3.15)

2. Frequency domain features : amplitudes and phases of the frequency-

domain representation of the 30 second PPG segment containing the

current cycle, which is given as

PPGFREQ = fft(PPGTIME), (3.16)

where PPGFREQ is the frequency domain representation of the 30-

second PPG segment from the time domain (PPGTIME). The ampli-

tudes are obtained as

|PPGFREQ[k]| =
√
(Re(PPGFREQ[k]))2 + (Im(PPGFREQ[k]))2,

(3.17)

and the phases are computed as

∠PPGFREQ[k] = arctan

(
Im(PPGFREQ[k])

Re(PPGFREQ[k])

)
, (3.18)

where Re(PPGFREQ) is the real and Im(PPGFREQ) the imaginary part

of the frequency components of the PPG after FFT.

3.2.3 Feature selection

In total, 46 features were considered. Some of them may be extremely impor-

tant and might possess vital information about the BP, while others might
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be insignificant, having little to no information about the BP. The impor-

tance of the features was analyzed and features with non-zero importance

were selected. This allows us to determine the highest quality features and

decreases the computational complexity with removal of irrelevant features.

The RReliefF algorithm [42] was chosen for feature selection. It is a

modification of the ReliefF algorithm, suitable for regression problems with

continuous target variables.

The original ReliefF algorithm attempts to estimate the importance of

each feature according to how well its values distinguish between instances

that are near to each other. It does this by finding k nearest neighbours

to a given instance from the same class (nearest hits) and also k nearest

neighbours from each of the different classes (nearest misses). Subsequently,

it updates the quality estimation for a given feature depending on its ability

to separate the hits and misses. In the RReliefF modification, which can be

used for regression, the class information is replaced by a kind of probability

that two instances are different. Details of the algorithm are disccussed by

Robnik Šikonja and Kononenko [42].

The advantage of the RReliefF algorithm compared to other feature se-

lection algorithms is two-fold. First, the algorithm can easily be used for a

regression problem, as discussed earlier. Second, the result is very intuitive,

as it gives the ranking of importance for all the considered features.

We applied the algorithm to a subset of 10% of all data chosen randomly.

This was repeated 10 times. All the features with non-zero relevance, as

computed by the algorithm, were considered in each iteration, and their

importance was saved. Finally, the average importance of each feature was

computed and evaluated. The average importance of the features as given

by RReliefF algorithm is shown in Figure 3.12.
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Figure 3.12: The output of RReliefF algorithm, which shows the feature

importance for each of the considered features. Both subplots show the same

feature space.

We can see that the same features were given non-zero importance for

both SBP and DBP. Thus, we have used this subset of features in all subse-

quent machine learning experiments.
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3.3 Machine learning

Since we are trying to estimate BP, which is not a discrete but a continuous

target variable, we are dealing with a regression problem. In regression analy-

sis we attempt to determine a functional relationship between the continuous

dependent variable (BP) and independent variables (PPG features). Such a

relationship may be simple (e.g., linear) or complex (e.g., non-linear) [43].

3.3.1 Classical regression

The regressive nature of the problem was briefly highlighted at the beginning

of this section. Regression models involve:

• the unknown parameters of the model, denoted as α,

• the independent variables X and

• the dependent variable Y.

An algorithm then finds a function f that relates the X and Y as well as

possible, given a certain criterion. It can be formulated as

Y ≈ f(X,α) (3.19)

In our domain, the vector X comprises the computed features, which de-

scribe the PPG. The dependent variableY is either the SBP or the DBP, and

the parameters α are algorithm-specific. The MAE is our chosen criterion,

as given in Equation 3.20.

We chose to use the expression “classical regression” exclusively to sepa-

rate these algorithms from the deep learning neural network regression.

As there is no consensus on a single best algorithm for such a problem,

we have evaluated a number of them:

• Linear regression – A linear approach for modeling the function f .

It attempts to model the given training data points with a linear func-

tion, which corresponds to fitting a line to the given set of known data
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points. The line is fitted using the least squares approach. An overde-

termined set of linear equations is solved, by using solution estimates

that produce the lowest sum of squared errors (SSE) [43].

• Regression trees – Regression trees are a non-linear approach, as they

first recursively partition the space of data points into smaller regions,

and then fit a simple constant model (e.g., mean, median, etc.) in each

of the partitions. The partitioning of the data in terms of minimizing

the SSE across all potential splits is computationally infeasible, thus a

greedy method is commonly used [44, 45].

• Model trees – Similar to regression trees, with the notable difference

being that the fitted model in each of the partitions is a function (e.g.,

a linear function) and not a constant value.

• Ensembles of trees – Trees can be merged into ensembles of trees,

which often show superior performance compared to individual trees.

The ensemble is based on either bootstrap aggregation (bagging) or

boosting. Bagging fits the trees many times to different bootstrap-

sampled data, thus creating slightly different trees each time. The

bagged prediction is the average prediction from these trees [45]. Boost-

ing, on the other hand, creates a default tree on all the data and

then creates additional trees focusing on the data that the default tree

predicted with the greatest error. The final prediction is given as a

weighted average of the individual tree predictions [45].

• Random Forest – Similiar to the ensembles, with the notable differ-

ence that the algorithm creates trees using a different set of features

for splitting each time. This creates much more varied trees which are

not very correlated. The final prediction is again given as the average

of the individual tree predictions [45].

There are other well established regression methods, such as Support

Vector Machines (SVM). Due to a relatively large dataset and limitations in
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time and computational power, only a subset of possible regression algorithms

was evaluated.

3.3.2 Symbolic regression and genetic programming

Symbolic regression [20] is a type of regression analysis that attempts to

create mathematical expressions that best fit a certain dataset. It is closely

related to genetic algorithms [46, 47], as it uses the same concepts of evolving

a population using cross-over and mutation.

The idea is to first create random mathematical expressions from a pre-

determined set of building blocks, which include elementary mathematical

operators and numerical operands called terminals. These terminals are rep-

resented by random constants or the pre-computed PPG features. The initial

random expressions represent the initial population, and are explicit equa-

tions for predicting SBP and DBP. In the following iterations, the expressions

or individuals of the population are evolved using typical genetic program-

ming operators, namely selection, crossover and mutation. This improves the

equations to more accurately predict the BP. The selection of best individuals

is based on the fitness function, which is chosen to be MAE.

G. Sannino et al. [48] claim to be the first to adopt such an approach for

BP estimation. Their proposed approach has been modified and expanded,

as described in the following sections.

3.3.2.1 Individuals and population

The purpose of an individual is to be a bridge between the real-life problem

context and the problem-solving evolutionary space [47]. Thus, an individ-

ual was defined as a mathematical expression or function, created from a

pre-determined set of building blocks, which represents an explicit formula

for computing the SBP or DBP. Each individual can be represented as a

tree structure, consisting of varying number and types of building blocks,

as shown in Figure 3.13. The tree nodes correspond to the operators, the

sub-trees to the operands, and the tree leaves to the terminals. The depth
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of the tree is limited in advance, as we do not wish to consider expressions

beyond a certain complexity.

Figure 3.13: The expression ((2 + 2) + (2 + 2)) + (3 + 3) shown as an

expression tree.

Each feature described in Section 3.2.2, alongside a set of elementary

mathematical functions and random constants, comprised the set of the

building blocks for the expression trees. The full set is given in in Table

3.4.

Some operators take a single input (e.g., sine), while others take two in-

puts (e.g., addition). Thus, the individuals are not strictly binary expression

trees, since each node can have either one or two children, depending on the

arity of the operator that is represented by the node.

The purpose of the population is to represent different possible solutions.

While the individuals are static and do not change, the population does, as it

is a unit of evolution [47]. A relatively large fixed number of randomly created

individuals comprises the initial population, which is then evolved through

generations, by using biology-inspired genetic operators, which attempt to

improve each successive generation according to a chosen fitness function.
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Description Type Symbol Arity (Nr. of operands)

Constant Operand C 0

Feature Operand xi 0

Addition Operator + 2

Subtraction Operator − 2

Multiplication Operator ∗ 2

Division Operator / 2

Sine Operator sin 1

Cosine Operator cos 1

Natural logarithm Operator ln 1

Natural exponentiation Operator exi 1

Square root Operator
√
xi 1

Absolute value Operator |xi| 1

Table 3.4: Potential building blocks of each individual (mathematical ex-

pression) in the population.

3.3.2.2 Fitness function

The role of the fitness function is to guide the evolution, by representing the

requirements that must be adapted to. It assigns a quality measure to indi-

viduals and thus defines what improvement is in the context of evolution [47].

In our problem domain, we would like each expression with PPG input

variables to return an accurate prediction about the SBP and DBP at those

PPG values. It thus makes sense to use the MAE as the fitness function,

since it describes the quality of the solution well. It tells us how well the

predictions match the observed values and is defined as

MAE =

∑n
i=1 |yi − λ(xi)|

N
=

∑n
i=1 |ei|
N

, (3.20)

where yi is the observed value of BP and λ(xi) is the model-predicted value

for the instance xi [30]. Their difference is the error, denoted as ei and N is
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the total number of predictions.

A feasible secondary fitness function could be the complexity or size of

the expression tree.

3.3.2.3 Selection mechanism and genetic operators

Genetic variation is the basis of evolution. The role of genetic operators is

to create new individuals from those chosen by the selection mechanism [47].

The mentioned mechanism and operators are chosen as follows:

• Selection – It governs the reproduction process, as it chooses the spe-

cific individuals that will undergo said reproduction. It should favor

high-quality individuals in order to create potentially superior offspring.

Low-quality individuals must not be discarded, but rather given a low

selection chance. This is achieved by using the tournament selection

mechanism, which first chooses a fixed number of individuals at ran-

dom (with replacement) and then selects the best among them, with

respect to the fitness function, for reproduction. The expression trees

corresponding to equations with low MAE are expected to be chosen

more often.

• Crossover – It merges the information from two parent individuals

into two offspring. A subtree is randomly selected in each parent tree

and then these subtrees are swapped. The depth of the child trees must

not exceed the pre-determined maximum depth. If a child tree is too

deep, it is discarded and one of the parents is chosen and copied into

the new population.

• Mutation – It encourages genetic diversity and is always a stochastic

process. A random inner node is chosen in a child tree and its operator

is changed to another random operator with the same arity. Constants

in the leaves of the trees may also be mutated.
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• Copy – A small percentage of parent individuals are simply copied into

the next generation. The elitism concept was followed, which means

that the best individuals in a population are always copied without

mutation. This ensures that the new population will be at least as

good as the previous, but improvements are expected.

These operators are applied until a new generation with the same number

of individuals is created. Since elitism was implemented, the convergence of

candidate solutions towards a good solution is expected [48].

An initial generation of 100 solutions (equations) is first created ran-

domly. Solutions are evolved until the best individual meets a required qual-

ity threshold or until 1000 subsequent generations show no notable improve-

ment regarding the fitness function (MAE decrease greater than 1 mmHg).

The size of each solution is limited to 100 building blocks. When the process

stops, the best individuals created during the evolution are considered.

3.3.3 Deep learning

In recent years, deep learning has arisen as a cutting-edge approach to ma-

chine learning. There are numerous fields at which deep learning shines,

including image recognition, music recognition, disease recognition, games,

etc. In 2017, Google’s AlphaGo [49] defeated the world champion in the

hugely complex game of Go in a best-of-three series, which marked the most

recent breakthrough in AI surpassing humans in activities that were previ-

ously considered a human domain. The approach is not new, as it is based

on artificial neural networks (ANNs), which have been around for decades.

ANNs are inspired by biological neural networks and comprise of inter-

connected assembly of simple elements called nodes or neurons. An early

form is the multilayer perceptron (MLP), which commonly has a small num-

ber of neurons and all the connections are pointing from the input towards

the output, meaning the perceptron is always feed-forward. The neuron is a

processing element containing an activation function. This activation func-

tion takes n input connections. Each input connection has a corresponding
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training weight wi. The neuron’s activation function returns an output con-

nection, computed with the activation function. Commonly used activation

functions are the sigmoid, tangens hyperbolicus and rectifier (ReLU) [21].

The training is commonly done using the gradient descent optimization al-

gorithm and backpropagation. These are used to adjust the training weights

W based on the error calculated at the output. This error is then distributed

back through the network layers and the weights are adjusted so that the er-

ror decreases in the subsequent iterations.

Stacking a number of neurons into connected layers gives rise to ANNs. If

the number of layers between the input and the output layer is large enough

(≥ 2), the network is considered deep, as shown in Figure 3.14.

Figure 3.14: A schematic example of “non-deep” and deep ANNs [50].

With the large increase in size of training datasets and increase in com-

putational power through parallelization, deep ANNs have reached their po-

tential. Since an extremely large number of weights must be updated during

training, this was computationally infeasible in the past, but became quite

possible with the appearance of powerful graphics processing units (GPUs),

which allow huge parallelization. Nowadays, modern deep neural networks

can have up to 1000 layers and millions to billions of neurons, making them

capable of modelling extremely complex non-linear relationships [21].

A vital aspect that differentiates deep ANNs from traditional machine
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learning methods is the fact that ANNs are capable of deriving features on

their own, from raw input data. In the past, creating features was typically

in the domain of the researcher, who then fed these features into the learning

algorithm. Deep ANNs allow researchers to simply feed them large amounts

of labeled input data, and then the ANNs can derive the features and do

the learning on their own. Despite this, quality hand-crafted features can

improve the performance of the model. ANNs can also take a combination

of raw signal and hand-crafted features, making them even more powerful.

Another advantage is the fact that deep ANNs are capable of modelling

extremely complex non-linear relationships, thus having more expressive

power compared to some traditional methods.

We have considered using both cleaned raw PPG signal and hand-crafted

features individually, as well as a combination of both. The requirement for

the raw input data is that each instance has the same length. This is easy to

ensure when using features, however it is more difficult when using raw PPG

cycles. We have resolved this by centering each PPG cycle in a 2-second

window, which is long enough to always contain a single beat, as seen in

Figure 3.15.

Despite the mentioned advantages, deep ANNs cannot be very effectively

used out of the box. Besides the high computational complexity, a major

challenge lies in determining optimal parameters for a network to be able to

learn effectively. The topology of the neural network is the first unknown,

as the network can be either deep or shallow, wide or narrow. The common

agreement is that deeper is better. However, this is not always true and

should not be taken as a fact. Additionally, the computational complexity

increases with greater depth. The next unknown is the type of activation

function to use, and the type of optimizer algorithm, which will ensure the

convergence to local minima. The types of layers is the next parameter of

interest, as there are different types of layers (fully connected, convolutional,

recurrent, Long-Short-Term-Memory, etc.), suitable for different problems.

Finally, a large number of other parameters must be chosen, such as the
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Figure 3.15: 500 PPG cycles, where each is centered in a 2-second window.

learning rate, potential dropout and regularization parameters, which at-

tempt to ensure that the network will not overfit to the training data [21].

As mentioned, the input layer to our network received either the com-

puted features, the centered high-quality raw PPG cycles or a combination

of both. The output layer of the network always consisted of two neurons,

one for SBP and the other for DBP. The chosen metric to judge the perfor-

mance of the model was MAE. Some additional parameter choices regarding

the topology, learning rate and types of layers were explored, and are detailed

the following chapter.
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Materials

Two distinct datasets were used in our work. The clinical dataset was larger

and was collected from the treated patients in a hospital environment, while

the everyday-life dataset was smaller and was collected at the Jožef Stefan

Institute (JSI), during everyday activities of the employees.

4.1 Clinical dataset description

The MIMIC database is available at https://physionet.org/cgi-bin/

atm/ATM and is widely used in experiments and competitions dealing with

bio-medical signals [22]. The original version of the database contains record-

ings of 72 patients, who were treated in a hospital. During their treatment,

a variety of vital functions were monitored, and a number of signals were

recorded simultaneously for substantial periods of time, typically for several

hours. These include, among others, PPG and BP, making the dataset useful

for our experiments.

The data was collected using hospital equipment, which means that the

ABP was measured invasively and the PPG was most likely recorded using

the fingertip PPG sensor commonly found in hospital settings. ground-truth

BP is thus measured using the most precise possible measurement.

The range of BP values in the raw data is extreme, ranging from 0 mmHg
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to over 1000 mmHg. Such extreme values are not relevant for our work and

were thus removed during the signal preprocessing procedure described in

Chapter 3. After the preprocessing, the distribution of BP values is shown

Figure 4.1.
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Figure 4.1: Distributions of SBP and DBP instances for the clinical dataset.

Red lines show the normal distribution.

Some descriptive statistics about the clinical dataset are given in Table

4.1.

The details of the collection procedure are unknown, however it is most

likely that the clinical measurement protocol was followed, since the data

was obtained from hospitalized patients [2]. All the patients are anonymous

and no detailed information about them is known (e.g., their age, sex, etc.).

The recording for each patient is typically continuous and lasts for a
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SBP [mmHg] DBP [mmHg]

Maximum 199 93

Minimum 78 49

Mean 128 63

Standard deviation 24 9

Table 4.1: Descriptive statistics about the clinical dataset.

few hours. There is no general set of signals which was measured for each

patient. This is evident by the fact that different patients have different sets

of signals available in the database (e.g. some patients do not have the PPG

signal recorded, but might have ECG and ABP).

All the patients in the MIMIC database with both PPG and ABP signal

were initially considered. The data was first fed into the pre-processing

module. Some of the patients were discarded due to major anomalies in

either PPG or ABP signal. In case less than a minimum threshold of 10

minutes of quality data remained for a given patient after the SQI cleaning,

that patient was discarded and that data was not used in the experiments.

After the preprocessing was complete, 41 patients had enough high-quality

data remaining. For those patients who had more than 1 hour of high-quality

signals, data was subsampled by uniformly taking 20 3-minute segments. Ad-

ditionally, the SBP and DPB value within each 3-minute segment was set to

be the mean of the cycle based BP values for all the cycles within this seg-

ment. This was done with the purpose of simulating an everyday life setting,

in which BP is not known on a per-cycle basis, and does also not change

abruptly.

The final post-preprocessing clinical dataset totalled at around 160 000

instances (roughly around 30 hours of signals), where one instance corre-

sponds to one PPG cycle. For these, features were calculated and selected as

described in Chapter 3. Additionally, for the purpose of deep learning, raw

cycles were saved to be used with a convolutional neural network.
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4.2 Everyday-life dataset description

The second dataset was collected at JSI using the Empatica E4 wristband

for the PPG and a digital cuff-based Omron BP monitoring device for the

ground-truth BP, as is common in such experimental settings in related work.

The collection procedure was conducted in accordance with the standardized

clinical protocol [2]. In an ideal situation, the ground-truth BP should be

measured as ABP within an artery, but due to the invasive nature of such

ABP measurement, this is not feasible in an everyday-life situation, so the

digital cuff-based monitor was used as a good replacement. An upper-arm

cuff-based monitor was chosen over a wrist-based one, as the latter is less

accurate and extremely sensitive to body position.

The BP measurements were done periodically during the subjects’ daily

routine. The subjects were encouraged to measure their BP at least once

every 30 minutes or more often, however, no restrictions were forced upon

them, allowing them to make measurements more or less often, depending

on their daily schedule.

In the first completed phase of the data collection, 10 healthy subjects

were considered, 7 male and 3 female. Only parts of the PPG signal 3 minutes

before and after each BP measurement point were taken into consideration,

as the measured BP value is only relevant for a short time. Ideally, the

BP would be measured more often, however, this would place further stress

on the subjects and was not possible during their everyday routine. Also,

taking less than 3 minutes of signal before and after the measurement would

be preferred, however, due to limited amount of data (5-10 measurements

per day) that would lead to insufficient amount of data for the experiments.

The same procedure as was used with the clinical dataset was once again

followed, starting with the signal preprocessing. The effects of the preprocess-

ing on the everyday-life dataset were more substantial compared to the clini-

cal dataset, as the PPG signal collected with a wristband during daily routine

contains notably more artefacts and erratic amplitude variations compared to

the hospital-collected PPG. Subsequently, two subjects were discarded dur-
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ing the preprocessing due to an extremely small amount of data remaining

after the preprocessing (originally very short recordings with only a couple

of BP measurements). The distribution of BP values is shown in Figure 4.2.
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Figure 4.2: Distributions of SBP and DBP instances for the everyday-life

dataset. Red lines show the normal distribution.

Some descriptive statistics about the everyday-life dataset are given in

Table 4.2.
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SBP [mmHg] DBP [mmHg]

Maximum 155 89

Minimum 84 60

Mean 114 74

Standard deviation 14 6

Table 4.2: Descriptive statistics about the everyday-life dataset.

No subsampling was done on the everyday-life dataset, as the amount of

data is much lower compared to the clinical dataset. Finally, around 10000

instances remained, corresponding to roughly 3 hours of signal.



Chapter 5

Experiments and evaluation

In order to evaluate the performance of the proposed system, several exper-

iments were designed, using both datasets described in Chapter 4.

5.1 Experimental setup

Three generic experiments were designed and a special experiment was cre-

ated for the symbolic regression. Only a suitable subset of all experiments

were conducted for each dataset. The whole set of experiments was defined

as follows:

1. Experiment 1 (Symbolic regression) – Data instances of all sub-

jects were first merged. They were then split into training (66%) and

testing (34%) set. Instances were not shuffled. Evaluation of each

generation in respect to the fitness function (MAE) was continuously

conducted on the testing set.

2. Experiment 2 – Data instances from each individual subject were

again split into training (66%) and testing (34%) set. Instances were

not shuffled. Evaluation was conducted per-subject, and the average

of the MAEs across all subjects was considered as the final metric.

3. Experiment 3 – Data instances of all subjects were first merged and
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shuffled. Subsequently, k-fold cross-validation was conducted, where

the instances were first split into k folds of nearly equal size. Then

k – 1 parts of the data were used for training while 1 fold was used

for testing. This was repeated k times, with a different fold used for

testing each time. The average MAE across all folds was used as the

final metric.

4. Experiment 4 – Leave one subject out (LOSO) evaluation, where all

but one subject were used for training and the remaining subject was

used for testing. This was repeated until each subject was used for

testing once. The overall average MAE across all iterations was again

computed as the final metric.

In all experiments we ensured that there is no overlap between the training

and testing set, meaning no same instance ever appeared in both sets.

Experiment 1 was designed as a simplified version of the LOSO experi-

ment, due to high computational power requirements and time consumption

of the LOSO experiment in combination with the symbolic regression algo-

rithm. Experiments 2-4 are generic and were used for all the other algorithms.

MAE [30] was used as the evaluation metric in all of the experiments, as

it is suitable to describe the performance of the model and also widely used in

related work. ABP was taken as the ground-truth for clinical dataset while

the Omron digital monitor measurements were used as ground-truth for the

everyday-life dataset. The predictive performance was always compared to

a dummy regressor, which predicted the mean SBP or DBP value.

As a large number of different algorithms was evaluated, not all the ex-

periments were done for each algorithm. Some algorithms are more suitable

for certain types of experiments (e.g., deep learning should not be used on

small amounts of data, which is the case in experiment 2).
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5.1.1 Personalization of the models

The LOSO experiment best validates the robustness and generalization per-

formance of a model. As it initially yielded poor results for all the algorithms,

while k-fold cross-validation (experiment 3) and per-patient validation (ex-

periment 2) performed well, we considered personalization of the general

model for each patient in the LOSO experiment (experiment 4).

We have considered using a small amount of each patient’s data for super-

vised training, as experiments 2 and 3 have shown that personalized models

achieve low average MAE. This most likely happens due to each patient hav-

ing a subtly unique cardiovascular dynamic and relation between PPG and

BP. This assumption was additionally confirmed by doing cycle morphology

analysis, during which it was established that similar cycle shapes do not

necessarily signify similar BP values. Due to the mentioned factors, person-

alization of the trained models was considered in an attempt to improve the

predictive performance of the general model.

The regression models in the LOSO experiment were again trained using

all the subjects except the left out. This time, however, the models were

personalized using some instances from the left out subject. The instances

of the left out subject were grouped by their BP values. These groups were

then sorted from lowest to highest BP. Afterwards, every n-th group (n =

2, 3, 4, 5, 6) of the instances was taken from the testing data and used

in training in order to personalize the model for the current patient. This

ensured personalization with different BP values, as taking just a single group

of instances, or several groups in sequence, gives little information, since the

BP is the same or similar for all of them.

Minimum personalization was 0, while maximum personalization was

roughly 50%, corresponding to 30 minutes of signal or less. In practice,

this would require the user to make 5-10 BP measurements, depending on

the amount of PPG signal around the measurement, that we consider hav-

ing this same BP value. A small number of BP measurements alongside the

corresponding PPG signal allows for the maximum personalization of the
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predictive model. This means that a user obtains a higher-quality personal-

ized model, compared to the initial general model, within a day, assuming

he inputs a few ground-truth BP measurements manually.

5.1.2 Algorithm details

Each of the considered algorithms comes with its own set of parameters or

hyper-parameters, which can potentially be fine-tuned for optimal perfor-

mance. Due to the large amount of data instances and extensive experimen-

tal setup, we used the default set of hyper-parameters for each of the classical

regression algorithms. These algorithms were mostly used as given by the

out of the box implementations in MATLAB [51]. This is a potential point

for improvement, which will be discussed in the conclusion.

For deep learning, we have used the Keras Python library [52], which runs

on top of the TensorFlow framework [53].

Hyper-parameter optimization is an extremely important open problem

in deep learning, which does not have an elegant solution. Each of the hyper-

parameters for deep learning can profoundly influence the network and its

performance. These are often set experimentally, or in best case using a

random search or grid search hyper-parameter optimization approach, which

can require extreme amounts of time and computational power [54].

We have conducted a very limited grid search type of hyper-parameter

optimization, by exploring some high-level options (e.g., shallow vs. deep,

wide vs. narrow, etc.), as is common practice when using deep learning on a

new problem. The hyper-parameters and their explored values are given in

Table 5.1.

After doing experiments with the given values, we have come to a best-

performing neural network with the hyper-parameters marked in bold in

Table 5.1. A deeper network (4 hidden layers with 512–256–128–64 neurons)

proved best, while the learning rate was set to the rather low value of 0.0001,

as higher learning rates caused erratic movement of the loss function. ReLU

activation function and Adam optimizer have shown the best performance.
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Hyper-parameter Explored values

Topology of the network {shallow, deep, wide, narrow}
Activation function {ReLU, sigmoid, tangens hyperbolicus}

Learning rate {0.1, 0.01, 0.001, 0.0001, 0.00001}
Types of layers {fully-connected, convolutional}
Dropout rate {0, 0.25, 0.5}

Number of training epochs {10, 25, 50, 100}

Table 5.1: Explored hyper-parameter values for the deep learning regres-

sion. Best-performing hyper-parameters are marked in bold.

Adam was used throughout the experiments as its performance is typically

very good on a wide range of problem domains [55]. A 0.25 dropout rate

was used to prevent overfitting of the network. Dropout forces the network

to drop random connections between neurons in order to prevent fast over-

fitting. The training was done for 50 epochs. It was empirically determined,

that the lowest MAE loss is always achieved between 30th and 50th epoch,

while additional epochs only require additional time, while offering no im-

provements of the model.

When using convolutional layers, the input data was set to be the features

alongside the raw PPG cycles, centered in a 2-second window. The purpose

of the convolutional layer is to derive some features from the signal on its

own, while also being capable of keeping relevant hand-crafted features from

the start. The predictive performance of the convolutional neural network

with both the raw signal and the features as input was nearly identical to

that of the fully-connected network with only the features as input. Thus,

fully-connected network was chosen, as its training is much faster compared

to the convolutional network. We have also attempted to use convolutional

network with only cleaned raw signal as input, however the performance

was slightly worse compared to using both the cleaned raw signal and the

hand-crafted features.



70 CHAPTER 5. EXPERIMENTS AND EVALUATION

5.2 Clinical dataset (MIMIC database)

5.2.1 Experiments and results

5.2.2 Results

The results are presented in accordance with the descriptions of the exper-

iments in Section 5.1. A table showing the average MAE (MAESBP and

MAEDBP) and the corresponding standard deviations (STDSBP and STDDBP)

for both SBP and DBP is given first. The errors of the best performing al-

gorithm are then plotted.

5.2.2.1 Experiment 1 (Symbolic regression)

The symbolic regression achieved the lowest MAESBP of 17.24 and MAEDBP

of 14.94, as seen in Figure 5.1, which shows the MAE decreasing during the

evolution. The complexity of the solutions was rather high (50 – 70 building

blocks) and the solutions did not use many different features. This algorithm

has proven to be the worst, not even surpassing the dummy performance,

which achieved MAESBP of 18.44 and MAEDBP of 10.77 on the same 66%-

34% training-testing data split.
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Figure 5.1: Decreasing MAE during the evolution of the symbolic-

regression models in experiment 1. Each color corresponds to the complexity

of the proposed solution (the number of building blocks of the equation),

with green being the simplest, blue being the medium, and red being the

most complex among the solutions encountered so far.
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5.2.2.2 Experiment 2

When evaluation is done on a per-subject basis, meaning the instances of a

subject are split into training and testing set, and the model is built for this

subject specifically, the models are completely personalized and thus show

optimistic predictive performance compared to a completely general model,

as shown in Table 5.2.

Errors and standard deviations in mmHg

Algorithm MAESBP STDSBP MAEDBP STDDBP

Dummy 10.23 10.72 8.12 7.92

Linear reg. 10.73 10.12 8.49 8.22

Regression tree 8.44 9.42 7.07 7.66

M5 Model tree 10.89 12.34 9.77 8.48

Random Forest 6.23 6.92 4.53 3.62

Table 5.2: Average MAE and corresponding STD across all patients in the

per-subject evaluation using different regression algorithms. The best result

is marked with bold.

The lowest avg. MAESBP is 6.23 mmHg and avg. MAEDBP is 4.53 mmHg.

Both the MAESBP and MAEDBP vary notably between patients, as shown in

Figure 5.2. Both lowest avg. errors are achieved using the Random Forest

algorithm.
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Figure 5.2: Individual MAE per subject and the average MAE across all the

subjects using the Random Forest algorithm in the per-subject experiment

2.

5.2.2.3 Experiment 3

In 5-fold cross validation with shuffled instances, partial personalization is

implicit, as instances of the same subject are present in the training data due

to shuffling. The predictive performance is again optimistic, as shown by the

average MAE across all folds for each algorithm in Table 5.3.

The dummy in this experiment performed notably worse compared to

experiment 2, as its prediction originated from a different training set. In

experiment 2, the dummy always predicted the mean value of the SBP and
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Errors and standard deviations in mmHg

Algorithm MAESBP STDSBP MAEDBP STDDBP

Dummy 19.44 16.02 8.53 6.87

Linear reg. 18.47 15.91 8.14 7.98

Regression tree 9.63 9.11 8.47 6.22

Model tree 11.55 11.74 9.98 7.25

Random forest 7.83 7.47 3.84 3.63

Table 5.3: Average MAE and corresponding STD across all folds in 5-

fold cross-validation using different regression algorithms. The best result is

marked with bold. These errors were achieved using the clinical dataset.

DBP within a single patient, while in experiment 3, the dummy always pre-

dicted the mean of the training set, which contained instances of all the pa-

tients. The BP variations among many patients are much larger than within

a single patient, thus making the dummy MAE much larger in experiment 3

compared to experiment 2.

5.2.2.4 Experiment 4

Finally the LOSO experiment was conducted. Each model created in this

experiment was first strictly without any personalization. Due to poor per-

formance of such general models, increasing amount of data from the left-out

patient was added to the training set in order to personalize the model, as

described earlier in Section 5.1. The errors of the models are shown in Figure

5.3.
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Figure 5.3: Average MAESBP and MAEDBP at different amounts of person-

alization for the clinical dataset in the LOSO evaluation experiment 4.
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As expected, both the MAESBP and MAEDBP decrease at increasing

amounts of personalization. At 50% personalization, the errors typically

approach or surpass those of 5-fold cross-validation. Deep learning achieves

the lowest overall avg. MAE with the clinical dataset across all algorithms,

as seen in Figure 5.3. MAESBP of 5.61 mmHg and MAEDBP of 3.82 mmHg

are achieved, both at maximum personalization.

The comparison of the results of the best performing algorithms between

experiments 2, 3 and 4 is given in Table 5.4.

Best in experiment 2

Algorithm MAESBP STDSBP MAEDBP STDDBP

Random Forest 6.23 6.92 4.53 3.62

Best in experiment 3

Algorithm MAESBP STDSBP MAEDBP STDDBP

Random Forest 7.83 7.47 3.84 3.63

Best in experiment 4

MAESBP STDSBP MAEDBP STDDBP

Algorithm 0% / 50% 0% / 50% 0% / 50% 0% / 50%

Random Forest 18.66 / 6.32 14.16 / 6.02 10.07 / 4.32 6.31 / 3.37

Deep learning 17.12 / 5.61 15.22 / 6.12 9.82 / 3.82 5.42 / 2.91

Table 5.4: Comparison of best performing algorithms and their avg. MAE

and STD across experiments 2, 3 and 4 for the clinical dataset. All the

reported results are in mmHg and the percentages signify the amount of

personalization data that was used.
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5.3 Everyday-life dataset

5.3.1 Experiments and results

A subset of experiments described in Section 5.1 was used for the evaluation

on the everyday-life dataset. Experiment 1 was discarded, as the perfromance

of the symbolic regression was poor. The per-subject validation of experiment

2 was omitted, as there are only a small amount of different BP values within

the data of a single subject. Deep learning regression algorithm was also

omitted due to the smaller size of the dataset, which is not suitable for deep

learning.

The applied restrictions left us with all the classical regression algorithms,

which were used in experiments 3 and 4 for the everyday-life dataset. The

results are given in the same format as in Section 5.2.2.

5.3.1.1 Experiment 3

As we are dealing with less data and more importantly fewer different BP

values in the everyday-life dataset compared to the clinical dataset, the per-

formance of the dummy regressor is notably increased. This is reflected in

the errors given in Table 5.5.

The lowest achieved MAESBP was 8.92 mmHg and the lowest MAEDBP

was 4.27 mmHg. Both were again achieved using the Random Forest algo-

rithm.

5.3.1.2 Experiment 4

Finally, LOSO experiment with personalization was conducted for everyday-

life dataset without the deep learning algorithm, due to the aforementioned

smaller amount of data. The results are shown in Figure 5.4.

The comparison of algorithms between experiments 2 and 3 for the everyday-

life dataset is given in Table 5.6.
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Errors and standard deviations in mmHg

Algorithm MAESBP STDSBP MAEDBP STDDBP

Dummy 11.46 7.51 5.01 3.99

Linear reg. 11.21 8.00 5.01 8.00

Regression tree 9.12 7.90 4.38 3.74

Model tree 10.33 10.01 4.72 3.94

Random Forest 8.92 8.49 4.27 3.99

Table 5.5: Average MAE and corresponding STD across all folds in 5-

fold cross-validation using different regression algorithms. The best result

is marked with bold. These errors were achieved using the everyday-life

dataset.

Best in experiment 3

Algorithm MAESBP STDSBP MAEDBP STDDBP

Random Forest 8.92 8.49 4.27 3.99

Best in experiment 4

MAESBP STDSBP MAEDBP STDDBP

Algorithm 0% / 50% 0% / 50% 0% / 50% 0% / 50%

Random Forest 12.81 / 8.40 11.03 / 7.53 7.19 / 4.20 5.29 / 3.18

Table 5.6: Comparison of best performing algorithms and their avg. MAE

and corresponding STD across experiments 2 and 3 for the everyday-life

dataset. All the reported results are in mmHg and the percentages signify

the amount of personalization data that was used.

The lowest overall achieved MAESBP with the everyday-life dataset was

8.40 mmHg and the lowest MAEDBP was 4.20 mmHg, both achieved with

the Random Forest algorithm at maximum personalization. The comparison

between different models in the LOSO experiment is shown in Figure 5.4.
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4.
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5.4 Discussion of results

It is difficult to compare our results with those of the related work discussed

in Chapter 2, since almost every study is dealing with a different dataset

and different metrics are used. Most studies used a subset of our clinical

dataset, meaning they only used considered a specific parts of a subset of

patients from the MIMIC database. Related work also commonly reported

ME instead of MAE, which we find inadequate, as it does not fully reflect the

performance of the model. Despite this, we believe that our work surpasses

the related work, since we achieved comparable errors without some of the

dataset limitations commonly imposed in related work, which we highlighted

in Chapter 2.

As the different reported metrics and used datasets make the comparison

with related work difficult, we will rather focus on requirements imposed by

two major standards for BP estimation devices [23].

5.4.1 Comparison with standards

There are two major international standards for BP estimation devices, which

are most commonly used to validate BP estimation devices. These two

standards propose exact experimental protocol and BP estimation accuracy

thresholds that must be met in order for the device to be certified under the

given standard [56].

These standards are being followed by the leading digital BP estimation

device manufacturers, such as Omron Healthcare. They use these standards

and the corresponding validation protocols to validate their devices, which

are commonly used in medical institutions around the world [57].

Given the widespread use and medical consensus about the requirements

of these standards, we discuss their details and our system in the context of

the two standards in the following sections.
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5.4.1.1 British Hypertension Society (BHS)

First is the British Hypertension Society (BHS) standard. BHS grades BP

measurement devices into three grades, A, B and C, based on their total

percentage of absolute errors under three different thresholds, i.e. 5, 10 and

15 mmHg [23]. The detailed grading of the BHS standard is listed in Table

5.7.

Percentage of errors

Grade <= 5 mmHg <= 10 mmHg <= 15 mmHg

A 60 85 95

B 50 75 90

C 40 65 85

D Worse than grade C

Table 5.7: Requirements for specific BP estimation device grades as given

by the BHS standard [23].

Our system achieved grade B for SBP and grade A for DBP using the

clinical dataset with maximum personalization, as shown by the percentages

of errors in Figure 5.5.
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Figure 5.5: Percentages of errors under thresholds given by the BHS stan-

dard for the clinical dataset at maximum personalization.

With the more difficult everyday-life dataset, our system achieved grade

C for SBP and grade A for DBP, as shown by the percentages of errors in

Figure 5.6.
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Figure 5.6: Percentages of errors under thresholds given by the BHS stan-

dard for the everyday-life dataset at maximum personalization.

5.4.1.2 Advancement of Medical Instrumentation (AAMI)

Second is the Advancement of Medical Instrumentation (AAMI) standard [23].

The AAMI requires BP measurement devices to have mean errors <= 5

mmHg and the corresponding standard deviations <= 8 mmHg, respectively.

It was successfully met by our best-performing deep learning method at max-

imum personalization using the clinical dataset for both SBP and DBP. The

everyday-life dataset lowest SBP errors were borderline acceptable, while

DBP errors were fully acceptable.

Overall, deep learning regression model has shown the lowest MAE and

is a prime candidate for use in production, followed by the Random Forest

model.

A final observation is that the DBP errors and standard deviations are
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typically much lower compared to the SBP errors. This is expected, since

DBP is generally more stable with less variations compared to SBP and is

also in accordance with most related work discussed in Chapter 2.



Chapter 6

Web service

The architecture of the BP estimation system was briefly discussed in Chap-

ter 3. To shortly summarize, the PPG signal is collected via a sensor embed-

ded in a wristband and is then sent to a connected smartphone via bluetooth.

Subsequently, the phone interacts with the predictive model through a web

service, which then returns the BP prediction for the user, as illustrated

in Figure 6.1. The reason behind the requirement of a web service lies in

the high complexity of the signal preprocessing module, which depends on

MATLAB and its toolboxes.

The current prototype uses a generic RESTful web service, which period-

ically receives a POST request with a JSON payload containing 30 seconds

the raw PPG signal from the client. The signal is then saved into a .csv file.

This format was chosen, as it is extremely generic and allows for interac-

tion between software written in any programming language (e.g., MATLAB

preprocessing module and Keras Python machine learning module, if deep

learning model is used).

Once the raw PPG is saved by the web service, it is then read by the

preprocessing module, which cleans the segment and obtains the high quality

cycles. These are again saved into an intermediate .csv file.

Once the .csv with high quality cycles is created, the machine learning

module is invoked. It computes the features and feeds them into the predic-
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Figure 6.1: Schematic of the prototype system.

tive model. Currently, the machine learning module does a small amount of

training of the general model, if ground-truth BP is provided as input along-

side the PPG segment. This is done with the purpose of personalization of

the model. Finally, the BP prediction is returned to the user’s devices in the

form of a JSON response.

Such a prototype design of the system allows for usage of any machine

learning model independently of the preprocessing or wristband, making the

system modular and robust. The whole process with a 30-second PPG seg-

ment without additional training takes around one second, making it viable

for usage in real time.



Chapter 7

Conclusions

7.1 Summary

We have developed a continuous BP estimation system, which comprises two

main modules, namely the signal preprocessing and machine learning module.

The former is responsible for reading the PPG signal, detecting peaks and

cycles, and cleaning the PPG signal of noisy segments, with the purpose of

obtaining only the high-quality parts of the signal. The latter first calculates

a number of features from the aforementioned high-quality PPG signal and

feeds them into a machine learning model. This model does the regression

and finally returns SBP and DBP predictions.

The system was validated on two datasets, one from a hospital environ-

ment (medical dataset from the MIMIC database) and the other from an

everyday-life setting (collected at JSI). Several experiments were conducted,

which evaluated the models’ performance in terms of MAE. The most im-

portant was the LOSO experiment, which evaluated the generalization and

robustness of the created models. It was determined that personalizing the

models with some data from the specific subject greatly enhances the results.

Using the MIMIC clinical dataset, deep learning regression achieved the

lowest MAESBP of 5.61 mmHg and MAEDBP of 3.82 mmHg in the LOSO

experiment. Both were achieved at maximum personalization, which corre-
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sponds to roughly 5-10 measurements (30 minutes) of subject-specific BP

ground-truth alongside corresponding PPG signal used in the training.

With the everyday-life dataset, deep learning was not a viable algorithm

because the dataset was too small. The lowest achieved MAESBP was 8.40

mmHg and the lowest MAEDBP was 4.20 mmHg, this time using the Random

Forest algorithm.

The two described models were complemented with a micro-batch REST-

ful web service for BP estimation, which allows for the interaction between

the user’s wristband and phone, and the model. The service periodically

accepts a POST request with the raw PPG signal, which is then prepro-

cessed by the first module. The result of the preprocessing is used by the

second module to calculate the features, which are then fed into the regres-

sion model. The predictions returned by the model are forwarded back to

the user’s wristband.

7.2 Contributions

The main contribution of this thesis is the creation of a minimally obtrusive

system for continuous BP estimation, using only the PPG signal. As the

PPG sensor is embedded in a wristband, such a system allows for great

freedom in the activities of the user and does not hinder or restrict the user

in almost any way, while offering BP estimations on a near real-time basis.

The main novelty lies in the merged signal preprocessing methodology, which

combines state of the art approaches with custom modifications, creating a

robust and effective preprocessing module capable of dealing with noisy data

coming from most wristbands.

The secondary contribution is the successful validation of this approach

using an elaborate experimental setting, which has shown, that the cre-

ated models achieve low MAE, which mostly meet the requirements of the

AAMI and BHS standard. The system was validated on two datasets, one

from a clinical setting and another collected from 10 individuals during their



7.3. DISCUSSION AND LIMITATIONS 89

everyday-life routine. So far, related work has focused on limited data, usu-

ally coming from databases or recorded in restricted controlled environments,

using specialized equipment. This makes the collection and validation of the

system on field collected data that much more valuable.

7.3 Discussion and limitations

One major limitation of our work arises from the low quality of the PPG

signal collected with a wristband. It may happen that the preprocessing

module removes nearly all the data due to its low quality. There is some

possible regulation via hyper-parameters, which determine how strict the

cleaning is, however, some signals can have extremely erratic movements

within short windows, causing the preprocessing module to discard whole

windows.

This in turn causes doubts about the performance of the system during

physical activity, where the the contact between the PPG sensor of the wrist-

band and the skin is continuously compromised, making the signal extremely

noisy.

The second limitation comes from the fact, that we have not received a

custom developed final version of the wristband with a display on time, as it

was predicted in the project. This means that predictions cannot be shown

directly on a wristband but rather on the phone, which is connected to the

wristband.

The final limitation lies in the fact that deep learning regression has

proven to be the best with clinical dataset, however, this algorithm was not

validated using the everyday-life dataset due to its small size.

The developed prototype can in theory be used with any wristband capa-

ble of recording and saving PPG on a phone in a .csv file with the required

format. This is possible since the web service is generic and the system is

device independent. However, for the purpose of our experiments and eval-

uation, Empatica E4 wristband was used, so real life device independence
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was not yet validated other than with our experiments, which used the same

system for two datasets originating from different devices.

In order for our system to meet the regulations on medical devices given

by the European Commission, which would allow the device to be used in

medical institutions in Europe, a large amount of additional time, effort,

and financial support would be necessary, as the regulatory framework is

extremely complex and requires a number of tests of the device, which go

beyond just accuracy [58]. The regulatory framework requires exact classifi-

cation of device, a study of user acceptance, a study of the level of invasive-

ness, etc. Furthermore, extensive and strict testing with a notable amount

of real patients is mandatory, which in turn requires a participating medical

institution and the approval of the ethics committee.

7.4 Future work

There are some possible continuations of our work, which will be additionally

explored in the future.

First, more data should be collected from an everyday-life setting, allow-

ing for deep learning methods to be applied on an everyday-life dataset.

Second, the methodology should be additionally tested and verified dur-

ing physical activity, where the arm and wrist are moving, causing severe

distortions in the signal.

Third, as we have created models for two datasets, which originate from

the same problem domain and are thus related, transfer learning [59] could

be considered. Transfer learning attempts to use the knowledge derived from

one problem on another, when both problems are similar or originate from the

same domain. Our two datasets are prime candidates for such an approach.

Finally, potential testing using hypertensive patients and their doctors

should be conducted. The BP should be estimated using the developed

system and be monitored with traditional cuff-based devices simultaneously.

This would yield feedback from the doctors, which would be a useful indicator
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of whether such a system could be used by patients as a supplement or

compliment to the traditional cuff-based devices.
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