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Povzetek

V tej doktorski disertaciji preučujemo Teorije poenotenja z grupo E6.
Omejili smo se na renormalizabilne supersimetrične modele, kjer se fermioni
Standardnega modela nahajajo v treh družinah fundamentalne upodobitve 27,
medtem ko sestavljanje modelov poteka v Higgsovem sektorju. V vseh modelih
predpostavimo Z2 simetrijo, pod katero so upodobitve fermionskega sektorja lihe,
upodobitve Higgsovega sektorja pa sode.

Pred analizo samih modelov najprej pripravimo vso potrebno infrastrukturo
za računanje z grupo E6: definiramo njeno Lijevo algebro, zberemo potrebna
orodja za opis njenih irreducibilnih upodobitev, poǐsčemo v teh upodobitvah
stanja, ki nas zanimajo, in z njimi končno izračuamo invariante.

Z vsemi orodji za E6 pripravljenimi, se nato posvetimo sistematičnemu
študiju modelov od preprosteǰsih h bolj kompliciranim, in skušamo med njimi
najti realistične modele. Prvi kriterij je, ali lahko v modelu spontano zlomimo E6

vse do grupe Standardnega modela v enem koraku. Izkaže se, da najpreprosteǰsi
modeli tega ne zmorejo. Model, ki ima v Higgsovem sektorju le upodobitve 27,
27 in 78, vsako v poljubno mnogo kopijah, lahko zlomi kvečjemu do SU(5). Prav
tako so neustrzni modeli s Higgsovem sektorjem 351′ ⊕ 351′, 650 term model s
parom 351⊕ 351 s poljubno mnogo dodanimi 27 in 27.

Spondatni zlom simetrije pa je uspešen v model 351′ ⊕ 351′ ⊕ 27 ⊕ 27,
ki mu pravimo prototipni model. V tem modelu naletimo na nepričakovano
težavo, ko ne moremo opraviti razcepa dublet-triplet. Odpravimo jo lahko
z dvema različnima nadgradnjama Higgsovega sektorja, ko dodamo še en par
27⊕27 (z dodatnimi omejitvami) ali pa upodobitev 78; dobljena modela po vrsti
imenujemo model I in model II. V obeh modelih najdemo ustrezno rešitev za
vakuum, uspešno opravimo razcep dublet-triplet, analiziramo Yukawin sektor in
izračunamo masne matrike za lahke fermione. Čeprav je v Yukawinih sektorjih
modela I in modela II mehanizem mešanja okusov različen, pa so ostale njune
lastnosti podobne. V obeh modelih se izkaže, da spekter lahkih delcev ustreza
stanjem v MSSM, medtem ko so družine vektorskih kvarkov in leptonov na
skali poenotenja: naši modeli E6 (generično) torej ne napovedujejo lahkih
vektorskih stanj. Lahki nevtrini dobijo maso prek gugalničnega mehanizma tipa
I in II, medtem ko sta desno-ročni nevtrino in singletni nevtrino približno na
skali poenotenja. V obeh modelih smo tudi določili prispevke h protonskem
razpadu dimenzije 5 in utemeljili, da so lahko dovolj majni, saj se nekateri
tripleti mediatorji ne sklapljajo s fermioni SM, hkrati pa poenotenje konstant
ne potrebuje več tripleta lažjega od skale poenotenja, saj imamo veliko stanj in
s tem več možnih pragov.

Ugotovili torej smo, da oba modela izpolnjujeta minimalne kriterije, vsaj
na analitičnem nivoju, da sta realistična, in zato možna kandidata za minimalni
realističen E6 modela v podmnožici renormalizabilnih supersimetričnih modelov.
Modela imata po vrsti 3 in 2 Yukawine matrike, zato je model II verjetno bolj
prediktiven.

Ključne besede: fenomenologija onkraj Standardnega modela,
supersimetrične teorije poenotenja, E6, spontani zlom simetrije,
rešitev za vakuum, razcep dublet-triplet, Yukawin sektor, protonski
razpad

PACS: 11.15.Ex, 12.10.Dm, 12.15.Ff, 12.60.Jv, 14.60.Pq

9



10



Abstract

In this PhD thesis we study Grand Unified Theories based on the E6 group.
We limit ourselves to renormalizable supersymmetric models, with the Standard
Model fermions contained in three families of the fundamental representation
27, while model building takes place in the breaking sector. Also, similarly as in
SU(5), we impose a Z2 matter parity under which the fermionic sector is odd,
while the breaking sector is even.

First, we extensively prepare all the necessary infrastructure for computation
in the E6 group. We define the E6 algebra, gather the necessary tools for the
description of its irreducible representations, identify in these representation the
states of interest, and then compute the invariants with these representations.

With all the E6 tools prepared, we then systematically study various models,
proceeding from the simple to more complicated, and assess whether they are
realistic. The first criterion is whether the models permit a one stage breaking
from E6 to the Standard Model group. The simplest models fail in this regard.
We show that the (renormalizable) models with breaking sectors consisting of
representations 27, 27 and 78 cannot break beyond SU(5), regardless of the
number of representations. Also, if we base the breaking sector on a pair
351⊕ 351, with an arbitrary number of copies of 27 and 27, or take the breaking
sector to be 351′ ⊕ 351′ or 650, we also cannot break into the Standard Model
group.

A successful breaking does occur in the model 351′ ⊕ 351′ ⊕ 27 ⊕ 27, which
we call the prototype model. An unexpected problem with this model, however,
is its inability to perform doublet-triplet splitting by fine-tuning. We cure this
problem in two extensions of this model, called model I and model II, where we
introduce an extra 27⊕ 27 pair (with some restrictions) or an extra 78 into the
breaking sector, respectively. In these models, we find solutions breaking to the
Standard Model and use them to successfully perform doublet-triplet splitting
and analyze the Yukawa sector and compute the mass matrices of the low-energy
fermions. In the Yukawa sectors of model I and model II, the mechanisms of
flavor mixing are different, but other features are similar. In particular, we find
that the low-energy spectrum in both models is that of the MSSM, with families
of vector-like quarks and leptons all at the GUT scale: the E6 models under
consideration thus do not predict light vector-like states. The light neutrinos get
masses via type I and type II seesaw mechanism, while the right-handed neutrino
and the singlet neutrino are roughly at the GUT scale. In both models, we also
compute contributions to D = 5 proton decay; we argue that the decay rate can
be sufficiently suppressed, since not all decay-mediating triplets of the model
couple to the fermions, and furthermore coupling unification no longer requires
one of the triplet states to be lighter than the GUT scale due to many possible
heavy thresholds.

We find that both model I and model II satisfy the minimal criteria for being
realistic (at least at the analytic level), and thus are possible candidates for the
minimal E6 model in the subset of renormalizable supersymmetric models. The
two models have 3 and 2 Yukawa terms respectively, which means model II is
likely more predictive.

Keywords: beyond the Standard Model Phenomenology, supersym-
metric Grand Unified Theories, E6, spontaneous symmetry breaking,
vacuum solution, doublet-triplet splitting, Yukawa sector, proton
decay
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Abbreviations and conventions

DT Doublet-triplet

EOM Equations of motion

EW Electroweak

GUT Grand Unified Theory

MSSM Minimal Supersymmetric Standard Model

QFT Quantum Field Theory

RG Renormalization Group

SM Standard Model

SUSY Supersymmetry

UV Ultraviolet

VEV Vacuum expectation value

We use the following conventions for the Pauli matrices σi and Gell-Mann matrices λa:

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
. (1)

λ1 :=

0 1 0
1 0 0
0 0 0

 , λ2 :=

0 −i 0
i 0 0
0 0 0

 , λ3 :=

1 0 0
0 −1 0
0 0 0

 ,

λ4 :=

0 0 1
0 0 0
1 0 0

 , λ5 :=

0 0 −i
0 0 0
i 0 0

 , λ6 :=

0 0 0
0 0 1
0 1 0

 ,

λ7 :=

0 0 0
0 0 −i
0 i 0

 , λ8 :=
1√
3

1 0 0
0 1 0
0 0 −2

 . (2)
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1 Introduction

The culmination of particle physics in the 20th and 21st century is a theory called the
Standard Model. This theory successfully describes the known elementary particles
and all the known interactions between them except gravity; the Standard Model is
the theory of the strong, the weak and the electromagnetic force. Although this theory
boasts an unprecedented experimental success in describing processes at subatomic
levels, there are various experimental and theoretical puzzles, which hint at physics
beyond the Standard Model. Various extensions of the Standard Model have been
proposed, and one intriguing possibility is that of unification of the Standard Model
forces; these theories are called Grand Unified Theories, and they aim to unify the
strong, weak and electromagnetic forces into a single type of force at high energies.

There are many proposed models of unification scenarios, with the most popular
being those based on the SU(5) and SO(10) gauge groups. Another candidate is the
group E6, which is often cited as promising and was identified as such early (see [1]) into
the GUT program, which began with [2]. Despite the potential promise of E6, there are
no complete and realistic models of E6 GUT, at least to the author’s knowledge, in the
literature so far. With complete we mean a top-down analysis of a model, where one
considers both symmetry breaking and the Yukawa sector simultaneously, as well as
address issues such as doublet-triplet splitting; with realistic we mean that the models
aim to describe the fermion Standard Model masses and mixing angles correctly, at
least with no apparent deficiencies at the analytic level. There have been occasional
studies of isolated topics of E6 model building in the past; the Yukawa sector of E6

models was for example studied in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], while symmetry
breaking in some simple cases was also studied: a renormalizable supersymmetric case
in [14], a non-renormalizable supersymmetric case in [15], and non-supersymmetric
renormalizable cases in [16, 7].

There are probably two reasons for the lesser popularity of E6. The first is the
complexity of the E6 group, which is bigger than both SU(5) and SO(10). It is not part
of the orthogonal or unitary families, which lend themselves quite well to visualisation
or at least intuition, and are easily constructed by generalization (e.g. such as for the
SO(N) groups in [17]). The second reason is a lack of specific motivation: SU(5) is
the smallest possible GUT group, while SO(10) has certain interesting features, such
as the automatic inclusion of the right-handed neutrino and thus elegantly explaining
neutrino masses. Although E6 does contain some (phenomenologically) interesting
features, such as the presence of vector-like quarks and leptons in its fundamental
representation 27, it also rolls back some of the advantages gained from moving from
SU(5) to SO(10). In SO(10), for example, there is automatic R-parity conservation
(see [18, 19, 20]) with the 126 breaking rank ([21, 22, 23]), which is lost when SO(10)
is embedded into E6. Furthermore, the situation is also somewhat complicated by the
fact that the simplest models do not break into the Standard Model group, such as
the 27⊕ 27⊕ 78 renormalizable supersymmetric model of [14].

The goal of this doctoral dissertation is to fill the gap in top-down E6 model
building, with studying the simplest models one can write and finding realistic
candidates, and also to gather some technical details on the E6 group, which can
be used as a good reference for any future work in E6 GUT. Due to their greater
simplicity, we shall focus on supersymmetric renormalizable models.

The dissertation is organized as follows: in section 2 we briefly introduce the various
concepts from particle physics used later on without much hesitation. Section 3 is



20

devoted to group theory and the E6 group in particular, providing all the necessary
infrastructure for model building. Here, we remind the reader of some basic group-
theoretic facts and how E6 fits into the picture of simple groups and its potential
advantages. We then give the explicit form of its Lie algebra, analyze its lowest
dimensional representations, review some computational tools and finally present some
computations of invariants. We then study various models in section 4. First,
we describe the general setup of the models and then present some unrealistic
models with arguments why they cannot work. We then analyze a prototype model,
351′⊕ 351′⊕ 27⊕ 27, which is not realistic by itself due to what seems a minor glitch,

but sprouts two realistic extensions: the models 351′ ⊕ 351′ ⊕ 27 ⊕ 27 ⊕ 2̃7 ⊕ 2̃7 and
351′⊕351′⊕27⊕27⊕78, which we dub “model I” and “model II”, respectively. We find
that the low-energy spectrum in these models is that of MSSM, while the vector-like
states are at the GUT scale.

The dissertation is partly based on the paper [24], and some additional work not
yet published.

Note: sometimes we color code for greater clarity. The coloring of VEVs is
according to their energy scale: red signifies the GUT scale, while blue signifies the
EW scale.
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2 Elements in Particle Theory

In this section, we make a brief presentation of the necessary concepts in particle theory
(well-known from the literature), which will then be used in the model building section
(section 4) as needed. This section partly functions also as a resource for the notation
and conventions used later on.

The topics under consideration are QFT and Yang Mills theories in section 2.1,
the Standard Model in section 2.2, Supersymmetry in section 2.3, GUTs with a few
examples in section 2.4 and finally section 2.5 with various concepts used later on.

2.1 QFT and Yang-Mills Gauge theory

Since Quantum Field Theory and Yang-Mills gauge theory are textbook type topics,
we make only a very brief introduction here, and refer the reader for more information
to the standard literature, for example [25, 26].

Quantum Field Theory is a successful joining of both Quantum Theory and the
Special Theory of Relativity. The theory is specified by giving a Lagrange density L,
which is integrated over all spacetime to obtain the action S:

S =

∫
d4x L. (3)

The objects in the Lagrangian are fields, and they map from the spacetime manifold
to a target space, which is a representation of the Lorentz group. The target space
specifies the type of field: the simplest objects are scalar fields, spinor fields (with
spin 1/2) or vector fields. Unlike in a classical theory, where the fields would obey
the Euler-Lagrange equations, all degrees of freedom in a quantum field theory are
second-quantized (via path integrals for example), with quanta representing particles
associated with each type of field.

Analytical computation in QFT is undertaken perturbatively, where each term
in the Lagrangian, which is not a kinetic term or a mass term, is treated as a
small perturbation of the free theory. The perturbative expansion corresponds to an
expansion in Feynman diagrams with the increasing number of loops. Contributions
from Feynman diagrams, which have no loops, are called tree-level, and they represent
the first approximation. In this PhD thesis, we will mostly be concerned with model
building and not precision prediction; loop diagrams will not be computed at any point,
since our interest is first and foremost in the qualitative aspects of models based on
the group E6.

Interactions in QFT are incorporated through gauge theory. Postulating that the
theory is invariant under local transformations (or gauge transformations) of some Lie
group G (different group elements are applied at different spacetime points). If ψ is the
object being transformed, and it transforms as U(x)ψ(x), then ∂ψ will not transform
with U(x); for this reason, we define the covariant derivative D by

Dµ := ∂µ − igAaµ t̂a, (4)

where ∂µ is the usual gradient operator, ta are the generators of the group G, g
is a coupling constant, and Aaµ are called gauge fields, which transform under a
gauge transformation, such that the covariant derivative of the field transforms as
Dµψ(x) 7→ U(x)Dµψ(x). The quanta of the field Aaµ are called gauge bosons, and they
are carriers of the interaction. In a gauge theory, the Lagrangian therefore needs to
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be invariant under local (gauge) transformations; this is achieved by adding terms
formed from an invariant combination of fields, and a derivative of any field needs to
be changed to a covariant derivative.

Defining the matrix Aµ as the linear combination of group generators,

Aµ := Aaµ t
a, (5)

we define the the gauge field strength Fµν by

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]. (6)

In Yang-Mills gauge theory, the kinetic term of the gauge fields is written as

− 1
2c

Tr(F µνF µν), (7)

where c is such that the when expanding this expression, the (∂µAν)
2 term has the

normalizing factor 1/2 in front of it. Expanding the field strength in the generators of
the symmetry implicitly defines the component field strength F a

µν :

Fµν = F a
µν t

a. (8)

While the gauge potentials Aaµ are present (as degrees of freedom) in any gauge
theory, the spinor field content (also called the matter content) and the scalar degrees
of freedom depend on the model of the theory.

2.2 The Standard Model

The Standard Model is the theory of strong, weak and electromagnetic interactions.
It is a non-abelian Yang-Mills theory based on the Standard Model gauge group
SU(3)C × SU(2)L × UY (this is a textbook topic; see for example [27, 28]). The gauge
bosons of the strong interaction SU(3)C are called gluons, while the electroweak part
SU(2)L × U(1)Y contains the weak interaction and the hypercharge U(1)Y , which is
spontaneously broken into the electromagnetic U(1)EM (more on this a bit later). It is
well-tested experimentally, and beside small hints like neutrino oscillations and dark
matter, there are currently few clues of physics beyond the SM.

We label the representations of the SM group by (a, b, c), where a denotes the
dimension of the SU(3)C representation, b denotes the dimension of the SU(2)L
representation, and c denotes half-hypercharge Y/2. We thus have 8 gluons in (8, 1, 0),
and the 3 W and single Y gauge boson in (1, 3, 0) and (1, 1, 0), respectively. All in all,
we have 12 gauge bosons in the Standard Model.

The matter content of the theory consists of three families, each of which has the
following fermionic representations (all are written as left-handed Weyl fermions, so
they consists of a particle and its antiparticle):

Q ∼ (3, 2,+1/6), uc ∼ (3, 1,−2/3), dc ∼ (3, 1,+1/3),

L ∼ (1, 2,−1/2), ec ∼ (1, 1,+1). (9)

The upper row consists of quarks: the left-handed up and down quarks are in Q,
while the right-handed up and down quarks are in uc and dc, respectively. The lower
row consists of leptons: the left-handed electron and neutrino are in L, while the
right-handed electron is in ec. The Standard Model historically does not contain any
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right-handed neutrinos, although the phenomenon of neutrino oscillations point to non-
vanishing neutrino masses, with the right-handed neutrino being one of the possible
explanations. Note that we have used a common type of notation, where right-handed

fields are written as conjugated left handed fields: ψc := Cψ
T

(bispinor notation),
where C = iγ2γ0 is the charge conjugation operator.

The Standard Model also contains a representation of scalars (the Higgs doublet):

H ∼ (1, 2,+1/2). (10)

This scalar field has the potential

V (H,H†) = −µ2H†H + λ (H†H)2. (11)

Writing

H =

(
h+

h0

)
, (12)

we take the minimum of the potential at

〈H〉 =

(
0

v/
√

2

)
, (13)

where v = µ/
√

2λ and it is called the vacuum expectation value. Due to a nonzero
v, the theory is no longer SU(2)L × U(1)Y symmetric (v is rotated into the second
component) — we say the gauge theory was spontaneously broken by the Higgs
mechanism. The remaining symmetry is only a U(1) symmetry (electromagnetism),
under which h0 is neutral; this symmetry has the generator Q = t3L + Y/2, where
t3L is the third generator of SU(2)L, and Y is the generator of U(1)Y . We call this
phenomenon symmetry breaking: although the theory (and the equations of motion)
have the full symmetry, the vacuum solution (minimum of the potential) has a smaller
symmetry. We look at two consequences of this symmetry breaking:

• The following terms in the Standard Model Lagrangian are called the Yukawa
terms (written schematically without spinor or gauge indices):

LYukawa = Y ij
U (Q)i(uc)j H + Y ij

D (Q)i(dc)j H∗ + Y ij
E (L)i(ec)j H∗, (14)

where summation of all gauge indices and spinor indices is implied. These terms
represent an interaction of two fermions and the Higgs fields. Plugging in the
VEV 〈H〉, these interactions give mass terms for the quarks and leptons.

The Yukawa sector of the Standard Model has an important feature: flavor
mixing. Once the EW VEV is present, we get the mass terms Yf v/

√
2; the mass

eigenstates (matrix mf ) are computed by biunitary transformations; one writes
mf = V f†

L (Yfv/
√

2)V f
R , where V f

L and V f
R are the left and right unitary matrices

(f = U,D,E). There are 3 Yukawa matrices, so 3 + 3 unitary matrices V f
L and

V f
R , but there are only 5 SM representations for which one can redefine the flavor

basis by a rotation in the families. In the flavor basis, one of the Q-terms will
thus always have off-diagonal values — hence flavor mixing interactions. The
misalignment of the flavor basis and the mass basis can be described by the
CKM matrix VCKM = V U†

L V D
L ; this matrix can be parameterized (for 3 families

of fermions) with 3 mixing angles and one CP-violating phase.
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• The kinetic terms of the Higgs doublet

(DµH)†(DµH) (15)

give gauge boson mass terms m2

2
AµA

µ, once 〈H〉 is plugged in. For every broken
generator, which is not part of the symmetry of the solution, we get a massive
gauge boson. This means that SU(2)L×U(1)Y → U(1)EM breaking causes three
gauge bosons to become massive (theW+, W− and Z0), while the photon remains
massless.

If a global symmetry is broken, the Goldstone Theorem states that there is
a massless scalar state for each broken generator. In gauge theories with
broken local symmetry, the massless states can be rotated away by a gauge
transformation, thus disappearing from the theory, with the degree of freedom
transferred to the longitudinal polarization of the massive gauge boson.

2.3 Supersymmetry

Here, we briefly present the idea of supersymmetry; more information on SUSY and
MSSM can be found in [29, 30].

The Lorentz symmetry in Quantum Field Theory can be extended to include
generators, which transform between particles of different spin. With this addition
the symmetry generators form a structure called a superalgebra, which is a Z2 graded
Lie algebra: the Lie algebra splits into g = g0⊕ g1, where g0 represents even (bosonic)
elements and g1 represents odd (fermionic) elements. The Lie bracket of two even or
two odd elements is even, while the Lie bracket of an even and odd element is odd.
The Lie super-bracket operation of two generators manifests as a commutator [., .] if
at least one element is even, and as the anticommutator {., .} if both elements are odd.

In the Lorentz superalgebra, we supplement the angular momentum operators Mµν

and the linear momentum operators P µ with pairs of odd operators Qα and Qα̇, where
α and α̇ are spinorial indices of Lorentz types (1/2, 0) and (0, 1/2), respectively. The
N = 1 superalgebra, where we add only one pair of supercharges Q and Q, is the
one of phenomenological interest, since the representation theory of N > 1 Lorentz
superalgebras shows that there are no appropriate chiral supermultiplets. The N = 1
SUSY algebra has the following (anti)commutation relations (writing only non-trivial
ones):

[Mµν ,Mρσ] = −i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ), (16)

[Mµν , P ρ] = −i(ηµρP ν − ηνρP µ), (17)

[Mµν , Qα] = i
2
(γµνQ)α, (18)

{Qα, Qβ} = −2(γµC)αβPµ, (19)

where ηµν = diag(1,−1,−1,−1), γµν = 1
2
[γµ, γν ], with γµ the Dirac matrices

satisfying the relation {γµ, γν} = 2ηµν , and C is the charge conjugation operator
((γµ)T = CγµC). Note that also (Qα)† = Qα̇.

In this extended symmetry, the multiplets are called supermultiplets. Since the
supercharges Q and Q transform between states of different spin, the supermultiplets
contain multiple particles of different spin. For N = 1 supersymmetry, there are two
kinds of supermultiplets (below we consider on-shell degrees of freedom):
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1. The chiral multiplet (ψ, φ): it contains one complex scalar φ and one left-handed
spin 1/2 fermion ψ.

2. The vector multiplet (Aµ, λ): it contains the gauge boson Aµ, as well as a left-
handed spin 1/2 fermion λ.

If we have a theory, which we want to make supersymmetric, we need to add so called
superpartners: the fermionic superpartners of gauge bosons Aµ are called gauginos λ,
the scalar superpartners of fermions ψ are called sfermions φ, and for any Higgs scalar
fields, we need to add fermionic superpartners called Higgsinos.

Although there exist formalisms which are manifestly supersymmetric, we will
not mention them here. We can simply view a supersymmetric theory as any other
theory, where we include all the terms given the degrees of freedom we have available:
supersymmetry then manifests itself in special relations among the coefficients of
different operators. It turns out that a supersymmetric theory has the following
Lagrangian (see for example [29]):

L = Lkinetic + LYukawa + Lextra − V, (20)

Lkinetic = (Dµφ)†i (Dµφ)i + i
2
ψiσµ(Dµψ)i − i

2
(Dµψ)iσµψi

− 1
4
F a
µνF

aµν + i
2
λiσµ(Dµλ)i − i

2
(Dµλ)iσµλi, (21)

LYukawa = −1
2

∂2W (φ)

∂φi ∂φj
ψiψj − 1

2

∂2W (φ)

∂φi ∂φj
ψiψj, (22)

Lextra = +ig
√

2(ψiλ
a
)(ta)ij φ

j − ig
√

2φ†i (ta)ij(ψ
jλa), (23)

V (φi, φj) =
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 + 1

2
g2
∑
a

(
φ†i (t

a)ij φ
j
)2

. (24)

We have the kinetic terms, the Yukawa terms, the potential of the scalar fields
consisting of F -terms and D-terms (respectively), and the extra terms with the
fermion-sfermion-gaugino interaction. The generators ta are in the same representation
as the chiral multiplet scalars φi (we can view all the gauge group irreducible
representations of chiral multiplets forming one big reducible representation under
the gauge group). The function W (φi) is a holomorphic function of the scalar fields,
has mass dimension 3, and is formed from the most general scalar terms compatible
with gauge symmetry.

If we supersymmetrize SM in a minimal way, we get the “Minimal Supersymmetric
Standard Model” or MSSM. Beside the vector supermultiplets (8, 1, 0), (1, 3, 0) and
(1, 1, 0) (we added 12 gauginos: 8 gluinos, 3 winos and 1 bino), we add the following
matter content (per family) in chiral supermultiplets:

Q ∼ (3, 2,+1/6), dc ∼ (3, 1,+1/3), uc ∼ (3, 1,−2/3),

L ∼ (1, 2,−1/2), ec ∼ (1, 1, 1),

Hu ∼ (1, 2,+1/2), Hd ∼ (1, 2,−1/2). (25)

We added new sfermion and Higgsino degrees of freedom. Furthermore, since
the superpotential W is holomorphic and due to anomaly cancellation, we needed
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to introduce two Higgs fields Hu and Hd (unlike in SM, where we only have
H ∼ (1, 2,+1/2)). The superpotential of the MSSM is

W = µHuHd + Y ij
U (Q)i(uc)j Hu + Y ij

D (Q)i(dc)j Hd + Y ij
E (L)i(ec)j Hd, (26)

giving the Higgs mass via the µ terms, while the other terms are represent Yukawa
interaction. Note that we have omitted the ucucdc, QLdc and LLec terms, which could
also be formed. These terms need to be avoided, because they lead to unacceptable
phenomenological consequences (such as nucleon decay, since they violate lepton and
baryon numbers). We can forbid them for example by a Z2 symmetry called R-parity,
which can be defined by (−1)3(B−L)+2s, where B and L are the baryon and lepton
number, and s is the spin of the particle. Under R-parity, all SM fields are even, and
the superpartners are odd.

Since the low-energy theory we observe is the Standard Model, and not MSSM,
supersymmetry needs to be broken somewhere above 1 TeV. Although mechanisms
for SUSY breaking exist, we will not go into them here; whatever the mechanism, we
can imagine that below the SUSY breaking scale, we get extra terms of dimension less
than 4, called the soft terms, which parametrize the breaking. The terms consist of
gaugino masses, sfermion (scalar) masses, and trilinear scalar terms (A-terms). The
scale of SUSY breaking is not uniquely predicted by theory (but it should be as low
as possible, if we want to use SUSY for alleviating the hierarchy problem).

If a theory is supersymmetric, it becomes much simpler compared to a non-
supersymmetric theory with the same degrees of freedom; in SUSY theories, for
example, we have some nearly miraculous cancellations in the calculation. The main
phenomenological motivation of supersymmetry is to alleviate the hierarchy problem
(the scalar masses, for example, are now protected by the chiral symmetry of the
fermions); low-energy SUSY also enables unification of gauge couplings in GUT theories
without introducing any new degrees of freedom between the SUSY scale and the GUT
scale. Also, the lightest supersymmetric partner (the one with odd R-parity) is a
candidate for Dark Matter in such theories.

2.4 Grand Unified Theories

Grand Unified Theories are extensions of the Standard Model, where the strong,
weak and electromagnetic interactions unify into one single type of interaction at high
energies (first proposed in [2]; in general, see [31]). The main concept is to have a gauge
theory with a (simple) symmetry group, which includes the SM group as its subgroup.
The unified theory would then spontaneously break via the Higgs mechanism to the SM
group at some high energy MGUT, similar to how electroweak symmetry SU(2)L×U(1)Y
breaks into electromagnetism U(1)EM at the EW scale MEW ∼ 100 GeV.

Two important typical predictions of GUT models are the following:

• Proton decay : proton decay is mediated by color triplets (3, 1,−1/3) and
(3, 1,+1/3), which are hard to avoid in GUT models. Since the triplets will
have typical mass ∼ MGUT, and proton decay has not yet been experimentally
observed with a half-life limit of & 1034 years, the GUT scale is predicted to be
at very high energies above & 1016 GeV in SUSY GUT theories.

• Magnetic monopoles : since in GUT theories, new degrees of freedom activate
at very small scales, these theories typically predict magnetic monopoles or
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other monopole-type objects. Their non-observation can be explained by cosmic
inflation.

In GUTs, particles in representations of the Standard Model join together (possibly
with new particles) to form irreducible representations of the unification group. Also,
since the unified theory has a simple group (cannot be decomposed into factors) as its
symmetry, there is only one coupling constant g; this is in contrast with the Standard
Model, where we have a gauge coupling gi for each of the factors: the strong coupling
g3, the weak coupling g2 and the hypercharge coupling g1 = gY (properly normalized).

In QFT, the couplings change their value depending on the (energy) scale µ that
we investigate the theory at. We call this phenomenon RG running, and the gauge
couplings change according to equations

dgi
d ln(µ)

= − βi
16π2

g3
i . (27)

The coefficient βi is called the beta function, and it depends on the matter content of
the theory. It is computed to be (at leading order)

βi = 11
3
T (G)− 2

3
T (F )− 1

6
T (S), (28)

where G, F and S refer to representations of gauge bosons, (Weyl) fermions, and
(real) scalars, respectively. The i refers to the factor in the Standard Model, but the
formula holds generally for any model. The number D2(R) is called the Dynkin index
of the representation R and it is defined by the normalization of the scalar product of
generators in the representation R (denoted by tR):

Tr
(
taR t

b
R

)
= D2(R) δab. (29)

It is computed for the representation R of the group of factor i, for which we are
computing the coupling RG flow.

We compute Dynkin indices for all representations of gauge bosons, Weyl fermions
and real scalars present in the theory below scale µ, and add them up according
to equation (28). If there are new (non-singlet) particles at some scale µ, then
the RG running is modified by adding their contribution to the beta function. In
supersymmetric theories, gauge bosons are part of the vector supermultiplet, which
also contains fermion superpartners, while the Weyl fermions and complex scalars are
together in chiral supermultiplets. For this reason, the beta function in SUSY can be
computed by

β = 3T (V )− T (C), (30)

where V refers to the vector multiplet and C to the chiral multiplets.
We now give some important comments on RG flow in GUTs:

• For a GUT to be consistent (with single stage breaking), there needs to be one
gauge coupling above MGUT, while there are 3 different gauge couplings of the
SM below MGUT. The SM gauge couplings therefore need to unify (take the same
value) at MGUT. Although the running can be influenced at high energy by new
degrees of freedom, the logarithm in RG equation (27) implies that the lighter the
degree of freedom is, the more it will contribute to the RG running from EW to
GUT scale. Assuming no extra light degrees of freedom, the coupling constants of
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the SM do not unify, but if we assume the existence of supersymmetric partners at
scales somewhere above ∼ TeV, the MSSM RG flow will unify the couplings a few
orders of magnitude below the Planck scale MPl (MPl = 1/

√
G ∼ 1018 GeV, in

units c = ~ = 1 and G being Newton’s gravitational constant), where we expect
the GUT scale to be. For this reason, it seems that GUTs prefer supersymmetry;
the E6 models we will be considering will all be supersymmetric.

• We note that once the gauge group is chosen, we already chose the gauge bosons
of the theory (they are in the adjoint representation), while “matter content”
(fermions and scalar) further depend on the model. We see from equations (28)
and (30) that matter content will always contribute negatively to the beta
function. An overall positive beta function implies asymptotic freedom (at large
energies), while a negative beta function can lead to a Landau pole. Typically,
GUTs will have enough matter content for the beta function to be negative, so
Landau poles can present a problem, especially if they occur before the Planck
scale. In that case, the GUT can have a cut-off scale Λ just one or two orders of
magnitude above MGUT, which would also imply that non-renormalizable terms
with MGUT/Λ factors could also become important. Despite this worry, we shall
analyze renormalizable models only (as these are the simplest), but due to the
reasons described, we shall prefer models with as little matter content as possible.

The most popular unified theories are based on groups SU(5) and SO(10). Since
both are subgroups of E6, it is instructive to first look at these simpler examples.

2.4.1 SU(5) theory

In an SU(5) theory, we unify the matter content of each family in the following way:

• The right-handed down quarks and the lepton doublet fit into the 5 of SU(5) due
to the following SU(5)→ SM decomposition:

5 = (3, 1,+1/3)⊕ (1, 2,−1/2). (31)

We label this representation by 5F and write

5
i
F = (dc)i ⊕ (L)i. (32)

• The left-handed quarks, and the right handed electron and up quarks are part
of the 10 of SU(5):

10 = (3, 2, 1/6)⊕ (3, 1,−2/3)⊕ (1, 1,+1). (33)

Writing this representation as 10F , we have

10iF = (Q)i ⊕ (uc)i ⊕ (ec)i. (34)

If we consider a SUSY model of SU(5) GUT, we then add a pair 5H ⊕ 5H , which
contains the Hu⊕Hd pair of Higgs fields, which acquire VEVs at the EW scale. With
these fields, and assuming R-parity, we can write the Yukawa part of the superpotential
schematically as

W
∣∣
Yukawa

=
∑
i,j

Y ij
5 10iF · 5

j
F · 5H + Y ij

10 10iF · 10jF · 5H . (35)
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Since the Higgs fields 5H⊕5H do not have SM singlets, they cannot acquire GUT scale
VEVs lest they break also the Standard Model group. We need to add another SU(5)
representation, such as the adjoint 24H , which can acquire a VEV: written as a 5× 5
traceless matrix, 〈24〉 = v diag(2, 2, 2,−3,−3), where v is determined by the equations
of motion. The breaking part of the superpotential can then be written by the terms

m 5H · 5H + λ 5H · 24H · 5H +m′ 242
H + λ′ 243

H , (36)

which indeed gives v 6= 0.
Note that this is only one possible model based on SU(5). This model, for example,

has the problematic prediction MT
D = ME at the GUT scale (since both are controlled

by Y5), and a vanishing neutrino mass.

2.4.2 SO(10) theory

We consider here a renormalizable SUSY GUT model based on SO(10), which is
considered the minimal realistic model of this type (this model is studied in more
detail in [32, 33]).

In SO(10), we unify all the fermion content of one SM family into a single
representation. We have the SO(10)→ SU(5) decomposition

16 = 10⊕ 5⊕ 1, (37)

which means that beside the SM fermions from one family, we have an extra SU(5)
singlet 1, which functions as a right-handed neutrino. In the SO(10) arena, neutrino
masses thus arise naturally.

Beside having three copies 16iF , we also need to add some further SO(10)
representations, which will contain the Higgs fields, as well as the GUT scale VEVs.
The model in question also contains the Higgs fields 10H ⊕ 126H ⊕ 126H ⊕ 210H . With
these fields, one can write the breaking sector by

W |breaking = m10 102
H +m126 126H · 126H +m210 2102

H

+ λ10H · 210H · 126H + λ̄ 10H · 210H · 126H

+ λ′ 126H · 210H · 126H + λ′′ 2103
H . (38)

The superpotential of the Yukawa sector consists of two terms, which couple to the
fermionic 16F ’s:

W
∣∣
Yukawa

=
∑
i,j

Y ij
10 16iF · 16jF · 10H + Y ij

126
16iF · 16jF · 126H . (39)

Note that this model has the following features:

• R-parity in this model is automatic. It arises from the way SO(10) invariants are
constructed: since the 16F ’s are the only representations carrying spinor indices,
they need to be present in pairs so that spinor indices can be contracted. This
conclusion is true in models, where 126 and not 16 break the rank (see [18, 19,
20, 21, 22, 23]).

• The Yukawa sector has 2 terms; both terms are needed to describe flavor mixing.
If we had only one term, the Yukawa matrix could be diagonalized and the flavor
basis would align with the mass basis. The Higgs fields Hu and Hd therefore
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need to be present in both 10 and 126 simultaneously. For that to happen, a
representation is needed which couples the 10 and the 126, and thus the 210 is
added.

• The GUT scale breaking happens due to VEVs in the representations 210, 126
and 126. These are computed by solving the equations of motion.

2.4.3 Proton decay

In an effective theory (still with SM as the gauge group), operators which break baryon
and lepton number can lead to proton decay (for proton decay in GUTs, see [34, 35,
36]). Schematically, these operators can be written as qqql, where q represents a quark
(or antiquark), and l represents a lepton (or antilepton), so that the B − L quantum
number is preserved by these operators. Ultimately, both q and l are fermions, so the
effective operator in the Lagrangian has dimension 6, and is suppressed by two masses
m1 and m2 due to dimensional analysis:

Leff =
qqql

m2
. (40)

We have omitted here the family indices; for operators of this type in the
superpotential, having multiple families is crucial, otherwise these terms in the
superpotential vanish. Depending on the origin of this term, m1 and m2 can represent
different mass scales of the theory; due to this fact, we talk of D = 6, D = 5 and
D = 4 proton decay. In the SUSY GUT context, they are defined below:

• D = 6: here, m1 = m2 = MGUT, so we effectively have

Leff =
qqql

MGUT2

. (41)

Operators of this type arise due to exchange of a gauge boson (for example
the (3, 2,−5/6) in SU(5) GUT), or through a scalar triplet-antitriplet pair
(3, 1,−1/3)–(3, 1,+1/3) or (3, 1,−4/3)–(3, 1,+4/3) by mass insertion.

• D = 5: this type of proton decay is present for example in SUSY theories and is
represented by

Leff =
qqql

MSUSY MGUT

. (42)

Here, the operator arises from integrating out a triplet-antitriplet pair from the
superpotential, getting a qqql term in the superpotential (4 scalars). Through
the Yukawa terms of the SUSY theory, this then turns into an operator with two
fermions and two scalars (sfermions); the diagram can then be closed into a 4-
fermion diagram with the help of the SUSY fermion-sfermion-gaugino interaction
vertices.

Since in our models MSUSY �MGUT, this is the dangerous type of proton decay,
which can lead to big decay rates compared to D = 6. For this reason, in SUSY
GUT theories we are primarily interested in D = 5 proton decay operators [37,
38, 39, 40].
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• D = 4: this type of decay would come from the operators of type

Leff =
qqql

M2
SUSY

, (43)

which leads to a too fast decay rate incompatible with observation. This type
of decay would be mediated by a down-type squark and can be forbidden by
imposing R-parity (or matter parity). Under this parity, one no longer has the
interaction vertices of two SM fermions and a squark, since the SM fermions are
even and the squark is odd under this parity.

In our models, D = 4 proton decay will be forbidden by imposing matter parity.

2.5 Various concepts and mechanisms

In this subsection, some important concepts used throughout later sections, are
introduced in a brief manner.

• Majorana mass : mass terms couple left-handed particles of a certain type to
right-handed particles of the same type. If the left-handed and right-handed
degrees of freedom are separate, we call these particles Dirac particles. But there
is another irreducible representation of the Lorentz group, where we take a field
Ψ ∼ (1/2, 0)⊕(0, 1/2) of the Lorentz group, which satisfies the constraint Ψ = Ψc

(where the definition of c has already been given in section 2.2). This constraint
implies that these degrees of freedom are their own antiparticles. Writing the
left-handed and right-handed components of Ψ in 2-component notation by ψL
and ψR (a Weyl spinor column), respectively, the Dirac mass terms are ψ†LψR and
ψ†RψL, while the Majorana mass terms are ψTLε2ψL and ψTRε2ψR (where ε2 = iσ2).
A Majorana particle can therefore form its own mass term.

• Seesaw mechanism: suppose one adds a right-handed neutrino νc to the Standard
Mode; it is a singlet under the Standard Model and it can thus have a Majorana
mass term, schematically M νcνc. Taking account also of the mass terms
schematically written as mννc, which appear after EW symmetry breaking, one
has the mass matrix for the (ν νc) pair(

0 m
m M

)
. (44)

In the m�M regime, the mass matrix has the approximate eigenvalues M and
−mm

M
. Taking m to be at the EW scale and M to be much higher, we thus get a

light neutrino mass, where the EW scale is suppressed by the extra factor m/M ,
thus explaining the smallness of neutrino mass (. 1 eV for neutrino masses).

The important feature of the mass matrix in equation (44) that a bigger mass M
means a smaller mass for the light neutrino, is called the seesaw mechanism. It
need not involve a right-handed neutrino, and there are three possibilities at tree
level how to obtain the effective (LH)2/M operator of neutrino mass, represented
in Figure 1 and defined below:

– Type I: (1, 1, 0) fermions, aka right-handed neutrinos νc (denoting an
unrelated degree of freedom to ν). Studied in [41, 42, 43, 44, 45].
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Type I

〈H〉

ν χ

Δ

νc

Type II Type III

〈H〉 〈H〉 〈H〉〈H〉

ν ν ν ν ννc

〈H〉

χ

Figure 1: Different types of seesaw mechanism.

– Type II: (1, 3,±1) scalars, denoted ∆ and ∆. Studied in [46, 47, 48, 49].

– Type III: (1, 3, 0) fermions, denoted in this thesis by χ. Studied in [50].

• Vector-like particles : vector-like particles are particles in a (pseudo)real
representation of the gauge group. This can ether be a (pseudo)real irreducible
representation R (for example the 10 of SO(10)), or a direct sum R ⊕ R where
R is a complex irreducible representation (for example 5 ⊕ 5 of SU(5)). These
representations can form their own mass term, i.e. the Lagrangian term mRR ·R,
with the mass mR independent of the EW Higgs mechanism, meaning they can
be present at any scale. Within the context of GUT, including our E6 models,
the mass mR is around the GUT scale.

• Doublet-triplet splitting : This is a problem present in many GUTs. We refer
here to Hu and Hd type doublets (1, 2,±1/2) and triplets/antitriplets of the type
(3, 1,−1/3) and (3, 1,+1/3). A doublet/antidoublet (at least one, we can also
have a multi-Higgs low-energy theory) need to be light — of the order of the EW
scale — corresponding to the SM Higgs, while triplets need to be heavy due to
their contribution to the proton decay rate. This is sometimes hard to achieve,
since most lowest dimensional representations of SU(5) (and other unification
groups) contain either both the doublet and the triplet or none.

• Missing partner mechanism: This is a mechanism to achieve doublet-triplet
splitting best understood in SU(5) language (see [51, 52, 53]). The representation
50 contains a triplet but not a doublet, which can be used to our advantage. The
simplest case is to have the representations 5⊕ 5⊕ 50⊕ 50⊕ 75; forbidding the
5 · 5 mass term, we have the mass term for the triplets coming from

(
5 50

)( 0 〈75〉
〈75〉 m50

)(
5
50

)
. (45)

Notice that both triplets have mass due to m50 and 〈75〉 being nonzero, while the
doublet mass matrix consists only of the upper-left entry (they are present only
in 5 ⊕ 5), which has zero-mass. We thus have a zero-mass doublet–antidoublet
pair and two massive triplets (the Higgs mass can be reintroduced as a small
m5 mass, but this still keeps both triplets heavy). Note that the presence of the
representation 75 was crucial; without it, we cannot couple the 5 and the 50,
laving a triplet massless.

This mechanisms can be extended to bigger groups and to more representations,
but the idea is the same and one can treat the arguments still in the SU(5)
language. Suppose we have 2n triplets–antitriplet pairs (with one coming from
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50⊕ 50), and 2n− 1 doublet-antidoublet pairs, so that we form the triplet mass
matrix (written in n× n blocks) by(

0 C
B A

)
, (46)

where the last column and last line of this matrix are removed to obtain the
doublet matrix. If this matric has full matrix rank (the number of independent
columns, which is equal to the number of independent rows) 2n, then blocks A, B
and C need to have full rank n, and all triplets are massive (no zero eigenvalues
of the matrix). The doublet matrix, however, has matrix rank 2n− 2: the n− 1
remaining columns of A are independent, and the rank of the submatrix of the
first n columns is also n − 1 due to the big zero block and the B block having
now only n − 1 rows. For the doublets, only 2n − 2 of the 2n − 1 get a mass,
and therefore the mechanism provides one massless double. To achieve full rank
in the block B, a 75 of SU(5) needs to be present.
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3 Group Theory and E6

In this section, we make a brief introduction to group theory and look at where the E6

group comes from. We then study the e6 Lie algebra, how to perform computations
with it, and present some explicitly computed results and definitions, which will later
be relevant for model building. The subsections will thus gradually shift topics from
more mathematically oriented to those motivated exclusively by physics. This section
presents all the necessary details on the E6 group; this will enable section 4 to focus
on building specific models, while many issues and definitions common to all models
are found in section 3.

The general material on group theory is based on [54, 55, 56]; for any computation
with representations we will casually use Slansky [57]. Also, there exists a dedicated
book on exceptional groups [58], while the computational tools of E6 are based on [59].
Some efforts of computation within E6 (such as the Clebsch-Gordan coefficients) were
made in [60, 61, 62].

3.1 Preliminaries, the classification of simple Lie algebras

Within Gauge theory 2.1, interactions are modelled by internal local symmetries. At a
given space-time point, the symmetries form a “continuous group of transformations”,
a so called Lie group. In this section, we briefly review the relevant results, tools and
notation from the theory of Lie groups, by which we prepare the necessary background
for a more focused E6 study later on. This will include the well-known classification of
simple Lie algebras, which will illuminate the role of E6 in the bigger picture. Although
the statements will be correct, we will adopt a more conversational style compared to
what a mathematician would use.

A Lie group G is a group and a smooth manifold, in which the operations of
multiplication and inversion are smooth. Implicitly assuming the use of charts, this
means an element of G can be (locally) denoted by a set of real parameters, denoted
here by αa, whose number is equal to the dimension of the manifold: we will call this
number simply the dimension.

Examples of Lie groups are the classical matrix groups, which we define below:

• The general linear group GL(n) is the group of all invertible n × n matrices. It
can be further distinguished by adding a R or C to specify that we are considering
real or complex matrices, respectively.

• The special linear group SL(n) is the group of all n × n matrices A with
det(A) = 1. We can consider either R or C matrices.

• The orthogonal group O(n) is the group of n × n matrices O, for which
OOT = OTO = I. We can consider either R or C matrices.

• The special orthogonal group SO(n) is the group of all orthogonal n×n matrices
O, for which det(O) = 1.

• The unitary group U(n) is the group of n × n complex matrices U , for which
UU † = U †U = I.

• The special unitary group SU(n) is the group of all unitary n × n matrices, for
which det(U) = 1.
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• The symplectic group Sp(n) is the group of all (2n)× (2n) matrices (either R or
C), for which AJA† = A†JA = J , where J is the canonical skew-linear form:

J :=

(
0 In×n

−In×n 0

)
. (47)

A Lie algebra g is a vector space endowed with an extra operation [., .] : g× g→ g
called the Lie bracket, which needs to be bilinear, antisymmetric and for which the
Jacobi identity holds:

[x, [y, z]] + [y, [z, x]] + [x, [x, y]] = 0, (48)

for all x, y, z ∈ g. The Lie algebra can be real or complex, depending on whether the
underlying vector space is real or complex.

The fundamental result of Lie theory states that the local structure of a Lie group
is intimately connected to its Lie algebra. One of the results, which will concern
us the most, is the existence of a locally bijective map called the exponential map,
exp : g → G, which sends the zero vector 0 ∈ g to the group unit element 1 ∈ G.
Although one can construct this map in an abstract setting of smooth manifolds (via
integral curves of left-invariant vector fields under the action of the group), the map
becomes much more concrete if one imagines that we have realized the Lie algebra
properties on a subset of matrices of a given size (we found a “representation”). If
we choose a basis of vectors in the Lie algebra, and label them by i ta (with the index
a taking values from 1 to the dim(G), of course), we can write an arbitrary element
of the Lie algebra g by a linear combination αat

a, which we now view as a matrix.
The matrices ta can be complex, with the factor i in front for convenience (if the
representation of the group is unitary, adding the i ensures that ta are hermitian),
while the parameters αa take real values in a real Lie algebra, or complex values in a
complex Lie algebra. One can then write the exponential map as

exp : iαat
a 7→ eiαa t

a

, (49)

with the exponential of the matrix defined by the Taylor series eA =
∑∞

i=0A
i/i! (which

always converges). One can therefore label an element in the group by the parameters
αa:

G(αa) = eiαa t
a

. (50)

In the concrete realization (representation) of the Lie group, we view G(αa) as a matrix,
which is invertible. Strictly speaking, every element of a connected finite-dimensional
Lie group can be written as a finite product of such exponential terms. If we take the
derivative with respect to one of the parameters a0, we roughly get the basis vector ta

in the algebra:

d
dαa0

G(αa)
∣∣
αa=0

= ita0 . (51)

This result is why we can view the basis ta as infinitesimal transformations in the a-th
direction and we call them generators of infinitesimal transformations.
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Due to the bilinearity of the Lie bracket operation, it is sufficient to know the
commutation relations of the generators:

[ta, tb] = i
∑
c

fabctc, (52)

where the coefficients fabc are called structure constants.
If G and H are two Lie groups, then G ×H is the product group, where elements

are formally written as ordered pairs (g, h), with g ∈ G and h ∈ H. Multiplication
and inversion are then defined by

(g1, h1) (g2, h2) := (g1 g2, h1 h2), (53)

(g1, h1)−1 := (g−1
1 , h−1

1 ). (54)

At the algebra level, if the Lie algebras of G and H are g and h, respectively, then the
Lie algebra of G×H is g⊕h, where the ⊕ symbol denotes the direct product of vector
spaces, and the commutator of different terms in the direct sum being zero. This is
equivalent to having [t, t′] = 0 for any generator t of g and any generator t′ of h.

The (Lie) subgroup of a Lie group G, is a subgroup which is also a submanifold
(there are some topological subtleties here, which we will not go into). If H is a
subgroup of G (H ⊂ G), and their corresponding Lie algebras are h and g, respectively,
then h is a Lie subalgebra of g (g ⊂ g), i.e. h is a vector subspace of g and h is closed
under the commutator.

By further studying Lie algebras of Lie groups, it is possible to get a full
classification. We outline the summary of how this classification theorem arises,
supplemented by definitions of important concepts which arise:

• The Cartan subalgebra of a Lie algebra g, is the maximal subalgebra of g, in
which all elements commute. Although the Cartan subalgebra is not unique, it
has a unique dimension. We call it the rank of the group. We specify it by
picking the maximal set of generators {ta}, which commute among themselves;
viewing the generators as matrices, the Cartan subalgebra generators can thus
be simultaneously diagonalized. In the diagonal basis, the i − th basis vector
ei is thus an eigenvector of all Cartan subalgebra generators: (ta)ei = (wi)

aei
(no sum over i) for a Cartan generator ta, where (wi)

a is called the a-th weight
of the state ei. We can collect the weights of a given state ei into a vector ~wi,
with its length equal to the rank of the group. The number of states depends
on the dimensionality of the matrices ta (depends on the “representation”, see
section 3.4). The set of all states {ei} can thus be represented as a set of vectors
{~wi} in the space Rk, where k is the rank of the group.

• Let the dimension of G be n and its rank k. The adjoint representation is a
matrix form of the generators ta, where they are of dimension n × n (the same
as their number), and the action of the a-th generator ta on the state eb is given
by

t̂a eb = [ta, tb]. (55)

By virtue of this formula, we can denote the basis states eb simply by the
generators tb, and the action on such a state corresponds to the commutator.
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We can realize the adjoint representation matrices by defining them in terms of
the structure constants of the algebra:

(ta)bc := −i fabc. (56)

• The weights of the states in the adjoint representation are called roots. If G has
dimension n and rank k, then we can represent the roots as n vectors in Rk,
which we call the root system. Since the Cartan subalgebra generators commute
amongst themselves, their weights will be zero, so there are k zero-vectors in the
root-system. It turns out that for a state with nonzero root ~w, there is always
a state with the opposite root ~w. The n − k nonzero roots can thus be divided
into pairs. Choosing a (k − 1)-dimensional hyperplane (which does not contain
any of the nonzero roots) in Rk through the origin ~0, we split the space Rk into
two half-spaces; this also separates the nonzero roots into positive roots on one
half-space and negative roots in the other half-space (it does not matter which
half-space is defined as positive and which space is negative). The simple roots
are defined as the smallest subset of positive roots, such that every positive root
can be written as a linear combination of simple roots with non-negative integer
coefficients. The number of simple roots is k, and they span the space Rk. The
set of simple roots is called the simple root system.

• An invariant subalgebra h of g is a subalgebra, for which [h, g] ∈ h for any
h ∈ h and any g ∈ g. A Lie algebra g is simple, if it is not Abelian (the Lie
bracket is non-trivial) and it contains no invariant subalgebras other than g and
0. A Lie algebra g is semisimple if it is a direct sum of simple Lie algebras:
g = g1 ⊕ . . . ⊕ gm. Semisimple Lie algebras are essentially Lie algebras without
any separate U(1) factors.

• It turns out that the simple root system of a semisimple Lie algebra has certain
properties. The simple root systems of different factors gi (which are simple Lie
algebras) in a semisimple Lie algebra g are, for example, orthogonal. In a simple
Lie algebra, pairs of simple roots can only have certain angles between them, and
the angle (if it is not 90◦) also determines the ratio of lengths of the two simple
roots, as shown in Table 1. We can thus represent the simple root system by a
Dynkin diagram: we draw a node for each simple root and then connect pairs
of roots with a single, double, triple or no line, depending on the angle between
them.

• We have thus deduced the following: if the Lie group contains no separate U(1)
factors, it corresponds to a semisimple Lie algebra. The semisimple Lie algebra is
a sum of simple Lie algebras, each of which has a root system and that in turn has
a simple root system and a connected Dynkin diagram. The Dynkin diagrams
of simple terms in a semisimple algebra are disconnected from each other. We
will classify the possible semisimple Lie algebras by classifying all the possible
connected Dynkin diagrams. Certain Dynkin diagrams are forbidden either to
the properties of simple root systems, or they cannot be realized geometrically.
We now state the result of the theorem: the possible Dynkin diagrams and their
Dynkin labels are given in Figure 2.

The groups, which the Dynkin diagrams from Figure 2 represent, are identified in
Table 2. In essence, the classification theorem states that there are 4 infinite families of
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Dynkin diagrams, along with 5 so called “exceptional” diagrams. The 4 infinite families
correspond to the special orthogonal groups SO(n) (even and odd, separately), special
unitary groups SU(n) and symplectic groups Sp(2n), which correspond to rotations
in the spaces Rn (real), Cn (complex) and Hn (quaternion), respectively. The 5
exceptional groups are called G2, F4, E6, E7 and E8; in contrast with the four infinite
families of classical matrix groups, they cannot be intuitively visualized, but they are
all connected to the octonions O (for details, see [55]).

The Dynkin diagram of a simple Lie algebra can quickly reveal some of its
properties. The number of nodes in the diagram equals the rank of the algebra,
while the existence of a non-trivial symmetry axis which mirrors the Dynkin diagram
into itself reveals the existence of complex representations for that Lie algebra (see
section 3.4 for definition).

Table 1: The types of connections between nodes in a Dynkin diagram.

type of connection angle length ratio directed?

none 90◦ no constraint n/a
single 120◦ 1 : 1 no

double 135◦
√

2 : 1 yes

triple 150◦
√

3 : 1 yes

The infinite families of algebras:

An

Bn

Cn

Dn

The exceptional algebras:

G2

F4

E6

E7

E8

Figure 2: Classification of simple Lie algebras via Dynkin diagrams.

3.2 Motivation for E6

Accepting the paradigm of GUT, we look for possible simple groups, which
could describe the unification of forces from the Standard Model group
SU(3)× SU(2)× U(1). The desired properties of the unification group G, largely due
to phenomenological reasons, are the following:

• If we are looking for “true” unification of all SM forces, the group should be
simple (or at least all SM forces unify in a single simple factor).

• SinceG has to be spontaneously broken to the SM group, the SU(3)C×SU(2)L×U(1)Y
group need to be a subgroup of G.
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Table 2: Identification of Dynkin labels with the names of the algebras in their complex
and real form.

Dynkin label complex form real form # generators rank

An sl(n+ 1,C) su(n+ 1) (n+ 1)2 − 1 n
Bn so(2n+ 1,C) so(2n+ 1) (2n+ 1)(2n)/2 n
Cn sp(n,C) sp(n) n(2n+ 1) n
Dn so(2n,C) so(2n) (2n)(2n− 1)/2 n

E6 complex e6 real e6 78 6
E7 complex e7 real e7 133 7
E8 complex e8 real e8 248 8
F4 complex f4 real f4 52 4
G2 complex g2 real g2 14 2

• Since all the SM fermions are in complex representations, with only one member
of the conjugate pair present (“SM is a chiral theory”), we prefer a group G
which has complex representations. If G does not have complex representations,
we automatically have a doubling of states of the Standard Model, with
the phenomenological constraint that one member of each conjugate pair of
representations needs to be heavy.

• Smaller groups are preferred to larger ones due to simplicity. The big groups
with big representations also have large Dynkin indices of their representations,
so adding matter content can quickly lead to a Landau pole in the RG of the
gauge coupling soon after the GUT scale.

Since there exists a classification of simple Lie algebras (see section 3.1), we can
systematically go through the possible choices:

• The smallest unitary group, which contains the SM group, is SU(5). In this
group, the SM fermion representations are gathered into two representations of
SU(5): 10 and 5. Bigger unitary groups are also possible, but they contain
usually unwanted extra states; the fundamental representation n of SU(n) (with
n > 5) will contain the 5 of SU(5), as well as n− 5 SU(5) singlets. The unitary
groups have complex representations.

• Among the orthogonal groups, the odd ones SO(2n + 1) do not have complex
representations. Among the even ones, it is the groups SO(4n+ 2) which have a
conjugate-pair of complex inequivalent representations. The smallest orthogonal
group, which contains the SM group, is SO(10). This group has a 16 dimensional
spinor representation, which contains all the SM fermions in one family, as well
as a right-handed neutrino, which is phenomenologically very attractive due to
nonzero neutrino masses. Higher orthogonal groups would be also possible, but
their spinor representations (used for describing chiral fermions) will necessarily
involve both 16’s and 16’s of SO(10), which makes them less attractive.

• The symplectic groups do not have complex representations.

• Among the exceptional groups, G2 and F4 do not contain the SM groups, while
E7 and E8 do not have complex representations. The only viable candidate here
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is E6, which both contains the SM group and has complex representations. The
fundamental representation 27 of E6 is especially useful, since it contains all the
SM fermions of one family. Model building is also simplified by the fact that E6

is anomaly free.

We see that given the chosen criteria, the best candidates for a unification group
are SU(5), SO(10) and E6. While SU(5) and SO(10) theories are well studied in the
literature, E6 is less so, partly due to its complexity and partly due to it being an
exceptional group and thus lending computation less intuitive.

Compared to SU(5) and SO(10), there are some features of E6, which may be
exploited in model building. Not all features may apply to any one model, but we list
the possibilities below:

• Like in the 16 of SO(10), and unlike the SU(5), the 27 of E6 provides matter
unification of a family in a single representation. Furthermore, SO(10) and E6

also naturally provide a right-handed neutrino.

• One could try to unify the fermions with the Higgs: the fermionic 16F is
joined with the Hu and Hd of MSSM, present in the 10 of SO(10), in a single
representation 27.

• The 27 of E6 automatically contains vector-like quarks and leptons, which is not
automatic in SU(5) and SO(10).

• The extra states in the 27 could be used to try to fit part of the second family
of fermions into the representation of the first family. This would provide a
possible mechanism for small mixing between the 5̄’s of SU(5) of the first two
generations, which is desirable due to small K–K mixing (the models would have
contributions to box diagrams via fermion–sfermion–gaugino vertices).

• Unlike in SO(10), where the 164 exists, the 274 in E6 is not an invariant. This
would imply that any 274 effective operators of proton decay need to have extra
factors of 〈R〉/Λ, where 〈R〉 is a GUT scale VEV of the representation R and
Λ is the cut-off of the theory. These extra factor lead to suppressions in proton
decay.

3.3 A practical approach to the E6 Lie algebra

The e6 Lie algebra is 78-dimensional and hence E6 has 78 generators. This number is
much larger than 12 of the Standard Model group SU(3)× SU(2)× U(1), or even the
numbers 24 and 45 of the other popular GUT groups SU(5) and SO(10), respectively.
Any kind of analysis and computation within E6 and its representations will therefore
be complicated and tedious; to make things as transparent and efficient as possible, it
is clear we will have to organize the generators in a systematic way.

Since the classical groups, such as the orthogonal and unitary families, lend
themselves much easier to an intuitive understanding and visualization, we will
try to better understand e6 through one of its maximal subalgebras, where these
advantages can be used. Specifically, we will use the maximal “trinification”
subalgebra su(3)C × su(3)L × su(3)R (some other maximal subgroups of E6 are
SO(10) × U(1) and SU(6) × SU(2)). Similarly, we will denote the trinification group
by SU(3)C × SU(3)L × SU(3)R. The indices C,L,R refer to color, left and right, which
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is already suggestive of the embedding of the SM group we will be using: the first
factor contains the color SU(3)C intact, the second factor contains the weak SU(2)L
interaction, while the U(1)Y interaction of the SM is contained as a specific combination
of generators partly in SU(3)L and partly in SU(3)R, on which more detail will be
given later. From now on, we shall sometimes refer to the trinification group simply
as SU(3)3, with the order of the factors implicitly meant as was stated above.

The adjoint representation has the following decomposition into irreducible
representations of the su(3)3 subalgebra:

78 = (8, 1, 1)⊕ (1, 8, 1)⊕ (1, 1, 8)⊕ (3, 3̄, 3̄)⊕ (3̄, 3, 3). (57)

We label the generators of the su(3)-factors by tAC , tAL and tAR, where the index
A is the adjoint index of the su(3) algebra (A = 1, . . . , 8). We label the remaining
27 + 27 generators as tαaa′ and t̄α

aa′ , where we shall denote the su(3)C indices by
α, β, γ, . . ., the su(3)L indices by a, b, c, . . ., and the su(3)R indices by a′, b′, c′, . . .. The
mentioned indices are fundamental (upper) or anti-fundamental (lower) indices of the
su(3) algebras, so they go from 1 to 3. The t and t̄ generators are “complex generators”
in the sense of lowering and raising operators t1 ± i t2 in the su(2) algebra. As a
consequence, not all the structure constants in this basis of generators are real. It
is possible to transform to a real basis of generators by taking 1

2
(tαaa′ + t̄α

aa′) and
1
2i

(tαaa′− t̄αaa
′
), analogous to the su(2) case. The transformation properties of the real

generators under su(3)3, however, are obscured.
An arbitrary element x in the e6 algebra can be written as

e6 3 x = XA
C t

A
C +XA

L t
A
L +XA

R t
A
R + Zα

aa′ tαaa′ + Z∗αaa′ t̄α
aa′ , (58)

where XA
C , XA

L , XA
R are real coefficients and Zα

aa′ are complex coefficients, with ∗

denoting complex conjugation. The total number of real degrees of freedom of these
coefficients is 78: 24 come from XC , XL and XR, while 27 = 33 complex degrees of
freedom come from Z’s.

Note that the maximal subalgebra su(3)3 is embedded in such a way, that it
conforms to Slansky [57] and has the same conventions as left-right models. To that
effect, the commutation relations and the action on the fundamental representation
from [59] must be appropriately modified. Since the modification consists of applying
conjugation on the embedding of the factors su(3)L and su(3)R, we have to exchange
Gell-Mann matrices λA originating from these two factors (identified by the use of
indices a, b or a′, b′) with −(λA)∗ and changing the height position of all indices of the
type a, b, c and a′, b′, c′.

The commutation relations of the e6 generators, which provide the definition of the
e6 Lie algebra, are the following:

[
tAC , t

B
R

]
=
[
tAR, t

B
L

]
=
[
tAL , t

B
C

]
= 0, (59)

[
tAC , t

B
C

]
= ifABC tCC , (60)[

tAL , t
B
L

]
= ifABC tCL , (61)[

tAR, t
B
R

]
= ifABC tCR, (62)



3.3 A practical approach to the E6 Lie algebra 43

[
tAC , t

α
aa′
]

= −1
2
(λA)αβ t

β
aa′ , (63)[

tAL , t
α
aa′
]

= 1
2
(λA)ba t

α
ba′ , (64)[

tAR, t
α
aa′
]

= 1
2
(λA)b

′
a′ t

α
ab′ , (65)[

tAC , t̄α
aa′
]

= 1
2
(λA)βα t̄β

aa′ , (66)[
tAL , t̄α

aa′
]

= −1
2
(λA)ab t̄α

ba′ , (67)[
tAR, t̄α

aa′
]

= −1
2
(λA)a

′
b′ t̄α

ab′ , (68)

[
tαaa′ , t

β
bb′
]

= −εαβγ εabc εa′b′c′ t̄γcc
′
, (69)[

t̄α
aa′ , t̄β

bb′
]

= εαβγ ε
abc εa

′b′c′ tγcc′ , (70)

[
t̄α
aa′ , tβbb′

]
= (λA)βα δ

a
b δ

a′
b′ t

A
C − δβα (λA)ab δ

a′
b′ t

A
L − δβα δab (λA)a

′
b′ t

A
R. (71)

The numbers fABC are the su(3) structure constants, λA are the 8 Gell-Mann
matrices, while the δ and ε are the Kronecker and Levi-Civita symbols, respectively.
We follow the convention ε123 = ε123 = 1.

Schematically, we can separate the generators into 5 sectors: the tC , the tL, the tR,
the t and the t̄. The result of the commutators among the five sectors is represented
in figure 3.

tC tRtL t t

tC

tL

tR

t

t

tC

tL

tR

t

t

t

t

t

t

t t t

t t t

t

t

tC tRtL

tC tRtL

Figure 3: Schematic presentation of the commutation relation between the different
sectors of generators. The lengths are in proportion to the number of generators of
each type.

The first computational objective is to determine these generators explicitly, which
will provide the necessary infrastructure for further computation. Although the
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commutation relations can be used to extract the e6 structure constants and thus
get the explicit form of the generators in the adjoint representation via

(ta)bc = −i fabc, (72)

where a, b, c are adjoint indices, having the generators in the fundamental 27
dimensional representation is more useful. To that end, one has to study the action
of the 78 generators on the representation 27. The decomposition of the fundamental
representation 27 in terms of the irreducible representations of the maximal subalgebra
su(3)3 is

27 = (3, 3, 1)⊕ (1, 3̄, 3)⊕ (3̄, 1, 3̄). (73)

The above irreducible representations of su(3)3 can be written as 3 × 3 matrices,
which we respectively label by Lαa, Ma

a′ and Na′α (conforming to the notation in [59],
modified to respect the convention in [57]). The position and type of the indices reveal
the transformation properties of these matrices. The action of the generators on a
state in the fundamental representation (L,M,N) is the following:

(tAC L)αa = 1
2
(λA)αβ L

βa, (74)

(tAC M)a
a′ = 0, (75)

(tAC N)a′α = −1
2
(λ∗A)α

β Na′β, (76)

(tAL L)αa = 1
2
(λA)ab L

αb, (77)

(tAL M)a
a′ = −1

2
(λ∗A)a

b Mb
a′ , (78)

(tAL N)a′α = 0, (79)

(tAR L)αa = 0, (80)

(tAR M)a
a′ = 1

2
(λA)a

′
b′ Ma

b′ , (81)

(tAR N)a′α = −1
2
(λ∗A)a′

b′Nb′α, (82)

(tαaa′ L)βb = εαβγ δba Na′γ, (83)

(tαaa′ M)b
b′ = −εabc δb

′
a′ L

αc, (84)

(tαaa′ N)b′β = −εa′b′c′ δαβ Ma
c′ , (85)

(t̄α
aa′ L)βb = εabc δβα Mc

a′ , (86)

(t̄α
aa′ M)b

b′ = εa
′b′c′ δab Nc′α, (87)

(t̄α
aa′ N)b′β = −εαβγ δa

′
b′ L

γa. (88)

Expressions such as (tαaa′ L)βb should be interpreted as “the βb-th component in the
L-matrix part of the new state, obtained by a transformation via tαaa′”. The action of
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the generators on the fundamental representation also suggests a simple interpretation
of all the generators: while tAC , tAL and tAR perform only transformations within each
of the matrices (each of the types tC , tL and tR performs an su(3) rotation on the
columns of one of the matrices, and a rotation of the rows on another). The tαaa′
and t̄α

aa′ type generators exchange numbers between the matrices L, M and N ; more
specifically, the generators tαaa′ push the numbers from L to M , and similarly from
M to N and from N to N to L; these pushes between the L,M,N matrices can be
compactly written as L → M → N → L. The t̄α

aa′ generators push in the opposite
way: L←M ← N ← L in compact notation. We can therefore view the e6 subalgebra
as part of the su(27) algebra (albeit a small part); while the SU(27) group can rotate
between all the 27 states independently, the group E6 can also perform these rotations,
but not independently (example: SU(3)C rotates both the rows of L as well as the
columns of N).

Note that the action of generators on the fundamental representation in
equations (74)-(88) contains all the necessary information to reconstruct the generators
themselves as 27 × 27 matrices. To see this, consider an analogous equation for the
components φi of a state φ = φiei of the type

(taφ)i = Aijφ
j, (89)

(taφ)iei = Aijφ
jei, (90)

where ei denotes the basis. The equation (90) can be rewritten in the Dirac notation
with basis states | j〉 as

ta | j〉 = Aij | j〉. (91)

Multiplying by 〈i | on the left, we get

〈i | ta | j〉 = Aij, (92)

which is exactly the matrix representation of the operator ta in the basis ei.
Similarly, in equations (74)-(88), we can identify the coefficient in front of the

matrices L,M,N on the right hand sides as the matrix elements of the generator. The
analysis is complicated by the fact that the labels of the states are rather complicated,
since the states do not lie in a column of numbers, but in the 3× 3 matrices L,M,N .
They are not denoted by just one number as φi in equation (92), but rather by two
numbers (position in the matrix) as well as a letter (L,M,N). This does not prevent
us from constructing the matrices for the generators in the computer, provided we fix
the numbering of the 27 states. We chose the following labeling:

• The states in Lαa are numbered 1 through 9 in lexicographical order, i.e. the
state Lαa has the number 3(α− 1) + a.

• The states in Ma
a′ are numbered 10 through 18 in lexicographical order, i.e. the

state Ma
a′ has the number 9 + 3(a− 1) + a′.

• The states in Na′α are numbered 19 through 24 in lexicographical order, i.e. the
state Na′α has the number 18 + 3(a′ − 1) + α.

A similar labeling scheme is also used for the 78 generators:

• The generators tAC : A, numbers 1-8.
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• The generators tAL : 8 + A, numbers 9-18.

• The generators tAR: 16 + A, numbers 19-24.

• The generators Tαaa′ : 24 + 9(α− 1) + 3(a− 1) + a′, numbers 25-51.

• The generators t̄α
aa′ : 51 + 9(α− 1) + 3(a− 1) + a′, numbers 52-78.

Once the computer code for the generators in the form of 27×27 matrices generators
was successfully implemented, we also checked the commutation relations (59)-(71).

3.4 Representation theory and E6

Rigourously, a representation of the group G on a vector space V is a mapping
R : G→ Aut(V ), which respects

R(g1)R(g2) = R(g1g2). (93)

Here, Aut(V ) denotes the set of all automorphisms (bijective linear maps) V → V ,
while g1 and g2 are arbitrary elements of the group G. In equation (93), the
multiplication operation is the composition of automorphisms, while the operation
on the right-hand side is multiplication of elements within the group G. Choosing a
basis of V , the “states” in V can be denoted by columns of coefficients in the linear
expansion using this basis. Automorphisms can then represented as invertible matrices.

Similarly, a representation of a Lie algebra g is a mapping r : g→ End(V ) satisfying

r([x, y]) = r(x)r(y)− r(y)r(x), (94)

with End(V ) denoting the set of all endomorphisms and x, y ∈ g. In a given basis,
the endomorphisms can be represented as matrices. Indeed, one has all the necessary
information for computation, once the matrix forms of the generators are specified in
a given basis. One can then check the commutation relations, and construct group
elements in the form of invertible matrices via the exponential map. Because of this
close relation, we will often use sloppy language: when talking about representations,
we will sometimes talk about R or r, sometimes about their respective images, but
most of the time “representations” will actually refer to the underlying vector spaces
V . What is being referred to as “representation” in a particular situation should be
apparent from the context.

The representation R is reducible, if there exists a similarity transformation, which
brings all the group elements into block diagonal form, i.e. there exists a matrix S,
such that SR(g)S−1 has a given block form for all elements g in the Lie group G.
At the level of the Lie algebra, the representation r is reducible if there exists a
similarity transformation S, such that all generators ta can be brought into block
diagonal form by S ta S−1. The representation is irreducible, if it is not reducible.
Intuitively, reducible representations can be split into distinct parts, which transform
independently of one another, while irreducible transformations cannot be simplified
in this way. We say that the underlying vector space V of a reducible representation
R splits via V = V1 ⊕ . . .⊕ Vm, which suggests the notation R = R1 ⊕ . . . Rm; we say
the representation R is decomposed into its irreducible representations R1 to Rm.
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Two representations R1 and R2 can be combined to form a new representation
called the tensor product representation and denoted by R1 ⊗ R2. If V1 and V2 are
the underlying vector spaces of representations R1 and R2, then the underlying vector
space of R1 ⊗ R2 is the tensor product of vector spaces V1 ⊗ V2. As a consequence, if
the dimensions of V1 and V2 are n1 and n2, the dimension of the representation R1⊗R2

is n1n2. Labeling the representations by their dimensionality, we thus write the tensor
product representation as n1 ⊗ n2. The transformation matrices can be written (in
double index notation) as[

(R1 ⊗R2)(g)
]
ik,jl

=
[
R1(g)

]
ij

[
R2(g)

]
kl
, (95)

which translates to a single generator ta having the representation[
taR1⊗R2

]
ik,jl

=
[
taR1

]
ij
δkl + δij

[
taR2

]
kl
. (96)

The tensor product representation need not be irreducible, so it may be possible to
decompose it into irreducible representations. We shall write these decompositions
many times in the course of this work.

The conjugate representation of a representation R is a representation, where the
generators ta are changed into−ta∗, where ∗ denotes complex conjugation. The element
eiαa t

a
thus becomes the element e−iαa t

a∗
in the conjugate representation. We denote

the conjugate representation by R; it has the same dimensionality as the representation
R. We say that the representation R is equivalent to R, if there exists a similarity
transformation S, such that it brings one into the other, i.e. S ta S−1 = −ta∗ for all
generators ta. From the point of view of the equivalence property, there are three
different types of representations:

1. The representation R is complex if R and R are not equivalent.

2. The representation R is real if R and R are equivalent and the generators ta can
be written as matrices with real entries only.

3. The representation R is pseudo-real if R and R are equivalent and the generators
ta cannot be written as matrices with only real entries (at least one ta will have
complex entries, for example σ2 in the Pauli matrices).

The adjoint representation is for example always real. We will not specifically
distinguish between real or pseudo-real representations, but will be mostly interested
whether R and R are equivalent or not, which we will simply call real and complex.

Let the column φi denote a vector in V in a given basis, and X i
j and tij denote

the matrices in the same basis of a group element and a generator in the Lie algebra,
respectively.1 The action of the group element and the generator on a the state φi

in V are then respectively written as X i
j φ

j and tij φ
j. The indices i and j always

go from 1 to the dimension of the representation at hand. One obvious drawback of
treating all the representations in this way is that for each representation the generators
(seen here as n × n matrices) have to be computed separately. The treatment of
representations is therefore separate, with no way to connect different representations
within the formalism.

For group-theoretic computations, it is therefore much more convenient to use the
formalism of tensor methods (see [56] for general methods, [59] for E6). Using tensor

1We denote the conjugate representation by φi with a lower index.
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products of representations, one can construct higher representations from lower ones.
A (reducible) representation written as a multi-index object Φi1···in

j1···jm with n upper
and m lower indices lives in the tensor space V ⊗n⊗ (V ∗)⊗m. To know the action of the
generator t̂ or the group element X̂, we only need to know their matrix representations
tij and X i

j on the vector space V : the multi-index object transforms as

(t̂Φ)i1···inj1···jm =
n∑
r=1

tirkr Φi1···kr···in
j1···jm −

m∑
r=1

(t∗)jr
lr Φi1···in

j1···lr···jm , (97)

(X̂ Φ)i1···inj1···jm = X i1
k1 · · ·X in

kn (X†)l1j1 · · · (X†)lmjm Φk1···kn
l1···lm . (98)

Since the symmetric and antisymmetric parts of products transform separately
already under the general linear group GL(n), they will also transform separately
under G, which is represented only with some of the matrices from GL(n). Sometimes,
as in the case of the representation 351′ in E6, further relations have to be
imposed to project out the irreducible representations. Ultimately, irreducible
representations can therefore be described by multi-index objects, which satisfy certain
symmetric/antisymmetric properties under the exchange of indices and possibly some
additional relations.

A well-known way how to label the irreducible representations is the Dynkin
notation (see for example [57]), which is based on the Dynkin diagram of the Lie
algebra. Each node in the Dynkin diagram represents a simple root vector in the root
system. Each irreducible representation is uniquely determined by its highest weight,
which can be written as a linear combination of the simple roots with non-negative
integer coefficients. The root system of E6 is 6-dimensional, so we can use 6-number
sequences to label the irreducible representations, once we decide upon the order of the
nodes (we use the convention shown in Figure 4). In fact, a theorem of representation
theory states that there is a one-to-one correspondence between non-negative integer
sequences of a given length and irreducible representations for any finite-dimensional
(semi)simple Lie algebra.

E6

1 2 43 5

6

Figure 4: Numbering convention for the nodes in the Dynkin diagram of E6.

We will write the 6-number sequences for E6 in parentheses, with a small gap
left for the last number, which corresponds to the node of the E6 Dynkin diagram
which is not in the same line with the others. For example, (00000 0) labels the trivial
representation, which we will also call “the singlet”. The lowest-dimensional nontrivial
representations are written in Table 4. Coincidentally, in E6, there are two inequivalent
complex representations of dimensionality 351, which we differentiate by giving a prime
to one of them. Note that our labels conform for the most part to Slansky [57], but
we do exchange the barred and non-barred labels of 351, as well as for 351′, so that
the unbarred labels correspond to upper-index representations and the barred ones to
lower-index representations.

The Dynkin labels allow for a quick determination of some of the properties of
the representations. Although these are in principle well-known from theorems in
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representation theory, it will be instructive to go through them in the specific case
of E6. The E6 Dynkin diagram has a non-trivial mirror symmetry over the central
vertical axis. This in turn reverses the order of the first 5 integers in the Dynkin label.
Representations with symmetric labels are real (or pseudoreal), while representations
with asymmetric labels are complex. Furthermore, the labels suggest the tensorial
construction of these representations. Imagine the following naive scheme of using
indices: suppose we use 6 different types of indices, where the i-th type of index
corresponds to the basic representation with the only non-zero value in the Dynkin
label being a 1 in the i-th place; the i-th type of index therefore runs from 1 to the
dimension of this i-th basic representation. The Dynkin label of a representation then
describes how many indices of each type we need in the tensor formalism for this
representation; for example, if the first integer in the Dynkin label for a representation
is m, we will need m indices of the first type. One can further deduce that these m
indices will have to be symmetric: the Dynkin label corresponds to the state with the
highest weight in the representation (in the Dynkin basis — the basis of simple root
vectors), and this state can be tensorially constructed only by taking the maximum
weight of the first basic representation in each of the tensor factors, which is present
in the completely symmetric (as far as the first type of index is concerned) part of the
tensor.

The tensor methods become even simpler by realizing only one type of index, and
not six, is necessary for the description — this will be the fundamental index, which is
the 1-st type of index in our labeling. The 4-th and 5-th type of indices are redundant
due to the mirror-symmetry of the Dynkin diagram: they can be merely written as
lower indices of type 2 and 1, respectively. The first five indices, which correspond to
the horizontal chain of nodes (which correspond to the su(6) subalgebra of e6), have
the same properties as the indices in the unitary groups: the 2-nd type of index can
be substituted by an antisymmetric pair of 1-st type indices, while the 3-rd type of
index can be substituted by three antisymmetric indices of the 1-st type. Similarly,
following the same logic from the right side of the horizontal chain of nodes, the 4-th
type index is equivalent to two antisymmetric indices of type 5, which is equivalent to
two antisymmetric lower indices of type 1. The only remaining puzzle is the 6-th type
index, which is the adjoint index (running from 1 to 78). This can be eliminated with
the standard trick: the adjoint representation can be encoded as a linear combination
of the generators, for example as a 27× 27 matrix φij with the help of the formula

φij = φa(ta)ij, (99)

where a is the adjoint index, φa are the components in the adjoint representation,
and i and j are upper and lower fundamental indices; Einstein summation convention
applies.

In summary, a representation given by a Dynkin label can be found in a tensor,
which has as many symmetric indices of a given type as the integer in the corresponding
place in the Dynkin label indicates, and then we can further replace these indices with
the fundamental indices as instructed in Table 3. Notice that these properties can also
be read from the tensor products of the representations (tables of these are in [57]).
Also, note that a so constructed tensor does not necessarily contain only the irreducible
representation given by the above Dynkin label; to use only the correct degrees of
freedom, further relations may have to be imposed (one can guess these relation by
noting that their form has to be basis independent).
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Table 3: Translating the six types of index into using only fundamen-
tal/antifundamental indices.

index type translates into

1 one upper
2 two antisymmetric upper
3 three antisymmetric upper
4 two antisymmetric lower
5 one lower
6 one upper and one lower via the generators

Table 4: Some lowest-dimensional nontrivial irreducible representations of E6: their
Dynkin labels and corresponding dimensionality. None are omitted below dimension
1000.

Dynkin label dimensionality complex? comment

(10000 0) 27 yes fundamental
(00001 0) 27 yes anti-fundamental
(20000 0) 351′ yes
(00002 0) 351′ yes
(01000 0) 351 yes
(00010 0) 351 yes
(00100 0) 2925 no
(00000 1) 78 no adjoint
(10001 0) 650 no

The lowest dimensional representations, which will also be the most important for
GUT model building, are the 27, 27, 78, 351′, 351′, and also 351, 351 and 650 to a lesser
degree. Model building will require us to know the SM content of these representations;
in particular, the following will be very important: the number of SM singlets (denoted
S, they can acquire VEVs), and the number of weak doublets/antidoublets (1, 2,+1/2)
and (1, 2,−1/2) (denoted by D and D, respectively), as well as proton decay mediating
triplets/antitriplets (3, 1,−1/3) and (3, 1,+1/3) (denoted by T and T , respectively).
For this reason, Table 5 contains this information for the representations we will be
using, as well as our convention for the labels, their tensor construction and the Dynkin
index D2 for these representations (defined by equation (29); values from [57], where
we took into account the normalization of the 27 to be 3 in our case). Further details of
these representations will now follow separately, with a detailed analysis of the states
of significance in subsection 3.4.6.

3.4.1 The (anti)fundamental representation: 27 and 27

The fundamental representation 27 in E6 has the following decomposition into
irreducible representations of SO(10):

27 = 16⊕ 10⊕ 1. (100)

We shall now discuss the content of these representations further in terms of SU(5)
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Table 5: Construction and labels of the irreducible reps of dimension below 1000 and
their SM content: numbers of singlets, doublets, antidoublets, triplets and antitriplets.

rep dim. tensor restrictions S D D T T D2

27 ψi 2 1 2 1 2 3

27 ψi 2 2 1 2 1 3
78 φij φij = φa (ta)ij 5 1 1 1 1 12
351 Ξij Ξij = −Ξji 5 6 5 6 5 75
351 Ξij Ξij = −Ξji 5 5 6 5 6 75
351′ Θij Θij = Θji, dijk Θjk = 0 5 4 4 4 5 84
351′ Θij Θij = Θji, d

ijk Θjk = 0 5 4 4 5 4 84
650 X i

j Tr(X) = Tr(taX) = 0 11 7 7 7 7 150

and the SM group, with the knowledge of further decompositions under these groups
from subsections 2.4.2 and 2.4.1.

Since the representation 16 contains exactly all the fermion particles from one
generation of the Standard Model, with the addition of a right-handed neutrino,
it seems that the fundamental representation will be useful for describing fermionic
particles. Alongside the 16, we also have exotic states in a 10 and 1 of SO(10); an
E6 GUT model will therefore also contain these extra states, which will need to be
made heavy. Due to the SO(10) → SU(5) decomposition 10 = 5 ⊕ 5, the exotics will
consist of vector-like quarks and vector-like leptons, with the singlet 1 having the role
of another right-handed neutrino. We expect these exotics to acquire masses of the
order of MGUT, which indeed they typically will, with some further details depending
on the model.

The fundamental representation 27, when thought of as a fermionic representation,
will therefore contain the following representations in terms of the SM group:

• The standard right- and left-handed quarks: Q ∼ (3, 2,+1/6), dc ∼ (3, 1,+1/3),
uc ∼ (3, 1,−2/3).

• The exotic vector-like quarks d′ ⊕ d′c ∼ (3, 1,−1/3)⊕ (3, 1,+1/3).

• The standard left-handed lepton doublet and the right-handed electron:
L ∼ (1, 2,−1/2), ec ∼ (1, 1, 1).

• The vector-like lepton doublets L′ ⊕ L′c ∼ (1, 2,−1/2)⊕ (1, 1,+1/2).

• The SO(10) right-handed neutrino νc and the exotic E6 singlet neutrino s.

This content will form one generation of fermions in our models, so we will need
3 copies of the representation 27. For some purposes, it will be easier to think of the
states in the 27 under the decomposition E6 → SU(3)3:

27 = (3, 3, 1)⊕ (1, 3, 3)⊕ (3, 1, 3) = L⊕M ⊕N. (101)

The states are then collected into the 3 × 3 matrices L, M and N , for which the
explicit transformations under E6 were already given in subsection 3.3. We collect
more information on all of the fundamental states in Figure 5, with some further
elaboration in the following:
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• The group E6 has rank 6, so it has a 6 dimensional Cartan subalgebra of diagonal
generators. Noting that SU(3)3 is one of its maximal subgroups, we can pick two
diagonal generators from each factor. As usual in SU(3), we pick the 3-rd and
8-th generator, so the diagonal generators will be t3C , t8C , t3L, t8L, t3R and t8R. A
state in the fundamental representation can be uniquely specified by specifying
its eigenvalues under these diagonal generators. These are the numbers in the
first two columns of Figure 5. To get half-integer numbers for the eigenvalues,
we choose to specify

√
3t8C ,

√
3t8L,
√

3t8R instead of respectively t8C , t8L, t8R.

• Certain linear combinations of the diagonal generators have special significance
from the point of view of the embedding chain

SU(3)C × SU(2)L × U(1)Y ⊆ SU(5), (102)

SU(5)× U(1)′ ⊆ SO(10), (103)

SO(10)× U(1)′′ ⊆ E6. (104)

We see that t3C , t8C and t3L are part of the SM quantum numbers, but the
remaining 3 diagonal generators can be rewritten to form independent (and
pairwise orthogonal) combinations:

Y/2 = 1√
3
t8L + t3R + 1√

3
t8R, (105)

U(1)′ = −2
√

3 t8L + 4 t3R − 2
√

3 t8R, (106)

U(1)′′ = 2
√

3 t8L − 2
√

3 t8R. (107)

The half-hypercharge Y/2 is of course also part of the Standard Model. Notice
that both Y/2 and U(1)′ are present in SO(10); since the left-right symmetry
group SU(3)C × SU(2)L × SU(2)R × U(1)B−L is a subgroup of SO(10), the
diagonal generators of SO(10) will need to span only a left-right symmetric part
of the combinations. The t3L is present in the SM group, so t3R can stand on its own
in Y/2, but the t8L and t8R are present only in a left-right symmetric combination
in Y/2 and U(1)′. In contrast, The last diagonal generator U(1)′′, which is outside
SO(10), will form the remaining antisymmetric combination of t8L and t8R. The
complete set of diagonal generators in E6 of course also has to span a left-right
symmetric space (E6 is an even bigger symmetry than SO(10), which is already
left-right symmetric), which is most easily see in the original basis of generators
adapted to SU(3)3. The normalizations of the factors U(1)′ and U(1)′′ conform
to the conventions in representation decompositions E6 → SO(10) × U(1)′′ and
SO(10)→ SU(5)× U(1)′ in Slansky [57].

There are two further linear combinations of diagonal generators of physical
interest: one is the electric charge Q, with the second being the B −L charge of
the left-right models, which corresponds to the difference of the baryon number
B and lepton number L. Since we know

Q = t3L + Y/2 = t3L + t3R + 1
2
(B − L), (108)

we obtain

Q = t3L + 1√
3
t8L + t3R + 1√

3
t8R, (109)

B − L = 2√
3
t8L + 2√

3
t8R. (110)

Note: in the literature, the U(1)′ factor is often denoted U(1)χ, while U(1)′′ is
denoted by U(1)ψ [63] or sometimes by U(1)X [15].
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• The particle labels in Figure 5 for the fermionic 27 have for the most part already
been specified previously: the quarks in Q are labeled by u and d (each in three
colors), while the content of the lepton doublet L is the neutrino ν and electron
e (similarly L′ contains ν ′ and e′, Lc contains ν ′c and e′c). A quick intuitive check
that the particles are identified correctly can be performed by considering the
decomposition of the matrices L, M and N into SM representations. The color
triplets have to be in L, the color anti-triplets in N , while the leptons are in the
matrix M . The various SU(3) factors have the following effect:

– The SU(3)C factor rotates between the rows of the matrix L and between
the columns of the matrix N .

– The SU(3)L factor rotates between the rows of the matrix M and between
the columns of the matrix L.

– The SU(3)R factor rotates between the rows of the matrix N and between
the columns of the matrix M .

The color triplets are therefore positioned vertically in the matrix L, while the
color anti-triplets are positioned horizontally in the matrix N . As far as the
second factor is concerned, only the SU(2)L part of SU(3)L (with the standard
embedding) is part of the Standard Model, so the SM group only rotates between
the first two rows in M and between the first two columns in L, while all other
states in 27 are weak singlets.

• Notice that some of the particles are defined with a minus in front. In principle,
the minus is irrelevant, since all the fields (complex scalar or spinor) are defined
only up to a complex phase. The minuses are there for the same reason as the
minuses in the representation 5 in SU(5) GUT: to be compatible with the usual
labels in the Standard Model. More specifically, they come from the details
of the embedding of SU(2)L. Note that in SU(5), the standard embedding of
SU(3)C × SU(2)L is such that the fundamental representation 5 decomposes as
(3, 1) ⊕ (1, 2), with the first three entries rotated by SU(3)C , while the last two
entries rotate with SU(2)L. This means the 5 of SU(5) actually contains 2 of
SU(2)L; the 2 is equivalent to a 2 via 2i = εij2

j, where εij is the two index
antisymmetric tensor, hence one minus sign in the states e and e′. We use an
analogous reason for the states dc due to the flipped embedding of SU(2)R in the
matrix N in Figure 5.

• The # symbol represents the number of the state in a 27-entry long column ψi:
the order of these entries will specify the ordered basis, in which we write our
generators.

The anti-fundamental representation 27 will have analogous states, but with all
quantum numbers opposite. It contains the conjugate representation of the ones in 27,
so we use the following self-explanatory labels for its contents: Q̄, L̄, d̄c, ūc, ēc, ν̄c, L̄′,
L̄′c, d̄′c, d̄′ and s̄, which can be arranged into a 27-entry column ψi with a lower index.

3.4.2 The adjoint: 78

The representation 78 is the adjoint representation. It is most simply written in a
27×27 matrix φij, by taking a linear combination of the generators in the fundamental
representation:
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φij = φa (ta)ij. (111)

The index a goes from 1 to 78, so the states in the adjoint are actually the
coefficients φa. The meaning of these coefficients depends on the basis chosen for
the generators ta. A classification of the generators was already elaborated on in
subsection 3.3: due to the E6 → SU(3)C × SU(3)L × SU(3)R decomposition

78 = (8, 1, 1)⊕ (1, 8, 1)⊕ (1, 1, 8)⊕ (3, 3, 3)⊕ (3, 3, 3), (112)

we label the generators respectively by tAC , tAL , tAR, tαaa′ and t̄α
aa′ , with A being the

SU(3) adjoint index and α, a and a′ being the SU(3) fundamental indices of the factors
C, L and R, respectively. As already discussed in subsection 3.3, this basis is actually
complex due to the presence of the generators tαaa′ and t̄α

aa′ . A real basis would
instead consist of the linear combinations

tαaa
′

1 := 1
2
(tαaa′ + t̄α

aa′), (113)

tαaa
′

2 := 1
2i

(tαaa′ − t̄αaa
′
). (114)

Conversely,

tαaa′ = tαaa
′

1 + i tαaa
′

2 , (115)

t̄α
aa′ = tαaa

′

1 − i tαaa′2 . (116)

Note that the upper position of the indices in t1 and t2 is just a convention and does
not hold any significance, since these generators do not transform as neither triplets
nor antitriplets under the factors of the trinification group.

The real and the complex basis each have their advantages and drawbacks. The
complex basis far better represents the transformation properties of the generators
(and the states associated to them) under the subgroups, most notably under the
trinification group SU(3)3, for which this formalism was designed in the first place.
The complex generators t and t̄ transform as either triplets or antitriplets under each
of the factors, while the transformation rules are obfuscated when using the real basis.
The use of complex generators does require some care, though. When the Lie algebra
is over the field of real numbers, one must not forget that the complex generators will
always come in pairs and with complex coefficients, which are related to each other via
complex conjugation: we have the relation

Zα
aa′ tαaa′ + Z∗αaa′ t̄α

aa′ = Xαaa′ t
αaa′

1 + Yαaa′ t
αaa′

2 , (117)

with

Zα
aa′ = 1

2
(Xαaa′ − i Yαaa′). (118)

Here, the Z coefficients are complex, while X and Y coefficients are real. We can use
either one and still have the same number of degrees of freedom. In the complex case,
the Z coefficients determine the Z∗ coefficients by complex conjugation, and so the
coefficients in front of t and t̄ type generators are not independent in a real Lie algebra
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(this is somewhat analogous to how left-handed spinors behave compared to right-
handed spinors). Another real/complex issue is the normalization of the generators.
In the fundamental representation, where the generators are constructed as 27 × 27
matrices, the real generators form an orthogonal basis:

Tr(tA tB) = D2 δ
AB, (119)

where δAB is the Kronecker delta, and the indices A and B go from 1 to 78, and tA

are the set of all real generators in the e6 algebra in matrix form. The factor D2 is
called the Dynkin index, and it depends on the representation; for the fundamental
representation, we have D2 = 3. In the complex basis, however, we have

Tr(tαaa′ t
β
bb′) = 0, (120)

Tr(t̄α
aa′ t̄β

bb′) = 0, (121)

Tr(tαaa′ t̄β
bb′) = 2D2 δ

α
β δa

b δa′
b′ . (122)

Since our GUT models will break E6 all the way down to the SM group, it is
important to consider the decomposition of 78 into SM irreducible representations.
In the context of GUT, it is most instructive to use the breaking chain
E6 → SO(10)→ SU(5)→ SM. Under E6 → SO(10) we have

78 = 45⊕ 16⊕ 16⊕ 1, (123)

under SO(10)→ SU(5) we have

45 = 24⊕ 10⊕ 10⊕ 1, (124)

16 = 10⊕ 5⊕ 1, (125)

(126)

and under SU(5)→ SM we have

24 = (8, 1, 0) ⊕ (1, 3, 0) ⊕ (1, 1, 0) ⊕ (3, 2,−5/6) ⊕ (3, 2,+5/6), (127)

10 = (3, 2,+1/6) ⊕ (3, 1,−4/6) ⊕ (1, 1,+6/6), (128)

5 = (3, 1,−2/6) ⊕ (1, 2,+3/6). (129)

Which of the generators is which can be computed on the basis of the quantum
numbers of the generators, determined by the adjoint action (the commutator) of
the diagonal generators. After some tedious computation, one arrives at the result
presented in Figure 6, which shows the decomposition of the states in 78. Some further
clarification of this figure is given below:

• The generators are grouped according to their type: tC , tL, tR, t and t̄. The use
of color is intended to give visual clarity.

• It is the complex basis which gives states with well-defined transformation
properties under the SM group. Not only are types t and t̄ needed, but one
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also needs to consider particular combinations in the L and R sectors: we have
defined

t12+
R := t1R + i t2R, (130)

t12−
R := t1R − i t2R, (131)

and analogously for t12±
L and t45±

L .

• The figure describes how states in the representation 78 transform. The easiest
way to denote the state, however, is by their corresponding generators: the
states are actually the coefficients in front of the generators, but we nevertheless
use the generator labeling of states. There is a related subtlety in the case
of complex generators: we would expect the t-type generators (the tα) to
be color triplets due to the upper α index, and indeed they are. But their
accompanying states are actually the coefficients Zα

aa′ , which are color anti-
triplets. The coefficients always have their quantum numbers opposite to those
of the generators, completely analogous and for the same reasons as in vector
analysis, where the basis vectors transform covariantly, and their coefficients
(with the upper indices) transform contravariantly, so that the full linear
combination gives the same “physical” vector in every basis. One should also
remember that the commutation relations of the Lie algebra tell us how the
adjoint basis states transform, and not really the generators themselves: this
explains the placement of minuses in equations (63)–(68), which opposite to
what one would naively expect.

• The last quantum number written for the SM representations is actually
6(Y/2) = 3Y . This normalization gives all the hypercharges as integers.

In E6 GUT models, spontaneous symmetry breaking will play an important role.
In order to identify the broken symmetry, it is important to study how the different
subgroups are embedded (in the standard way) into E6. The generators of the Standard
Model group, of the Pati-Salam group SU(4)C × SU(2)L × SU(2)R, of SU(5) and of
SO(10) are identified in Figure 7. Some further comments on the figure are given
below:

• The generators, which are present in the specified subgroup only in a particular
linear combination, are colored less intensely. Remember that the Standard
Model group has 12 generators and the SU(5) has 24 generators, both include
the linear combination 1√

3
t8L + t3R + 1√

3
t8R. Pati-Salam has 21 generators and

SO(10) has 45, both also include the linear combination t8L + t8R.

• The identification of the subgroup generators is consistent with their hierarchy:
the SM group is present in both Pati-Salam and SU(5), and both of these are in
turn subgroups of SO(10).

• The subgroup generators can be identified by considering, which representations
of the Standard Model from Figure 6 are present in the adjoints of various
subgroups. We know, for example, that SU(5) consists of the SM generators,
amended by the lepto-quark generators (3, 2,−5/6) and (3, 2,+5/6). For Pati-
Salam and SO(10), one can further consider the fact that they contain the left-
right group factor SU(2)L×SU(2)R as part of their symmetry. When we consider
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the generators of type t and t̄ in the scheme of Figure 7, they are grouped into
3 × 3 arrays; in each array, generators of SU(3)L will rotate between the rows
(they act on the second index a), while SU(3)R will rotate between the rows of
each array (it acts on the third index a′). The SU(2)L part will therefore rotate
between the first two rows, and SU(2)R between the first two columns. If the left-
right symmetry factor is part of a group, having the 11 entry in the 3-by-3 array
automatically includes also the entries 12, 21 and 22 entries, which are accessible
through rotations. In the same way, the entries 13 and 23 are connected, as are
31 and 32. The 33 entry is a singlet under SU(2)L×SU(2)R, so it can be present
by itself. These patterns can be seen in the figure.

3.4.3 The 351 and 351

The construction of the representation 351 is most easily performed through the tensor
product of the fundamental representations:

27⊗ 27 = 351︸︷︷︸
a

⊕ 351′ ⊕ 27︸ ︷︷ ︸
s

. (132)

The anti-symmetric part of the product will therefore coincide exactly with the
representation 351. The states of this representation can therefore be written in a
27 × 27 matrix, which we label Ξij. We have Ξij = −Ξji. Similarly, the conjugate
representation is a two-index antisymmetric matrix Ξij.

The representation 351 has the following E6 → SO(10) decomposition:

351 = 144⊕ 120⊕ 45⊕ 16⊕ 16⊕ 10. (133)

It can therefore be roughly viewed as analogous to the 120 of SO(10). Note that this
is the SO(10) representation, which can form an antisymmetric Yukawa term with two
spinor representations 16. There is some further discussion on this in section 4.

The states in the 351 can be labeled similarly to the states in the fundamental
representation 27. Using the notation from Figure 5, one can simply write the state
in 351 by taking two successive labeled states in 27. For example, one can write a
state with the dual-label u3e, which can be translated into the matrix Ξij = Ai,j7,12,

where we used the antisymmetric symbol Ai,ja,b := δia δ
j
b − δib δja. The dual-label states

correspond to different basis antisymmetric entries in the matrix. The dual-labels
have the advantage, that one can immediately compute their SM quantum numbers
by adding the quantum numbers of both labels. Similarly, we can use dual-labels
with the states from 27 (denoted with a bar and with opposite quantum numbers) to
describe the representation 351.

3.4.4 The 351′ and 351
′

For constructing the representation 351′, we again make use of the tensor product
27⊗ 27 in equation (132). We see that 351′ is found in the symmetric part, alongside
a 27. The symmetric two-index matrix Θij will therefore represent a reducible
representation, with both the 351′ and the unwanted degrees of freedom from the
27. One can remove the 27 by imposing the following relation [59]:
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dijk Θjk = 0. (134)

As always, i, j, k go from 1 to 27, and dijk is the invariant tensor of E6. More
information on this tensor can be found in subsection 3.5.1; it will be sufficient for
now to know that this tensor does not change its numerical values under any E6

transformation. As a consequence, equation (134) is in an E6 invariant form: if it
holds before an arbitrary E6 transformation on the matrix Θ, it also holds after,
splitting the reducible representation into parts which transform separately. Since
the equation (134) has one free index, it represents 27 constraints on the matrix Θ,
reducing the number of degrees of freedom from 27·28/2 (a symmetric matrix) by 27 to
exactly what is needed: 351. Similarly, the conjugate representation 351′ is represented
by a symmetric matrix Θij, which satisfies

dijk Θjk = 0, (135)

completely analogous to equation (134). The d-tensor with all indices being upper has
the same numerical values as the d-tensor with all indices being lower.

The representation 351′ has the following E6 → SO(10) decomposition:

351′ = 144⊕ 126⊕ 54⊕ 16⊕ 10⊕ 1. (136)

For model building purposes, the 351′ of E6 is to a large extent analogous to the 126
of SO(10). Note that 126 is the SO(10) representation, which can form a symmetric
Yukawa term with two spinor representations 16.

One can label the states in 351′ with double-labels in the same way one does in
the representation 351. For example, u3e would now label a symmetric combination
of these two states, which corresponds to the matrix Θij = Si,j7,12, where we used the

symmetric symbol Si,ja,b := δia δ
j
b + δib δ

j
a. But here, we have the extra complication

that not all states written in such a way are part of 351′, but only those, for which
equation (134) is satisfied. Since the matrix Θ forms the reducible representation
351′ ⊕ 27, and due to the E6 → SO(10) decomposition

27 = 16⊕ 10⊕ 1, (137)

ambiguities can arise only for SO(10) representations 10 and 1. It is only for SO(10)
multiplets 10 or 1, for which (134) is not already automatically satisfied. Note, however,
that states with well-defined transformation properties under SO(10) do not always
correspond to the basis states in the dual-label notation; in practice, one needs to
evaluate the condition (134) explicitly.

3.4.5 The 650

Consider the following tensor product of E6 representations:

27⊗ 27 = 650⊕ 78⊕ 1. (138)
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This demonstrates that a matrix X i
j, with one upper and one lower index, will

contain the 650 representation, along with the unwanted 78 and 1. Similar to the
representation 351′, we will project the unwanted degrees of freedom out from this
matrix.

The singlet 1 is formed with the linear combination ψiψi, which can also be written
as
∑

i δ
i
i. This is the identity matrix X i

j = δij, which can be projected out by using
the trace. For the adjoint 78, we know we can write the states with the generators in
the fundamental representations 27, i.e. φij = φa(ta)ij. These will be projected out by
the standard scalar product in the vector space of 27× 27 matrices: (A,B) = Tr(AB).
With this, we can get rid of components proportional to the generators. The projection
conditions can therefore be written as

X i
i = 0, (ta)ij X

j
i = 0, (139)

or alternatively in matrix notation as

Tr(X) = 0, Tr(taX) = 0. (140)

The index a goes from 1 to 78, so both conditions together project out 79 = 78 + 1
degrees of freedom, which is what we want: 650 = 272− 79. The projection conditions
are independent from each other, since the generators ta are traceless (one can for
example use the argument that E6 ⊂ SU(27), and the generators of SU(27) are all
traceless).

Note that 650 is not a complex representation, so there is no independent 650. The
E6 → SO(10) decomposition of 650 is written as

650 = 210⊕ 144⊕ 144⊕ 54⊕ 45⊕ 16⊕ 16⊕ 10⊕ 10⊕ 1. (141)

For model building purposes, the 650 of E6 is analogous to the representation 210
of SO(10). Furthermore, both of these representations are (pseudo)real.

One can denote the states in the 650 with dual-label notation, with the first label
from 27 and the second label from 27. These states are subject to the projection
conditions in equation (139) though.

3.4.6 Identification of singlets, doublets and triplets

In the E6 models we will be considering later on, certain representations (of the
Standard Model group) will have special significance, because they will be involved
in one way or another in measurable (low-energy) phenomena. All such states will
need to be located in the representations we have considered thus far; exactly this is
the purpose of this subsection. The important Standard Model representations will be
the following:

• The singlets (1, 1, 0): these states will be important for considerations of
spontaneous symmetry breaking. We aim for the low energy theory of our GUT
models to be reduced to the Standard Model, so it is only the Standard Model
singlet states which can acquire a VEV (otherwise we break the SM group), and
at the same time, it will be exactly the VEVs of these singlets which will break
the bigger E6 symmetry.
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• The doublets (1, 2,+1/2) and antidoublets (1, 2,−1/2): since our models will
be supersymmetric, we have two MSSM Higgs doublets, the Hu and the Hd,
which are a doublet and an antidoublet, respectively. These states will be
a linear combination of the doublet/antidoublet states. For our model to be
phenomenologically acceptable, the Hu and Hd will need to have low masses
O(MW ) compared to the rest of the doublets and antidoublets, with typical
masses O(MGUT).

• The triplets (3, 1,−1/3) and antitriplets (3, 1,+1/3): these states mediate proton
decay, which has experimentally not been observed thus far. This means we need
to keep all the triplets heavy, of the scale O(MGUT).

• There will also be important weak triplet scalar fields (1, 3,±1) for type II seesaw.
We do not deal with them in this section, but instead as they arise (section 4.4.3).

These states can be identified with the help of Figure 8, where a
E6 → SO(10) → SU(5) decomposition is performed. We have not included the
conjugate representations 27, 351 and 351′, since their decomposition can be deduced
by conjugating the decompositions already written. Note that the states of interest
can be found in the following SU(5) representations, which are present in the
decompositions:

• The SM singlets are contained in: 1, 24, 75.

• The weak doublets are contained in: 5, 45.

• The weak antidoublets are contained in: 5, 45.

• The triplets are contained in: 5, 45, 50.

• The antitriplets are contained in: 5, 45, 50.

Counting of the states of interest produces Table 5, which was already written down
in the previous subsections. Note that with the exception of representation 351′ (and
351′), which contains a triplet-only 50 (50)of SU(5), all the representations contain the
same number of doublets and triplets, as well as the same number of antidoublets and
antitriplets.

All the singlets in the irreducible representations of E6 below dimension 1000 are
identified in Table 6 and 8. Some comments and observations on this tables are due:

• Notice the labels for the singlets we have chosen. The singlets in 27 are denoted
with the letter c and the singlets in 27 with the letter d. There is historical
precedent for these singlets, so we conform to the labeling in [14]. In some of
the other representations, we decided to proceed further down the alphabet: the
singlets in 351′ and 351′ are denoted by the letters e and f , respectively, while
the singlets in 351 and 351 are denoted by the letters g and h, respectively. The
singlets in 650 are denoted by x. The choice of letters for the adjoint 78, while
present in the work [14], was changed. In this work, the 5 SM singlets in that
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representation are denoted by

a1 ∼ t6R + it7R, (142)

a2 ∼ t6R − it7R, (143)

a3 ∼
√

2 t8R, (144)

a4 ∼
√

2 t3R, (145)

b3 ∼
√

2 t8L, (146)

where ∼ means “corresponds to the following algebra element”. Therefore, the
original labels were using the letters a and b, but the labels do not directly
correspond to states which transform in a well-defined way under the SU(5)
subgroup of E6. For this reason, we defined new linear combinations of these,
found in Table 6, and denoted by u1, u2, v, w and y (letters from the end of the
alphabet).

• All the SM singlets can be found in either 1, 24 or 75 of SU(5). Note that
the labeling is such that the singlets in the 24’s have an index 4 or 5 in the
representations 351, 351′ and their conjugates, while they have indices from 6 to
10 in the 650. The lone SM singlet in the 75 of SU(5) has the index 11 in the
650. This makes it easier to remember, which singlet transforms under which
SU(5) representation.

• To identify the singlets in the tensor formalism, “particle notation” was
used. Except for the adjoint representation, the labels of the fundamental
representation 27 from Table 5 are used. The 27 uses the same labels, but
with a bar, while higher representations such as 351′ and 351 and 650 use
the double label notation (with bars on the labels where appropriate), which
was already commented on in each specific case in subsections 3.4.3, 3.4.4 and
3.4.5. For the representations 351′ and 351′ we implicitly symmetrize with
respect to the two labels, in 351 and 351 we antisymmetrize, while in the
650 we use one unbarred and one barred label. For brevity, the labels of
SM representations are used, with standard summation applied. For example,
by writing d′ dc we mean (d′)1(dc)1 + (d′)2(dc)2 + (d′)3(dc)3 and by writing
LL′c we mean εij(L)i(L′c)j = ν ν ′c − e e′c. The double label scheme, after
possible symmetrization or antisymmetrization, then needs to be normalized
with a positive constant, such that we have a Kähler normalization, as in
equations (166)–(173). A few full examples of how the compactly written states
in double label notation are translated into the tensor formalism, are given below:
in the symmetric 351′, we have

s s→ Θij = δi18 δ
j
18, (147)

νc s→ Θij = 1√
2
Si,j17,18, (148)

L′ L′c + d′c d′ → − 1√
10

((
Si,j14,10 + Si,j11,13

)
+
(
Si,j25,3 + Si,j26,6 + Si,j27,9

))
, (149)

while in the antisymmetric 351, we have

ν̄c s̄→ Ξij = 1√
2
A17,18
i,j , (150)

L̄ L̄′c − 2
3
d̄c d̄′ → Ξij = −

√
3
20

((
A15,10
i,j − A12,13

i,j

)
− 2

3

(
A22,3
i,j + A23,6

i,j + A24,9
i,j

))
.

(151)
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Notice that equations (149) and (151) have a minus in front of the normalizing
factor, which comes from a minus in each of the terms due to the definition of
some states with minuses in Figure 5.

• The identification of states in the adjoint can be written via the generators.
We therefore specify the singlet in “particle notation” by writing the specific
linear combination of generators, which this states corresponds to. The
linear combinations already have the proper normalization. Notice from
equations (105)–(107) that y is proportional to the hypercharge Y/2, while v
and w are proportional to U(1)′ and U(1)′′, respectively.

• We specified in which representations of E6, SO(10), SU(5) and Pati-Salam
(PS) the singlets can be found. The order of the factors in Pati-Salam
is SU(4)C × SU(2)L × SU(2)R. Some singlets do not have a well defined
transformation property under the Pati-Salam group: these are the singlets
in the 45 of SO(10), which contains the SM singlets in the PS representations
(1, 1, 3) and (15, 1, 1). Taking into account which generators belong to SU(4)C
in Figure 7, we can compute that the SU(4)C singlet combination corresponds
to the combination

√
6v− 2y in the 78,

√
3/2g3− g5 in 351 and

√
3/2h3− h5 in

351.

With similar rules of “particle notation” as for the singlet states, we also list the
doublets (1, 2,+1/2), antidoublets (1, 2,−1/2), triplets (3, 1,−1/3) and antitriplets
(3̄, 1,+1/3) in Table 9. Some comments:

• We only defined the doublet and triplet states in the representations 78, 27, 27,
351′ and 351′, since they will be relevant later on.

• Excluding the representation 78, this table provides particle notation only for
states in the first column (for the representations 27 and 351′). The states in the
third column (in the conjugate representations) have equivalent particle notation,
we only need to change all the unbarred labels from Figure 5 to barred labels.

• Particle notation again assumes implicit summation of indices where applicable.
But since these states are no longer SM singlets, they may also carry a color or
a weak index. If we label (just in this paragraph) the SU(3)C color indices by
a, b, c and the SU(2)L indices by i, j, QL is translated into εij Q

ai Lj and has a
running index a, since the state is a triplet. Other examples would be the doublet
Qdc → Qai(dc)a, or the antitriplet QQ→ εabc εij Q

biQcj.

• For the representation 78, particle notation implies the use of generators as labels.
For the doublets D0 and D̄0, the two labels in fact represent the neutral “Higgs”
component in each, and not the components of a doublet.

3.5 Invariants in E6

Invariants are singlets in a tensor product of representations. In other words, they are
a special linear combination of products of states, so that they do not change under
the action of the group (they stay invariant).

In the tensor formalism, the indices tell us how an object transforms. A product of
representations will be an invariant, when all the indices are contracted and there are
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no remaining free indices. In the construction of E6 invariants, one can also use the
invariant d-tensor, which has either three symmetric upper indices or three symmetric
lower indices (see subsection 3.5.1 for more details). Building an invariant of E6 will
therefore proceed very similarly to building invariant in any other group:

1. Choose the E6 representations and take the outer product, with all the indices
different.

2. Multiply (again outer product) with an arbitrary number of d-tensor with all-
upper and all-lower indices.

3. Contract indices in pairs, each consisting of an upper and a lower index. Continue
contracting as long as possible; if no free indices remain, the object is an invariant.

In order to perform step 3 and obtain an invariant, the number of lower indices
has to be equal to the number of upper indices, since each contraction reduces the
number of upper and lower indices by the same amount (by one). The d-tensors at
step 2 always involve three indices, which implies that the prerequisite for an invariant
at step 1 is that the difference in the number of lower and upper indices is a multiple
of 3 (either positive or negative), which can be used as a quick criterion whether a
certain combination of representations is a candidate for an invariant.

Although all objects obtained in the above manner are invariant, not all of them are
non-trivial (they can give zero), subject to the symmetry and antisymmetry properties
of the indices involved. On can for example take the representations 351′ and 351, and
form the expression Θij Ξij, but this gives zero (the first factor has symmetric indices,
while the second factor has antisymmetric indices), which is confirmed by looking at
Table 5 of tensor products of representations and observing that the product 351′×351
does not contain any singlets.

Moreover, we are interested only in invariants, which are (linearly) independent.
Given a combination of representations in step 1, one can then arbitrarily increase the
complexity of the contraction in the invariant by adding pairs of d-tensors (one with
upper, one with lower indices) in step 2. One should note however, that contractions
among the d-tensors are subject to certain relations (investigated in subsection 3.5.1)
and thus often yield simple results; adding d-tensor pairs will therefore not necessarily
enable finding new independent invariants. Indeed, most of the tensor products of 2 or
3 representations contain only one singlet, so one need consider only the simplest non-
trivial case of adding d-tensors. In practice, we therefore always compute the number
of singlets in a given tensor product, and then consider combinations of d-tensors in
step 2 only as long as we have not found that number of independent invariants.

3.5.1 The invariant d-tensor

In this subsection, we look into the concept of an invariant tensor and more specifically,
we gather all the details on the d-tensor in E6.

An invariant tensor is a powerful computational tool. Suppose we have a Lie group
G, which leaves a tensor T invariant. Then one can build an invariant with the help of
this tensor; if the tensor T is a two index invariant tensor, i.e. Tij = T ′ij, then Tijφ

iψj

is an invariant polynomial in the entries of the representations φi and ψj, since

Tijφ
iψj = T ′ijφ

′iψ′j = Tijφ
′iψ′j. (152)
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An invariant tensor is called primitive, if it cannot be expressed as a sum of terms,
constructed with products and possibly contraction of indices of lower rank primitive
tensors. We also include the Kronecker Delta as primitive. More on primitive tensors
and this approach to Lie algebras can be found in [64].

The group SU(n) contains the following primitive invariant tensors: δij, εi1...in and
εi1...in , where the upper (lower) indices are fundamental (antifundamental). Other
invariant tensors can be constructed from these. The primitive invariant tensors in the
group E6 are δij, dijk and dijk. Since the d-tensors have three indices, the building of
invariants in E6 somewhat resembles the invariant theory in SU(3), where εijk also has
three indices (which run from 1 to 3). The major differences between the constructing
invariants in SU(3) and E6 are the following:

1. The d-tensor is completely symmetric in the indices, while the Levi-Civita symbol
ε in completely antisymmetric.

2. While εijmεmkl = δikδ
j
l−δilδjk, the tensor Dik

kl := dijm dmkl is an invariant tensor
independent of Kronecker delta’s. The tensor Dij

kl is symmetric in both upper
and lower indices.

There is a relation, which the d-tensor has to satisfy and allows us to reconstruct
the tensor completely. The relation connects the actions of the d-tensor between
two different descriptions of the fundamental representation: as a column ψi and as
matrices L,M,N . The relation reads [59]

1
6
dijkψ

iψjψk = − detL+ detM − detN − Tr(LMN), (153)

where the minuses in front of detL and detN are modifications due to the changed
embedding (matrices L andN have an odd number of indices of the type a and a′, which
change position in the embedding), and the factor 1

6
turns out to fix the normalization

dikldjkl = 10δij. (154)

Equation (153) yields the reconstruction of the d-tensor, as well as some of its
properties:

• First notice that the right hand side of equation (153) is zero, if ψi contains
two nonzero entries or less. Namely, two nonzero entries in the 3 × 3 matrices
L,M,N give the determinants detL = detM = detN = 0. Also, at least one
of the matrices L,M,N has to be null, which implies LMN = 0 and finally
Tr(LMN) = 0.

• Taking one non-zero value ψi = δii0 , i.e. ψi is the i0-th basis state, we get
1
6
di0i0i0 = 0 (for an arbitrary i0 = 1, . . . , 27). The d-tensor therefore has a null

diagonal.

• Taking two nonzero values, i.e. ψi = δii1 ± δii2 , we get

1
6
(di1i1i1 ± 3di1i1i2 + 3di1i2i2 ± di2i2i2) = 0, (155)

di1i2i2 ± di1i1i2 = 0. (156)



3.5 Invariants in E6 65

We have used the complete symmetry of the d-tensor under index exchange, as
well as the null diagonal property. The last equation implies that the d-tensor
values, where two of the indices are equal, are zero:

di1i2i2 = di2i1i2 = di2i2i1 = 0. (157)

• We now take three nonzero entries in the column: ψi = δii1 + δii2 + δii3 . The
complete symmetry of the d-tensor, together with same index entries being zero,
give

3!
6
di1i2i3 = − detL+ detM − detN − Tr(LMN), (158)

di1i2i3 = − detL+ detM − detN − Tr(LMN). (159)

The equation (159) is an explicit formula for the computation of the d-tensor
entries.

Qualitatively, nonzero entries in equation (153) can potentially result only in two
cases: either all three indices give values in only one of the L,M,N matrices or
each of the L,M,N matrices contain exactly one of the states, referred to by
the indices. The former case can lead to one of the determinants being non-zero,
while the latter can lead to a nonzero trace.

Furthermore, with the normalization in equation (154), the entries of the d-tensor
can be found to have only three possible numerical values: 0, 1 or −1.

Once the explicit form of the d-tensor is computed, one can also compute some
further identities (listed below). The full list of the d-tensor properties is thus the
following:

• The tensor dijk and dijk have the same numerical values, so they have the same
properties.

• The tensor dijk is completely symmetric under the exchange of indices (unlike
the Levi-Civita tensor).

• The tensor dijk gives zero, as soon as two indices have the same value (like the
Levi-Civita tensor).

• The only non-zero values of the tensor dijk are 1 and −1 (like in the Levi-Civita
tensor).

• It has the normalization

dikl djkl = 10 δij. (160)

• Unlike the Levi-Civita tensor, contracting just one index gives an independent
tensor, which is symmetric in the upper indices and symmetric in the lower
indices:

dijm dklm =: Dij
kl. (161)
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• The following identities are computed to hold:

dijk dlmn d
ail dbjm dckn = −30 dabc, (162)

daij dbkl dcik ddjl = −4Dab
cd + 5 δac δ

b
d + 5 δad δ

b
c. (163)

• Under any E6 transformation U i
j, the d-tensor is invariant: dijk = U i

a U
j
b U

k
c d

abc.
This means an action of any generator ta on the d-tensor is vanishing:

(ta)il d
ljk + (ta)j l d

ilk + (ta)kl d
ijl = 0. (164)

• The sum of quadratic terms of the generators ta in the fundamental representation
27 has the following relation:

(ta)ij (ta)kl = 1
6
δij δ

k
l + 1

2
δil δ

k
j − 1

2
Dij
kl. (165)

This equation represents the “completeness relation” of the E6 generators in the
fundamental representation, similar to the relation (σa)ij(σ

a)kl = 2δilδ
k
j − δijδkl

for the Pauli matrices, which are the generators of the fundamental representation
2 of SU(2). Generalizations of the completeness relation exists also for
SU(N) [65]. The E6 is different in this regard, since the completeness relation
also contains the tensor Dij

kl.

3.5.2 Explicit computation of invariants

In this section, we list the lowest order invariants formed from the representations 27,
78, 351, 351′, 650 and their conjugates (when non-equivalent). We will therefore have
a catalogue, where we can look up which invariants can be formed with a given set of
representations, as well as see how to explicitly compute each of the invariants in tensor
notation. The computations can then be made with a computer; the full explicit forms
are of course too complicated to write down, so we will write-down only those terms,
which involve Standard Model singlets only. The singlet terms will be important for
computations of spontaneous symmetry breaking in our E6 models. The labels of the
singlets are the same as in subsection 3.4.6. The normalization of the singlets is such
that we have the standard Kähler normalization

〈ψi (ψ∗)i〉 = |c1|2 + |c2|2, (166)

〈ψi (ψ
∗
)i〉 = |d1|2 + |d2|2, (167)

〈φij (φ∗)i
j〉 = |u1|2 + |u2|2 + |v|2 + |w|2 + |y|2, (168)

〈Θij (Θ∗)ij〉 = |e1|2 + |e2|2 + |e3|2 + |e4|2 + |e5|2, (169)

〈Θij (Θ
∗
)ij〉 = |f1|2 + |f2|2 + |f3|2 + |f4|2 + |f5|2, (170)

〈Ξij (Ξ∗)ij〉 = |g1|2 + |g2|2 + |g3|2 + |g4|2 + |g5|2, (171)

〈Ξij (Ξ
∗
)ij〉 = |h1|2 + |h2|2 + |h3|2 + |h4|2 + |h5|2, (172)

〈X i
j (X∗)i

j〉 = |x1|2 + |x2|2 + |x3|2 + |x4|2 + |x5|2 + |x6|2

+ |x7|2 + |x8|2 + |x9|2 + |x10|2 + |x11|2. (173)
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We start with dimension 2 invariants, which are basically just the mass terms.
These will therefore always be of the form R ⊗ R for a complex representation R, or
R ⊗ R for a real representation R, while the products of representations unrelated
by complex conjugation will not yield invariants. We list all the possibilities from
our given set of representations in table 11. Notice, that the singlet definitions and
labels in subsection 3.4.6 were chosen, so that the quadratic invariants have as simple
a form as possible: in complex representations, a singlet from the representation is
always paired with the corresponding singlet in the conjugate representation, while
for (pseudo)real representations, the singlets are either in a quadratic terms or are a
product of a conjugate pair of singlets. In hope of of greater clarity, we use the red
color to write the singlets.

The dimension 3 invariants are more complicated, since we now also use the d-
tensor. We consider all the invariants with the representations of dimension below
500, so the 650 is excluded. We split these invariants into two groups:

1. The first group consists of those, where either all three representations are of
different types or a single copy of each representation present multiple times
suffices to produce a non-zero invariant. The invariants are listed in Table 12,
with the simplest tensor expression to compute them. The explicit singlet-only
terms can be found in equations (174)–(190). There are 17 of these invariants.

2. The second group consists of those invariants, where the same type of
representation is present in two or three of the factors, but in an antisymmetric
combination. This means we need different copies of the same type of
representation to produce a non-zero invariant. These invariants, and their
tensor expression, are present in Table 14. The SM singlet terms are written
in equations (191)–(195), where we chose the following labels: the first copy of
the representation has the usual labels, the second copy has one prime on the
Standard Model singlets, and the third copy has two primes on the singlets. We
see that the invariants with three different copies of the same representation are
antisymmetric in any pair of factors. There are 2 invariants with a double factor
and 3 invariants with a triple factor.

I273 = 0, (174)

I
27

3 = 0, (175)

I27⊗78⊗27 = 1√
6

(c1d2u1 + c2d1u2)−
√

5
2
√

6
c2d2v −

√
2

3
c1d1w − 1

6
√

2
c2d2w, (176)

I351′3 = 3(e3e4
2 + e5(−

√
2e2e4 + e1e5)), (177)

I
351′

3 = 3(f3f4
2 + f5(−

√
2f2f4 + f1f5)), (178)

I
351′⊗27

2 = d2
2e1 +

√
2d1d2e2 + d1

2e3, (179)

I351′⊗272 = c2
2f1 +

√
2c1c2f2 + c1

2f3, (180)

I351′⊗78⊗351′ = 1
24

(
−2
√

30e1f1v − 2
√

2e1f1w + 4
√

3e1f2u2

+ e2

(
4
√

3f1u1 −
√

30f2v − 5
√

2f2w + 4
√

3f3u2

)
+
√

2
(

4e4f4w + 2
√

3e5f4u1 +
√

15e5f5v + e5f5w
)

+ 4e3

(√
3f2u1 − 2

√
2f3w

)
+ 2
√

6e4f5u2

)
, (181)
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I3512⊗27 = 2
√

5g1(d1g2 + d2g3), (182)

I
351

2⊗27
= 2
√

5h1(c1h2 + c2h3), (183)

I351⊗27⊗78 = 5
12

(
2
√

3c1

(
−
√

5g2u1 + 2g3v + 2g5y
)

+ c2

(√
3g2v − 3

√
5g2w + 2

√
15g3u2 − 4

√
3g4y

))
, (184)

I351⊗27⊗78 = 5
12

(
2
√

3d1

(
−
√

5h2u2 + 2h3v + 2h5y
)

+ d2

(√
3h2v − 3

√
5h2w + 2

√
15h3u1 − 4

√
3h4y

))
, (185)

I3512⊗351′ = 1
2
√

2
(g1(e4g4 − e5g5)) , (186)

I351⊗351′ = 1
2
√

2
(h1(f4h4 − f5h5)) , (187)

I351⊗78⊗351′ = 1
120

(
20
√

3f1g1u1

+ 5
(√

30f2g1v − 3
√

2f2g1w − 4
√

3f3g1u2 + 2
√

6f5g5u2

)
+ 2f4

(
5
√

6g4u1 − 2
√

5
(√

6g3y +
√

6g5v + g5y
))

+ f5

(
g4

(√
30v − 15

√
2w − 4

√
5y
)
− 4
√

30g2y
))

, (188)

I351′⊗78⊗351 = 1
120

(
−20
√

3e3h1u1 − 4
√

5e4

(√
6h3y + h5

(√
6v + y

))
+ 5

(√
30e2h1v − 3

√
2e2h1w + 4

√
3e1h1u2 + 2

√
6e4h4u2

)
+ e5

(
−4
√

30h2y +
√

30h4v − 15
√

2h4w − 4
√

5h4y + 10
√

6h5u1

))
,

(189)

I351⊗78⊗351 = 1
12
√

2

(
+w(g2h2 + 4g3h3 + g4h4 + 4g5h5)− g1h1

(√
15v + 5w

)
+
√

3
(√

5v(g2h2 + g4h4) + 2u1(g2h3 + g4h5)
)

+ 2
√

3u2(g3h2 + g5h4)
)
.

(190)

I351⊗271⊗272 = 1√
2

(d′1d2 − d1d
′
2) g1, (191)

I351⊗271⊗272 = 1√
2

(c′1c2 − c1c
′
2)h1, (192)

I3511⊗3512⊗3513 = 1√
2

(g1 (−3g′2g
′′
3 + 3g′′2g

′
3 + 2g′4g

′′
5 − 2g′′4g

′
5)

+ g′1 (3g2g
′′
3 − 3g′′2g3 − 2g4g

′′
5 + 2g′′4g5)

+ g′′1 (−3g2g
′
3 + 3g′2g3 + 2g4g

′
5 − 2g′4g5)) , (193)

I3511⊗3512⊗3513 = 1√
2

(h1 (−3h′2h
′′
3 + 3h′′2h

′
3 + 2h′4h

′′
5 − 2h′′4h

′
5)

+ h′1 (3h2h
′′
3 − 3h′′2h3 − 2h4h

′′
5 + 2h′′4h5)

+ h′′1 (−3h2h
′
3 + 3h′2h3 + 2h4h

′
5 − 2h′4h5)) , (194)

I781⊗782⊗783 = 1
12
√

2

(
u1

(
−
√

15u′2v
′′ + 3u′2w

′′ +
√

15u′′2v
′ − 3u′′2w

′
)

+ u′1

(√
15u2v

′′ − 3u2w
′′ −
√

15u′′2v + 3u′′2w
)

+ u′′1

(
−
√

15u2v
′ + 3u2w

′ +
√

15u′2v − 3u′2w
))

. (195)

The invariants with representation 650 are rather complicated, so we will not give
here their explicit form. As a curiosity, we only note in passing that the representation
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650 is the first representation of E6 (counting with increasing dimensions), which
can give at the renormalizable level two independent invariants with the same
representation factors. For example, we have two independent cubic invariants 6503,
computed by

I6503 = Tr(X X X) = X i
j X

j
kX

k
i, (196)

I ′6503 = dijk d
lmnX i

lX
j
mX

k
n. (197)
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Figure 5: The quantum numbers of the states in the fundamental 27.
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Figure 6: The quantum numbers of the states in the adjoint representation 78.
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Figure 7: Standard embeddings of the Standard Model group, Pati-Salam group, SU(5)
and SO(10) into E6 at the algebra level.
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Figure 8: Counting of singlets, doublets and triplets in various representations.
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Table 6: Identification in particle notation and labeling of singlets in E6 irreducible
representations of dim. < 500.

label E6 ⊇ SO(10) ⊇ SU(5) ⊇ PS particle notation U(1)′ U(1)′′

c1 27 ⊇ 1 ⊇ 1 (1, 1, 1) s 0 +4
c2 27 ⊇ 16 ⊇ 1 (4̄, 1, 2) νc −5 1

d1 27 ⊇ 1 ⊇ 1 (1, 1, 1) s̄ 0 −4
d2 27 ⊇ 16 ⊇ 1 (4, 1, 2) ν̄c +5 −1

u1 78 ⊇ 16 ⊇ 1 (4̄, 1, 2) 1√
6

(t6R + it7R) −5 −3

u2 78 ⊇ 16 ⊇ 1 (4, 1, 2) 1√
6

(t6R − it7R) +5 +3

v 78 ⊇ 45 ⊇ 1 / 2√
30
t3R − 1√

10
t8L − 1√

10
t8R 0 0

w 78 ⊇ 1 ⊇ 1 (1, 1, 1) 1√
6

(−t8L + t8R) 0 0

y 78 ⊇ 45 ⊇ 24 / 1√
15

(
√

3 t3R + t8L + t8R) 0 0

e1 351′ ⊇ 126 ⊇ 1 (10, 1, 3) νcνc −10 +2
e2 351′ ⊇ 16 ⊇ 1 (4̄, 1, 2) νcs −5 +5
e3 351′ ⊇ 1 ⊇ 1 (1, 1, 1) s s 0 +8
e4 351′ ⊇ 54 ⊇ 24 (1, 1, 1) L′L′c − 2

3
d′cd′ 0 −4

e5 351′ ⊇ 144 ⊇ 24 (4, 1, 2) L L′c − 2
3
dc d′ +5 −1

f1 351′ ⊇ 126 ⊇ 1 (10, 1, 3) ν̄cν̄c +10 −2
f2 351′ ⊇ 16 ⊇ 1 (4, 1, 2) ν̄cs̄ +5 −5
f3 351′ ⊇ 1 ⊇ 1 (1, 1, 1) s̄ s̄ 0 −8
f4 351′ ⊇ 54 ⊇ 24 (1, 1, 1) L̄′L̄′c − 2

3
d̄′cd̄′ 0 +4

f5 351′ ⊇ 144 ⊇ 24 (4̄, 1, 2) L̄ L̄′c − 2
3
d̄c d̄′ −5 +1

g1 351 ⊇ 16 ⊇ 1 (4̄, 1, 2) νc s −5 +5
g2 351 ⊇ 16 ⊇ 1 (4, 1, 2) L L′c + dc d′ +5 −1
g3 351 ⊇ 45 ⊇ 1 / L′ L′c + d′c d′ 0 −4
g4 351 ⊇ 144 ⊇ 24 (4, 1, 2) L L′c − 2

3
dc d′ +5 −1

g5 351 ⊇ 45 ⊇ 24 / L′ L′c − 2
3
d′c d′ 0 −4

h1 351 ⊇ 16 ⊇ 1 (4, 1, 2) ν̄c s̄ +5 −5
h2 351 ⊇ 16 ⊇ 1 (4̄, 1, 2) L̄ L̄′c + d̄c d̄′ −5 +1
h3 351 ⊇ 45 ⊇ 1 / L̄′ L̄′c + d̄′c d̄′ 0 +4
h4 351 ⊇ 144 ⊇ 24 (4̄, 1, 2) L̄ L̄′c − 2

3
d̄c d̄′ −5 +1

h5 351 ⊇ 45 ⊇ 24 / L̄′ L̄′c − 2
3
d̄′c d̄′ 0 +4
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Table 8: Identification in particle notation and labeling of singlets in the 650 of E6.

label E6 ⊇ SO(10) ⊇ SU(5) particle notation U(1)′ U(1)′′

x1 650 ⊇ 1 ⊇ 1 5
(
QQ̄+ ucūc + ecēc + dcd̄c + LL̄+ νcν̄c

)
0 0

−4
(
d′d̄′ + L′cL̄′c + d′cd̄′c + L′L̄′

)
− 40ss̄

x2 650 ⊇ 16 ⊇ 1 −
(
d′cd̄c + L′L̄

)
+ 5νcs̄ −5 −3

x3 650 ⊇ 16 ⊇ 1 −
(
dcd̄′c + LL̄′

)
+ 5sν̄c +5 +3

x4 650 ⊇ 45 ⊇ 1 −
(
QQ̄+ ucūc + ecēc

)
+ 3

(
dcd̄c + LL̄

)
+0 +0

+4
(
d′cd̄′c + L′L̄′

)
−4
(
d′d̄′ + L′cL̄′c

)
−5νcν̄c

x5 650 ⊇ 210 ⊇ 1
(
QQ̄+ ucūc + ecēc

)
−
(
dcd̄c + LL̄

)
−5νcν̄c +0 +0

x6 650 ⊇ 45 ⊇ 24 −QQ̄+ 4
(
ucūc − d′d̄′ + d′cd̄′c

)
+ 3LL̄ +0 +0

+6
(
L′cL̄′c − L′L̄′ − ecēc

)
− 2dcd̄c

x7 650 ⊇ 54 ⊇ 24 −2
(
d′d̄′ + d′cd̄′c

)
+ 3

(
L′cL̄′c + L′L̄′

)
+0 +0

x8 650 ⊇ 144 ⊇ 24 −2d′cd̄c + 3L′L̄ −5 −3

x9 650 ⊇ 144 ⊇ 24 −2dcd̄′c + 3LL̄′ +5 +3

x10 650 ⊇ 210 ⊇ 24 −QQ̄+ 6
(
dcd̄c − ecēc

)
− 9LL̄+ 4ucūc +0 +0

x11 650 ⊇ 210 ⊇ 75 −QQ̄+ ucūc + 3ecēc +0 +0
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Table 9: Identification in particle notation and labeling of doublets and triplets in
select representations of E6.

label E6 ⊇ SO(10) ⊇ SU(5) label E6 ⊇ SO(10) ⊇ SU(5) doublet in p.n.
triplet in p.n.

D0, T 0 78 ⊇ 16 ⊇ 5 D0, T0 78 ⊇ 16 ⊇ 5 1√
12

(t6L ± i t7L)
1√
12
t̄1

31, 1√
12
t131

D1, T1 27 ⊇ 10 ⊇ 5 D1, T 1 27 ⊇ 10 ⊇ 5 L′c

d′

D2, T 2 27 ⊇ 10 ⊇ 5 D2, T2 27 ⊇ 10 ⊇ 5 L′

d′c

D3, T 3 27 ⊇ 16 ⊇ 5 D3, T3 27 ⊇ 16 ⊇ 5 L
dc

D4, T4 351′ ⊇ 10 ⊇ 5 D4, T 4 351′ ⊇ 10 ⊇ 5 Qdc − Lec − 4L′cνc

QL− ucdc − 4d′s

D5, T 5 351′ ⊇ 10 ⊇ 5 D5, T5 351′ ⊇ 10 ⊇ 5 Quc − Lνc − 4L′s
ucec−dcνc+QQ−4d′cs

D6, T 6 351′ ⊇ 16 ⊇ 5 D6, T6 351′ ⊇ 16 ⊇ 5 −Ls
−dcs

D7, T 7 351′ ⊇ 126 ⊇ 5 D7, T7 351′ ⊇ 126 ⊇ 5 −Quc − 3Lνc

−ucec − 3dcνc −QQ

D8, T8 351′ ⊇ 126 ⊇ 45 D8, T 8 351′ ⊇ 126 ⊇ 45 Qdc + 3Lec

QL+ ucdc

D9, T9 351′ ⊇ 144 ⊇ 5 D9, T 9 351′ ⊇ 144 ⊇ 5 −Qd′c + 4L′cνc + L′ec

−QL′ + ucd′c + 4d′νc

D10, T 10 351′ ⊇ 144 ⊇ 5 D10, T10 351′ ⊇ 144 ⊇ 5 −L′νc
−d′cνc

D11, T11 351′ ⊇ 144 ⊇ 45 D11, T 11 351′ ⊇ 144 ⊇ 45 −dd′c − 3e′ec

−QL′ − ucd′c

T 12 351′ ⊇ 126 ⊇ 50 T12 351′ ⊇ 126 ⊇ 50 /
2ucec −QQ
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Table 11: All quadratic invariants in E6 with dimensions of representations < 1000.

product tensor notation singlet terms

27⊗ 27 ψi ψi c1d1 + c2d2

78⊗ 78 φij φ
j
i 2u1u2 + v2 + w2 + y2

351′ ⊗ 351′ Θij Θij e1f1 + e2f2 + e3f3 + e4f4 + e5f5

351⊗ 351 Ξij Ξij g1h1 + g2h2 + g3h3 + g4h4 + g5h5

650⊗ 650 X i
j X

j
i x1

2+2x2x3+x4
2+x5

2+x6
2+x7

2+2x8x9+x10
2+x11

2

Table 12: All cubic invariants in E6 with single copies of representations (dim. < 500).

product tensor notation

27 ⊗ 27 ⊗ 27 dijk ψ
i ψj ψk

27 ⊗ 27 ⊗ 27 dijk ψi ψj ψk

27 ⊗ 78 ⊗ 27 ψi φ
i
j ψ

j

351′ ⊗ 351′ ⊗ 351′ dijk dlmn Θil Θjm Θkn

351′⊗ 351′ ⊗351′ dijk dlmn Θil Θjm Θkn

351′⊗ 27 ⊗ 27 Θij ψi ψj

351′⊗ 27 ⊗ 27 Θij ψ
i ψj

351′⊗ 78 ⊗351′ Θij φ
j
k Θki

351 ⊗ 351 ⊗ 27 diab dakl dbmn ψi Ξkm Ξln

351 ⊗ 351 ⊗ 27 diab d
akl dbmn ψi Ξkm Ξln

351 ⊗ 27 ⊗ 78 dabc daij dbkl Ξik ψj φlc

351 ⊗ 27 ⊗ 78 dabc d
aij dbkl Ξik ψj φ

c
l

351 ⊗ 351 ⊗351′ dijk dlmn Ξil Ξjm Θkn

351 ⊗ 351 ⊗351′ dijk dlmn Ξil Ξjm Θkn

351 ⊗ 78 ⊗351′ Θij φ
j
k Ξki

351′⊗ 78 ⊗ 351 Ξij φ
j
k Θki

351 ⊗ 78 ⊗ 351 Ξij φ
j
k Ξki
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Table 14: All cubic invariants in E6 which require multiple copies of representations
(dim. < 500).

product tensor notation

351⊗ 271 ⊗ 272 Ξij (ψ1)i (ψ2)j

351⊗ 271 ⊗ 272 Ξij (ψ1)i (ψ2)j

3511⊗3512⊗3513 dabc dila dknb dmjc Ξij Ξkl Ξmn

3511⊗3512⊗3513 dabc d
ila dknb dmjc Ξij Ξkl Ξmn

781 ⊗ 782 ⊗ 783 (φ1)ij (φ2)jk (φ3)kl
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4 Renormalizable E6 SUSY GUT models

In this section, we gather all the E6 model building done in this PhD thesis. We
organize the material as follows: in subsection 4.1, we first look at the philosophy of
our model building and determine the goals of models, which aspire to be realistic.
Then, in subsection 4.2, we list a number of models which are simple, but not realistic,
but they need to be at least considered when exploring the landscape of minimal E6

models. In subsection 4.3, we then give a prototype model, which seems the simplest
renormalizable SUSY model based on E6, which gives a realistic vacuum solution; the
prototype model, however, fails in an unexpected way, but suggests extension models,
which are realistic. These extensions are model I and model II in subsections 4.4 and
4.5, respectively.

4.1 Preliminary considerations

4.1.1 The general setup

In this section, we shall investigate various renormalizable supersymmetric E6 GUT
models. It will turn out that the simplest models are not viable, and phenomenological
acceptability puts restrictions on how simple these models can be. What we will be
playing with is the types and number of representations we will include in the model,
and then try to analyze the viability of the model in as general terms as possible.
The analysis will always be top-down in the sense that we will be writing down the
models, perform all the necessary computation, and check whether the low energy
phenomenology is viable. This is the opposite of bottom-up approaches, where we write
extra low energy terms, motivated by a specific phenomenon (such as the enhancement
of a certain cross-section), and are sometimes not really interested in the specifics of
the UV theory.

Although some literature on E6 GUTs does exist([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16]), E6 is not very well explored compared to SU(5) and SO(10) GUTs, and,
at least to the author’s knowledge, no model was really investigated top-down with
simultaneous consideration of both symmetry breaking and the Yukawa sectors. Our
goal is therefore not just to find viable E6 models and analyze them in more detail, but
also to systematically study the landscape of models and find which are the necessary
ingredients in E6 model building.

All the models we will be considering, will have some common features, which we
will now list:

• The breaking scenario, which we have in mind, is a single stage breaking
from E6 to the Standard Model group. Multiple stage breaking E6 → G → SM
could well take place, but in these cases one could describe the intermediate
theory as an effective theory with the intermediate group G as its gauge group.
Suppose the intermediate scale, where the intermediate breaking happens, is
denoted by Mi. This scale would need to be between the EW scale MEW

and the GUT scale MGUT. If the intermediate group is a simple group, such
that we have in the intermediate stage an SU(5) or an SO(10) GUT, the scale
Mi would need to be & 1017 GeV due to proton-decay constraints, and since
MGUT is below the Planck scale MPl, the energy-scale window of where the
intermediate effective theory is applicable is in fact very narrow, and one could
roughly describe such a scenario with a single stage breaking. If, however,
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the intermediate scale Mi is closer to MEW, we could have intermediate groups
such as the left-right group SU(3)C × SU(2)L × SU(2)R × U(1)B−L or the Pati-
Salam group SU(4)C × SU(2)L × SU(2)R. Such scenarios, especially from the
experimental point of view, would be better investigated with effective theories
of these intermediate groups, consequently yielding these scenario of less interest
to us.

• They will be supersymmetric, which means we will be considering the
superpotential W instead of the potential V . The superpotential W contains
only the scalars (from the chiral supermultiplets), has mass dimension 3,
and has a local symmetry under the gauge group E6. Due to the non-
renormalization theorems, which perturbatively hold in supersymmetric theories
for the superpotential (see for example [29]), we are in principle allowed to put
the value of a coupling constant in front of an operator in the superpotential to
zero, since the RG flow will not bring it to a non-zero value and will thus not
render the symmetry breaking inconsistent. In general, we will try to avoid such
simplifications and consider the most general cases of parameters.

We will not be considering SUSY breaking, since this is an orthogonal problem to
the symmetry breaking of the gauge group, and usually involves model building
with an additional sector just for this purpose (there exist exceptions, see [66,
67]). It will suffice to imagine SUSY to be softly broken roughly somewhere
above TeV. The E6 models under considerations will therefore reduce to MSSM
in the low energy limit.

The reason to consider SUSY models and not non-SUSY models, beside any
other appealing features of supersymmetry, is the well known fact that the MSSM
coupling constants automatically unify somewhere around where MGUT should
be, which is not the case for the RG flow in the usual SM (without SUSY), where
the couplings do not unify without additional degrees of freedom. The fact that
unification occurs in the simple MSSM case also strengthens the argument for
models with a single stage breaking. Also, a practical reason for considering
SUSY models is their relative simplicity; this work represents, after all, the first
steps into top-down E6 model building.

• We will be considering only renormalizable models, which means the invariants
included in the superpotential will be of order at most 3. Thus, we shall have
only the (quadratic) mass terms, whose mass parameters we will label with the
letter m, and the cubic invariants, whose coupling constants we will label with
the letter λ.

• Since the 27 of E6 contains the 16 of SO(10), we will include three copies of
the fundamental representation 27 in our models, where the Standard Model
fermions will be found (one copy per generation). We label the copies by 27iF ,
with i = 1, 2, 3. We shall refer to these 27’s as fermionic. The remaining MSSM
degrees of freedom are the Higgs supermultiplets Hu and Hd. If they are also part
of the 27F (perhaps they can be partly found in the 10 of SO(10), the operator
27F 27F 27F leads to R-parity violating terms, which we would like to avoid. The
problem lies in the fact that unlike in the SO(10) group, R-parity is not automatic
in E6, and we have to impose a discrete Z2 symmetry by hand. We shall refer
to the imposed symmetry as matter parity, and it will take 27F 7→ −27F , and
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R 7→ R for all non-fermionic representations R. This matter parity will in fact
require, that the fermionic 27F ’s are always in pairs, while everything else has
no restrictions.

Is it possible that the fermionic 27F contain nonzero VEVs at the GUT scale or
parts of the Higgs doublets Hu or Hd and EW VEVs? Any VEV in the fermionic
27F would imply, after insertion in a cubic term 27F 27F R, a mass term of the
form 27F R. That would mean that Standard Model particles, which are mass
eigenstates, would also be partly found in the non-fermionic representations. The
simplest solution is therefore to always have a division into the fermionic and
breaking sector: the particle contents of the model will thus look like

271
F ⊕ 272

F ⊕ 273
F︸ ︷︷ ︸

fermionic sector

⊕ R1 ⊕ . . .⊕Rn︸ ︷︷ ︸
breaking sector

, (198)

where the types and number of representations Ri are what we change from
model to model. All the VEVs, either from GUT or EW breaking, are therefore
found in the breaking sector. This means we can forget about the fermionic
sector, when we are considering symmetry breakings. Indeed, taking the VEVs
in the fermionic sector to be zero after them being considered in the equations
of motion is equivalent to not considering them at all, since the F -terms have
one derivative, but the fermionic 27F ’s are always present in pairs, so plugging in
zeros for their VEVs will lead to the disappearance of the fermionic terms from
EOM.

The properties of the two sectors, in short:

fermionic sector Contains all the low energy MSSM fermions of our model.
Has matter parity −1. Has no VEVs.

breaking sector No MSSM fermions, but contains all the VEVs: responsible
for GUT and EW breaking. Has matter parity +1.

• The group is E6 anomaly free, a well known result (see for example [68]) which
we also independently checked by explicitly computing the following relation
among the generators in the fundamental representation as well as the adjoint
representation:

Tr({ta, tb} tc) = 0, (199)

where a, b, c run from 1 to 78 and {., .} denotes the anticommutator. Since the
other representations are built from the 27 and 78 (and by complex conjugation),
this relation will be inherited by the other representations, rendering E6 anomaly
free. These means the anomalies are automatically cancelled by each generation
we add, so there are no restrictions for model building, and we can construct the
breaking sector from any combinations of representations we wish.

Above, we have described what kind of models we will be considering. Now we list
the phenomenological constraints we want to satisfy:

• The breaking sector actually needs to be able to perform the spontaneous
symmetry breaking from E6 to the Standard Model group. We will see this
by analyzing the equations of motion, finding nontrivial solutions, and afterward
compute the gauge boson masses to identify the resulting symmetry group. If
this group cannot be the Standard Model, then the model is not viable.
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• We will consider the Yukawa sector and see whether we can get the low-energy
pattern of fermion masses from the Standard Model. More specifically, some
crucial features are flavor mixing, the exotic states being heavy (order MGUT),
and the neutrinos being light (. 1 eV).

• The Hu and Hd of MSSM need to have masses of the order of the EW scale,
while the remaining doublets and triplets are heavy. Proton decay needs to be
sufficiently suppressed, however, so all the color triplets are heavy. This feature of
having a light doublet and antidoublet, but the (anti)triplets and the remaining
(anti)doublets heavy, is called doublet-triplet splitting. Although there are
natural mechanisms to achieve this in special setups, we will resort to a fine-
tuning of parameters in the superpotential.

We look into each of these in a bit more detail.

4.1.2 Symmetry breaking

We perform spontaneous symmetry breaking by solving the equations of motion. The
EOM have to be solved for every degree of freedom, but by taking a SM ansatz, where
only SM singlets can acquire a non-vanishing VEV, we need to write down only the
EOM (and the terms in them) involving the VEVs. We generically label the VEVs by
S.

In a non-supersymmetric theory, we would only need to minimize the potential V .
The system of equations would thus be the condition for the stationary point of V :

∂V

∂S
= 0, (200)

where S goes over all VEVs. But the potential V has a special form in SUSY theories
(see also section 2.3), namely

V =
∑
S

|Fs|2 + 1
2

∑
a

(Da)2. (201)

The F -terms are defined by

FS :=
∂W

∂S
, (202)

where S goes over all the VEVs and W is the superpotential, which is a holomorphic
function of the VEVs and is formed by taking all the invariants from the matter
superfields in the theory (up to renormalizable order).

The D-terms defined by

Da := −g
∑
i

φ†i (t̂aφi), (203)

where φ is a representation of the breaking sector, with the index i running over all
the representations in the breaking sector, while t̂a is the action of the a-th generator.
We plug the VEVs into the representations φi.

Looking at equation (201), we see that due to the quadratic nature of the F and
D-terms, the minimum of the potential V is at V = 0. We reach the minimum exactly
when all F and D are zero: we get the EOM (studied in detail in [69, 70, 71])

FS = 0, (204)

Da = 0. (205)
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We see that the number of F -terms equals the number of VEVs in the breaking sector,
while the number of F -terms is equal to the number of generators of the E6 group.

When a solution for the EOM is obtained (and it need not be unique), one needs a
way to determine, what is the remaining symmetry group when plugging in the VEVs.
This can easily be figured out by computing the masses of the gauge bosons Aµ

a. These
come from the kinetic terms of the scalar fields:∑

i

(Dµ φ)†(Dµ φ), (206)

where φi are all the scalar representations of the theory and Dµ := ∂µ− igAµat̂a is the
covariant derivative. For the scalar representations, the VEVs obtained by solving the
EOM need to be plugged-in. The gauge boson mass terms can then be written as

Lmass = g2A a
µM

abAµ b, (207)

where g is the E6 gauge coupling constant, and the the mass-square matrix Mab is
defined as

Mab :=
∑
i

(t̂aφi)
†(t̂bφi). (208)

The symbol t̂a denotes the action of the a-th generator on the representation φi, and
we sum up the contributions of all scalar representations φi with the VEVs plugged-
in. The broken generators get a nonzero mass, while the unbroken generators remain
massless. By figuring out which generators remain massless, one can determine the
symmetry of the VEV solution.

A note on complex generators: in the decomposition of 78 under the Standard
Model group, sometimes it is the complex generators which have well defined
transformation properties. The usual mass term of a gauge boson corresponding to a
(real) broken generator is simply

m2

2
AµA

µ. (209)

Suppose now we have two gauge bosons (A1)µ and (A2)µ corresponding
to real generators, where the complex combinations A− := 1√

2
(A1 + iA2) and

A+ := 1√
2
(A1 − iA2) have well defined transformation properties, with each now having

their own mass term (this is analogous to the W± in the Standard Model). Since
A+
† = A− and A−

† = A+, we have

m2
+ (A+)µ(A+)†µ +m2

− (A−)µ(A−)†µ = (m2
+ +m2

−) (A+)µ(A−)µ

=
m2

++m2
−

2
((A1)µ(A1)µ + (A2)µ(A2)µ) . (210)

The gauge bosons A+ and A−, or equivalently A1 and A2, both have the same square
of the mass, namely m2

+ +m2
−. This fact was taken into consideration when computing

Tables 16 and 19.

4.1.3 DT splitting

The triplets (3, 1,−1/3) and antitriplets (3, 1,+1/3) mediate D = 5 proton decay (see
section 2.4.3), so they need to stay heavy. The doublet (1, 2,+1/2) need a light Hu
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from the MSSM among them, and similarly the antidoublets (1, 2,−1/2) will need a
light MSSM Hd among them. This means we need one light doublet-antidoublet pair,
while the triplets need to remain heavy.

We will be performing doublet-triplet splitting by fine-tuning of parameters.
Considering the mass matrices Mdoublets and Mtriplets, we will put a constraint on
the parameters, such that one doublet will become massless, which will be a constraint
on Mdoublets (if there are no massless doublets already, we take the constraint to be
that its determinant is zero). Let us look at a simple SU(5) example: suppose we have
we have a superpotential term m5 · 5 + λ 5 · 〈24〉 · 5, with 〈24〉 = v diag(2, 2, 2,−3,−3).
Written in blocks of triplets and doublets, the terms are

(
T D

)(m+ 2λv I3×3 0
0 m− 3λv I2×2

)(
T
D

)
= (m+ 2λv) TT + (m− 3λv) DD.

(211)

Taking

m ≈ 3λv, (212)

we can make the doublet as light as we want, while the mass of the triplet becomes
≈ 5m/3 and thus stays heavy. Although v is a solution to the EOM and itself depends
on parameters of the Lagrangian, we can plug the EOM solution into equation (212)
and get a pure constraint among the parameters. This specific case demonstrates the
general principle, but it will be computationally more difficult in the cases we consider.

Although there exist mechanisms for DT splitting, which do not involve fine-tuning,
they operate only in very specific models set up for them; since these mechanisms will
not be possible in generic models, we will not depend on them, but instead rely on the
less attractive fine-tuning.

4.1.4 Yukawa sector

Our models will not involve any flavor model building. We will do the most common
thing in GUTs. Since the SM fermions of the i-th family are in 27iF , we need to look at
which E6 representations couple to two fermionic 27’s. Since we have the decomposition

27⊗ 27 = 351′ ⊕ 27︸ ︷︷ ︸
symmetric

⊕ 351︸︷︷︸
antisymmetric

, (213)

we see that the SM Yukawa terms in renormalizable models can come only from the
terms

WYukawa =
∑
i,j

27iF 27jF (Y ij

351′
351′ + Y ij

27 27 + Y ij

351
351). (214)

The relevant representations in the breaking sector, with the help of which we can build
a Yukawa sector, are therefore 351′, 27 and 351. Note that due to the what constitutes
the symmetric and antisymmetric parts in the decomposition of equation (213), the
Yukawa matrices Y351′ and Y27 are symmetric, while the Y351 is antisymmetric. In
GUT, we usually build a Yukawa sector from two symmetric matrices (in SO(10)
for example [32, 33]), since an antisymmetric matrix usually does not have enough
parameters to fit the SM fermion masses (some attempts in different models were
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made in [72, 73]). Also, we need at least two Yukawa terms; if we have a single
Yukawa term, we can rotate in family space with a U(3) rotation and thus diagonalize
the single Yukawa matrix Y , thus eliminating any flavor mixing. Since we also need
to reconstruct the CKM matrix of the SM, one Yukawa term will therefore not suffice
(and the Higgses need to be present in at least two Yukawa terms). One also needs to
keep in mind that multiple terms, where the fermionic 27F ’s couple to the same type
of representation, do not solve the lack of flavor mixing. If, for example, we have two
27’s in the breaking sector, the two terms can be added together, and Y1〈271〉+Y2〈272〉
can be rewritten as a single term Y 〈27〉, since the VEVs of the two 27’s couple to the
fermionic sector in exactly the same way.

It therefore seems that the best way to construct a realistic Yukawa sector is to
have two symmetric Yukawa matrices for the 27 and 351′ (at least). Indeed, both
Model I in section 4.4 and Model II in section 4.5 will follow this general pattern, but
they will differ in the details substantially.

The goal in the Yukawa sections is to see whether the exotics can be heavy, and
to compute masses for low-energy fermions of the SM. Writing the MSSM terms
schematically as

WYukawa = MU Qu
cHu +MD QdcHd +ME Le

cHd +MN (LHu)
2/Λ, (215)

with the up-type and down-type Higgses Hu and Hd getting VEVs, we have labeled
the mass matrix in the up-sector by MU , in the down-sector by MD, in the charged
lepton sector by ME and in the neutrino sector by MN . The Lagrangian mass terms
of the fermions are then obtained by

−1

2

∂2W (φ)

∂φi ∂φj
ψiψj −

1

2

∂2W (φ†)

∂φ†i ∂φ
†
j

ψiψj, (216)

where the sum over i and j is implied, with φi being scalar fields in the chiral
supermultiplets and ψi the corresponding Weyl fermions in the chiral supermultiplets.
We omitted the writing of spinor indices of ψ and ψ. By this computation, we predict
the tree-level masses of the fermions in the theory. We assume that contributions
from SUSY threshold corrections are negligible. The scalar masses, however, also get
contributions from SUSY-breaking soft terms (which involve new parameters, and we
will not be dealing with them) — typically bringing their masses to somewhere around
the SUSY breaking scale.

Although a realistic Yukawa sector is necessary for a viable model, we will still
analyze symmetry breaking in models with insufficiently rich breaking sectors, since
we are also interested in the needed ingredients for a successful symmetry breaking
and we study it systematically. Furthermore, it is in principle possible that certain
representations get only EW scale VEVs and do not need to be considered in GUT
breaking.

4.2 Unsuccessful models

4.2.1 Breaking sector n27 27 ⊕ n27 27 ⊕ n78 78

We first consider models, where the breaking sector is constructed from an arbitrary
number of copies of the fundamental 27, antifundamental 27 and the adjoint 78
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representations of E6. These are the simplest models one can construct. We write
the contents of the breaking sector as

n27 27 ⊕ n27 27 ⊕ n78 78, (217)

where n27, n27, n78 are non-negative integers and tell us the number of copies of
each representation. For n27 = n27 = n78 = 1, the result can already be found in the
literature [14]: one can spontaneously break the gauge group at most to SO(10) at
the renormalizable level. Here, we will generalize this result and show that we cannot
spontaneously break E6 into the Standard Model, even in the case of multiple copies.
The arguments will be group-theoretical in nature.

If we use the SM ansatz, it is only the SM singlets which can acquire non-zero VEVs.
Looking at Table 6, we see that representations 27 and 27 contain two SM singlets each,
which are incidentally also SU(5) singlets. With no 78 present, all possible VEVs would
be SU(5) singlets and we could thus break E6 at most to SU(5). The presence of the
78 is therefore crucial.

Again reading from Table 6, we see the adjoint 78 has five singlets, with all but
one being SU(5) singlets also. To break the group beyond SU(5) all the way to the
SM group, one has to make use of the other singlet, which is a 24 under SU(5), and is
denoted by y. When we have multiple copies of 78’s, at least one of the y singlets will
need to have a non-zero VEV, otherwise the unbroken group is SU(5). Is it possible for
a y VEV to be non-zero? To answer this, we will need to consider the renormalizable
invariants in the models, and then the F terms.

The only invariants at the renormalizable level, which we can construct from the
representations 27, 27 and 78, are schematically the following (see subsection 3.5.2):

27 · 27, 27 · 27 · 27, 27 · 27 · 27, (218)

78 · 78, 27 · 78 · 27, 78 · 78 · 78. (219)

The F -terms corresponding to y-type singlets are computed by the partial derivative
∂W/∂yi, where yi is the y-type singlet in the representation 78i. For these terms, only
invariants in equation (219) are relevant — those with at least one 78 factor. The
quadratic mass terms 78 · 78 contain the y-type singlet, while the other two do not:

• The invariant 27 · 78 · 27 has no term with the singlet VEV y, as we can see
from equation (176). Group-theoretically, one can obtain the same conclusion by
analyzing this invariant in SU(5) language, where irreducible representations of
E6 are reducible in SU(5), with the invariant now looked at as a SU(5) invariant.
The all-singlet term would need to be found as part of a product of three SU(5)
irreducible representations, which contain these SM singlets. The 27 and 27
contain SM singlets only in a 1 of SU(5), while y is found in 24 of SU(5), so the
terms we are looking for are of the form

1 ⊗ 1 ⊗ 24. (220)

But such terms do not contain any SU(5) singlets (we cannot form an SU(5)
invariant with these factor), so the desired term with y cannot be present in the
invariant.
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• The invariant 78 · 78 · 78 is antisymmetric in the factors; such invariants can be
present only in models where n78 ≥ 3. We see there are no y-type singlets in this
invariant from equation (195) (no y, y′ or y′′ present). This can also be deduced
from group-theoretic arguments. The 78 contains SM singlets in 1’s and a 24 of
SU(5). Possible SM singlet-only terms with at least one y-type singlet can be
written in SU(5) language as

24 ⊗ 1 ⊗ 1, (221)

24 ⊗ 24 ⊗ 1, (222)

24 ⊗ 24 ⊗ 24. (223)

The first combination of representations in equation (221) cannot form an SU(5)
invariant, because the tensor product is irreducible and it transforms as a 24.
The double and triple product of 24’s in equations 222 and (223) do contain an
SU(5) invariant, but only in their symmetric part; but it is the antisymmetric
part which is relevant, since the products in equations (221)–(223) come from the
antisymmetric product of the 78’s. The terms with y-type singlets are therefore
not present in this invariant.

We conclude that the only terms, which have a presence of y-type singlets can be
the mass terms for the representations 78. This means there can be no expectation
values for these singlets: 〈24〉 = 0 in SU(5) language. This conclusion can also be
shown explicitly. If we label these representations by 78i, or φi, the mass terms are
then written as

mij 78i 78j = mij Tr(φiφj) = mij yi yj + . . . , (224)

where we have written all the terms that contain y-type VEVs, the indices i, j run from
1 to n78 and summation over i and j is assumed. The fundamental and antifundamental
indices of E6 in the matrix φ are suppressed in this notation. The coefficients mij form
a n78×n78 matrix, which can be assumed to be symmetric, since the trace is symmetric
under the exchange of φi and φj. Real symmetric matrices can be diagonalized, and in
this new diagonal basis (with the new VEVs denoted by y′i and the mass eigenvalues
by m′i), the mass terms can be written as

W =

n78∑
i=1

m′iy
′
i
2 + . . . , (225)

which gives the F -terms Fyi to be

∂
∂y′i

= 2m′iy
′
i = 0. (226)

All the masses must be nonzero, otherwise we have a massless SM singlet state, which
is phenomenologically unacceptable, which means all y′i = 0, and thus all yi = 0 in
the old basis. All the y-type VEVs are zero and the smallest possible unbroken group
is therefore SU(5). We were able to prove that none of these models are viable, if we
include only renormalizable terms, no matter the number of copies of 27, 27 and 78
we use. To find a viable model, one must therefore necessarily look include at least on
higher dimensional representations, 351 or 351′ for example.

As a small aside, we compare the obtained results in E6 with some well known
results from SU(5) GUT. Suppose we have a 5, 5 and 24, which are the fundamental,
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antifundamental and adjoint representations of SU(5), respectively, which is equivalent
to the considered E6 case. In SU(5), the 5 and 5 do not contain any SM singlets, so the
only two invariants which we need consider for symmetry breaking are the quadratic
and cubic invariant of 24. If we denote 24 = Σ the 5 × 5 matrix of the adjoint
representation in SU(5), and the VEV by 〈24〉 = s diag(2, 2, 2,−3,−3), the relevant
superpotential terms would be

W = m24 24 · 24 + λ 24 · 24 · 24 + . . . = m24 Tr(Σ2) + λTr(Σ3) + . . . , (227)

W = 30m27 s
2 − 30λ s3 + . . . , (228)

giving the F -term

Fs = ∂W/∂s = 30s(2m24 − 3s2) = 0, (229)

which has a non-trivial solution s = 2m24

3λ
, breaking the SU(5) group into the SM group.

In the case of SU(5), it is therefore possible to break to the Standard Model at the
renormalizable level using only the adjoint 24. The different result from the E6 case
comes from the fact that the cubic invariant 243 contributes non-trivially, since it is
symmetric in the factors, while the antisymmetric 783 in E6 does not.

4.2.2 Breaking sector 351 ⊕ 351 ⊕ n27 27 ⊕ n27 27

In this model, we make use of the two-index antisymmetric representations 351 and
351. Beside these two, we can also add an arbitrary number of copies n27 of the
representation 27, and n27 of the representation 27, so that the contents of the breaking
sector can be written as

351 ⊕ 351 ⊕ n27 27 ⊕ n27 27. (230)

Looking at Table 6, we see that each of the representations in the pair 351 ⊕ 351
has 5 SM singlets, with three being SU(5) singlets, and two being in the 24 of SU(5).
Each copy of either 27 or 27 contains two SM singlets, each being also SU(5) singlets.
To break beyond SU(5) all the way into the Standard Model group, at least one of the
four SM singlets in the 24’s of SU(5) will need to acquire a nonzero VEV: at least one
of the VEVs g4, g5, h4 or h5 need to be non-zero.

The different types of invariants one can form (see subsection 3.5.2) in this model
are schematically written as

27 · 27, (231)

351 · 351, 351 · 27i · 27j, 351 · 27i · 27j. (232)

The invariants which could potentially hold terms containing the 〈24〉’s are written
in equation 232. The mass term 351 · 351 will have these terms, while the other
two cubic terms will not. As already discussed in the previous unsuccessful model of
subsection 4.2.1, one can see that most simply in the SU(5) language. Since the 27’s
contain VEVs which are also SU(5) singlets, and the only 24’s are in the 351’s, the
only possible all-singlet term could come from the product 24 ⊗ 1 ⊗ 1, but this does
not contain the invariant.

Since the only term containing the singlet of type 〈24〉 are the mass terms, the
superpotential has the form

W = m351 (g4h4 + g5h5) + . . . , (233)
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which gives the F -terms

Fg4 = d
dg4
W = m351 h4 = 0, Fh4 = d

dh4
W = m351 g4 = 0, (234)

Fg5 = d
dg5
W = m351 h5 = 0, Fh5 = d

dh5
W = m351 g5 = 0. (235)

These imply g4 = h4 = g5 = h5 = 0, which means these models can break E6 at most
to SU(5). These models are therefore not viable, no matter how many copies of the 27
and 27 we take.

Some additional comments:

• Note that due to 351 (351) being antisymmetric in the exchange of indices, the
second and third invariants in equation (232) are antisymmetric in the two 27’s
(27’s). For n27 ≤ 1 or n27 ≤ 1, these invariants can be trivially zero. For
n27, n27 > 2, both types of invariants are present and are nonzero, but they do
not contain any terms with the 〈24〉’s.

• Notice that we cannot construct the cubic invariants 3513 and 351 with only single
copies of these representations, since these two cubic invariants are antisymmetric
in their factors. For these invariants to become non-trivial, we would need at
least 3 different copies of the representations 351 and its conjugate. We will
not consider these cases, since this greatly increases the number of degrees of
freedom beyond what we actually need for the simplest viable models. These
cubic invariants would contain terms with the 〈24〉’s though.

4.2.3 Breaking sector 351′ ⊕ 351′

This model has the breaking sector 351′ ⊕ 351′. Each of the representations contains
five SM singlets, three of those being a 1 under SU(5), and two of those a 24. At the
renormalizable level, one can build the mass term and the two cubic invariants:

351′ · 351′, 351′ · 351′ · 351′ 351′ · 351′ · 351′. (236)

It turns out that this model also cannot break to the Standard Model group, but leaves
invariant the Pati-Salam group SU(4)C × SU(2)L × SU(2)R, and is thus not viable.
Deducing this fact involves an analysis of the equations of motion; we were not able to
find simple group-theoretic arguments to explain this, if they indeed exist. A thorough
analysis of a more complicated model will be performed in subsection 4.3, in which the
analysis of this model will come for free as a special case. For this reason, we postpone
the computation, which is done in section 4.3.1.5.

4.2.4 Varia

We now list some further observations, which do not necessarily depend on a single
model:

• The representation 650 is a real representation. Consequently, it cannot by itself
break E6 to the SM, since it cannot break the rank of the original E6 group
(similarly to how the adjoint representation alone cannot break the rank of any
group). The rank would of course need to be broken from the 6 of E6 to 4 of the
Standard Model.
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One can easily confirm that the model with the breaking sector 650 cannot break
into the SM by observing that the generator t8L acts trivially on the VEVs of this
representation: we compute that

(t̂8L 〈X〉)ij = (t8L)ik 〈X〉kj − (t8∗L )j
k 〈X〉ik = 0. (237)

The gauge boson mass matrix Mab (see section 4.1.2 for details) is in the 650
model computed by (t̂a650)†(t̂b650). Equation (237) thus implies that the gauge
boson corresponding to the E6 generator t8L is massless, and is thus part of the
remaining symmetry into which we break. We note that t8L is a SM singlet,
and unlike the linear combination Y/2 = 1√

3
t8L + t3R + 1√

3
t8R, it is not part of the

Standard Model. This implies that we have (at least) one additional U(1) factor
unbroken, and the 650 model is not viable due to symmetry breaking alone.

To have a realistic renormalizable model in its Yukawa sector, a 650 model would
need to also be extended by a two representations (and their conjugates), which
couple to the SM fermions in 27F . This means we would probably need to add
two of the three pairs 27⊕27, 351′⊕351′ and 351⊕351. The model would be very
complicated, having many invariants and the resulting EOM would likely not be
solvable analytically. We will find much simpler realistic models, called model
I and model II in sections 4.4 and 4.5, respectively. Beside these models being
simple enough to be at least somewhat handled non-numerically, the smaller
(by absolute value) β function of the running couplings also makes them less
problematic. For these reasons, we shall not study models with the 650 in detail.

• We have not considered in detail “asymmetric” models, when some representation
R is present in the breaking sector, while the conjugate representation R̄ is
not. In these cases, we have found that within supersymmetric models, it is
sometimes hard for the unpaired representation to get a non-vanishing VEV. A
more easily apparent problem, however, is the lack of the mass term RR̄. For
the model to have realistic masses, there must not be any massless fermions; in
the absence of a mass term RR̄, it is for example very hard to imagine how we
could guarantee all the states in R to have non-vanishing mass. Even with terms
like R ·R1 · 〈R2〉, we can at most give masses to those SM representations in R,
which have their conjugate SM representations present in R1. And considering
cubic invariants R3, even if we can manage a vacuum with 〈R〉 6= 0, only those
SM representations present in R as conjugate pairs can get a mass, and we know
there are parts of R, which are not-conjugate symmetric, since we are considering
complex representations R. For this reason, we disfavor models with asymmetric
breaking sectors.

We can consider the asymmetric cases as special cases of symmetric models, by
taking the ansatz 〈R̄〉 = 0 and also make all the parameters, which are in front
of invariants containing R̄, vanish.

• We have seen in subsection 4.2.1 that the 〈24〉 of SU(5) in the adjoint 78 is
vanishing in renormalizable models, where we also have pairs of 27 ⊕ 27. This
fact can further be generalized to models, where we also add pairs 351′ ⊕ 351′.
We can again prove that by invoking only group-theoretic arguments.

We are considering models with 78 ⊕ 27 ⊕ 27 ⊕ 351′ ⊕ 351′, where one can
have an arbitrary number of copies of any representation. We claim that all
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y = 〈24〉 = 0 in the 78’s. It is sufficient to show that these y’s are not present
in any other invariant than in the 782 mass term. In the absence of the 351′,
we already proved this. Adding now the 351′ representations and looking at
Tables 12 and 14, we see there is only one new type of invariant containing both
the 78 and the 351′:

351′ · 78 · 351′. (238)

Naively, one would expect y to be present in the 243 part in SU(5) language. But
this invariant is computed by

Θij φ
j
k Θki, (239)

or alternatively in matrix notation as

Tr(Θ φ Θ). (240)

Since the y singlet state resides in the adjoint of E6, it can be written in matrix
form as y (tY )ij, where tY is the corresponding generator of hypercharge. Next,
we consider the action of the tY generator only on the VEVs: 〈Θ〉. Since tY is
a SM generator, its action on 〈Θ〉 must therefore give zero, since the VEVs are
SM singlets and do not transform under SM generators:

(t̂Y Θ)ij = 0 = (tY )ik Θkj + (tY )jk Θik. (241)

We omitted the VEV brackets 〈〉 in the notation. Note that t̂Y (with a
hat) denotes the action of the generator, while tY simply denotes the matrix
representation of the generator in a basis. We choose a basis, in which tY is
diagonal and therefore symmetric: (tY )T = tY componentwise. Written in matrix
notation, equation (241) becomes more transparent:

0 = tY Θ + Θ (tY )T . (242)

Furthermore, using the symmetry of Θ, we get

0 = tY Θ + ΘT (tY )T = tY Θ + (tY Θ)T . (243)

The symmetric part of tY Θ (with only the SM singlet VEVs present) thus
vanishes, thus making tY Θ antisymmetric, which is multiplied by the symmetric
Θ in equation (239), leaving the y term to vanish, as stated. One can check this
also by computation: there is no y-term in the explicit form of this invariant in
equation (181).

The analogous argument can be made also for the two-index antisymmetric
representation Ξ = 351 and the invariant Tr(ΞφΞ) = 351 · 78 · 351: there is no
y-term present in VEV only terms, because the null-action t̂Y Ξ = 0 yields tY Ξ
to be symmetric, while Ξ is antisymmetric. In the 351 case, we also have the
invariant 27 · 78 · 351, which does have an y-term present, so we cannot conclude
y = 0 in 351 models. Also note that the y-term is present in the mixed invariants
351 · 78 · 351′ and 351′ · 78 · 351, since for example tY Θ gives an antisymmetric
matrix, while Ξ is also antisymmetric, exactly what is needed for the Tr(ΞφΘ)
to give a non-vanishing y term. All these statements can be cross-checked with
the explicit computation in equations (174)–(190).
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As a final point, we comment on another apparent possibility of correctly
contracting the indices to form invariants of type 351×78×351 and 351′×78×351′.
The use of the invariant tensor dµνλ allows us to write

Ξab Φi
c Ξjk dijk d

abc, (244)

Θab Φi
c Θjk dijk d

abc. (245)

These two invariants are trivially zero. Since d is symmetric under the exchange
of indices, and Ξ is antisymmetric, the sums dλµν Ξµν vanish trivially. The 351′

representation Θ on the other hand has two symmetric indices, but dkij Θij = 0
is exactly the projection condition for this representation.
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4.3 Almost successful prototype: 351′ ⊕ 351′ ⊕ 27 ⊕ 27

This model has a breaking sector, which consists of

351′ ⊕ 351′ ⊕ 27 ⊕ 27. (246)

It turns out that this model is almost viable, and it fails solely for its inability to
successfully perform doublet-triplet splitting, even by a fine tuning of parameters. In
this model, multiple things will be computed, so we shall divide this subsection into
the following parts:

1. Analyzing the symmetry breaking possibilities in this model.

2. Trying to perform doublet triplet splitting.

3. A discussion and summary of results.

Taking account of matter parity, we write the most general renormalizable
superpotential of this model as

W = m351′ I351′⊗351′ +m27 I27⊗27

+ λ1 I351′3 + λ2 I351′
3

+ λ3 I272⊗351′ + λ4 I27
2⊗351′

+ λ5 I273 + λ6 I27
3

+
3∑

i,j=1

1
2

(
Y ij

27 I27iF⊗27jF⊗27 + Y ij

351′
I27iF⊗27jF⊗351′

)
. (247)

The last line represents the Yukawa terms, with the factor 1/2 in front for convenience.

4.3.1 Symmetry breaking

4.3.1.1 Equations of motion In supersymmetric models, the equations of motion
consist of both F -terms and D-terms. We can take the Standard Model ansatz, where
only SM singlets can acquire VEVs, and the equations of motion are written only with
these VEVs. Furthermore, we can assume 〈27iF 〉 = 0 due to matter parity, and thus
the Yukawa sector is not involved in the breaking. The explicit form of invariants (with
singlet-only terms) of the superpotential in equation (247) can be found in Table 11
and equations (174)–(195).

As we can see from Table 6, the breaking sector of the model contains
14 = 5 + 5 + 2 + 2 singlets: the representation 351′ contains five e’s, the 351′ contains
five f ’s, the 27 contains two c’s and the 27 contains two d’s. The F -terms take the
explicit form
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0 =
∂W

∂c1

= m27d1 +
√

2λ3c2f2 + 2λ3c1f3, (248)

0 =
∂W

∂d1

= m27c1 +
√

2λ4d2e2 + 2λ4d1e3, (249)

0 =
∂W

∂c2

= m27d2 + 2λ3c2f1 +
√

2λ3c1f2, (250)

0 =
∂W

∂d2

= m27c2 + 2λ4d2e1 +
√

2λ4d1e2, (251)

0 =
∂W

∂e1

= m351′f1 + 3λ1e5
2 + λ4d2

2, (252)

0 =
∂W

∂f1

= m351′e1 + 3λ2f5
2 + λ3c2

2, (253)

0 =
∂W

∂e2

= m351′f2 − 3
√

2λ1e4e5 +
√

2λ4d1d2, (254)

0 =
∂W

∂f2

= m351′e2 − 3
√

2λ2f4f5 +
√

2λ3c1c2, (255)

0 =
∂W

∂e3

= m351′f3 + 3λ1e4
2 + λ4d1

2, (256)

0 =
∂W

∂f3

= m351′e3 + 3λ2f4
2 + λ3c1

2, (257)

0 =
∂W

∂e4

= m351′f4 + 6λ1e3e4 − 3
√

2λ1e2e5, (258)

0 =
∂W

∂f4

= m351′e4 + 6λ2f3f4 − 3
√

2λ2f2f5, (259)

0 =
∂W

∂e5

= m351′f5 + 6λ1e1e5 − 3
√

2λ1e2e4, (260)

0 =
∂W

∂f5

= m351′e5 + 6λ2f1f5 − 3
√

2λ2f2f4. (261)

The D-terms have the schematic form

Da = (27†)i (t̂a 27)i + (27
†
)i (t̂a 27)i

+ (351′†)ij (t̂a 351′)ij + (351′
†
)ij (t̂a 351′)ij, (262)

where t̂a is the action of the a-th generator. Since E6 has 78 generators, there are in
principle 78 D-terms, but only 5 are nontrivial. They correspond to the generators t8L,
t8R, t6R, t7R and t8R. We label the D-terms accordingly as D8

L, D3
R, D6

R, D7
R and D8

R.
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0 = D8
L = 1√

3

(
|c1|2 + |c2|2 + 2|e1|2 + 2|e2|2 + 2|e3|2 − |e4|2 − |e5|2

− |d1|2 − |d2|2 − 2|f1|2 − 2|f2|2 − 2|f3|2 + |f4|2 + |f5|2
)
, (263)

0 = D3
R = 1

2

(
− |c2|2 + |d2|2 − 2|e1|2 − |e2|2 + |e5|2 + 2|f1|2 + |f2|2 − |f5|2

)
, (264)

0 = D6
R = 1

2

(
c2c
∗
1 + c1c

∗
2 +
√

2e2e
∗
1 +
√

2e1e
∗
2 +
√

2e3e
∗
2 +
√

2e2e
∗
3 + e5e

∗
4 + e4e

∗
5

− d2d
∗
1 − d1d

∗
2 −
√

2f2f
∗
1 −
√

2f1f
∗
2 −
√

2f3f
∗
2 −
√

2f2f
∗
3 − f5f

∗
4 − f4f

∗
5

)
,

(265)

0 = D7
R = i

2

(
c2c
∗
1 − c1c

∗
2 −
√

2e2e
∗
1 +
√

2e1e
∗
2 −
√

2e3e
∗
2 +
√

2e2e
∗
3 − e5e

∗
4 + e4e

∗
5

+ d2d
∗
1 − d1d

∗
2 −
√

2f2f
∗
1 +
√

2f1f
∗
2 −
√

2f3f
∗
2 +
√

2f2f
∗
3 − f5f

∗
4 + f4f

∗
5

)
,

(266)

0 = D8
R = 1

2
√

3

(
− 2|c1|2 + |c2|2 + 2|e1|2 − |e2|2 − 4|e3|2 + 2|e4|2 − |e5|2

+ 2|d1|2 − |d2|2 − 2|f1|2 + |f2|2 + 4|f3|2 − 2|f4|2 + |f5|2
)
. (267)

We know that D8
L +
√

3D3
R + D8

R. = 0, since this D-term corresponds to the
hypercharge generator Y/2 of the Standard Model, which remains unbroken. Therefore,
we need not consider D24 since it is not independent from the other D-term equations.
Also, superficially D6

R and D7
R look like two complex equations. But the equations

D6
R + iD7

R and D6
R − iD7

R are complex conjugates of each other, so D6
R and D7

R form
just one independent complex equation. This is in accordance with the fact that
D-terms are real equations, as opposed to the holomorphic F -terms. Some further
simplification is also possible, since we can combine D16 and D19 into two other linear
combinations, which are by themselves much simpler. All the 4 independent real D-
term constraints can be compactly written in two real conditions DI and DII , as well
as one complex condition DIII :

DI ≡
√

3D8
L + 2D3

R = |c1|2 − |d1|2 + |e2|2 − |f2|2 + 2|e3|2 − 2|f3|2 − |e4|2 + |f4|2,
(268)

DII ≡ − 2D3
R = |c2|2 − |d2|2 + |e2|2 − |f2|2 + 2|e1|2 − 2|f1|2 − |e5|2 + |f5|2,

(269)

DIII ≡ D6
R + iD7

R = c1c2
∗ − d1

∗d2 +
√

2e1
∗e2 −

√
2f1f2

∗

+
√

2e2
∗e3 −

√
2f2f3

∗ + e4
∗e5 − f4f5

∗. (270)

4.3.1.2 Symmetries of EOM Before plunging full-force into solving the system
of equations, it will be very useful to make a few observations. Looking at the F -terms
in equations (248)–(261) and the D-terms in equations (268)–(270), we can recognize
two symmetries:

1. Conjugation symmetry : the breaking sector contains representations in complex
conjugate pairs. Suppose we perform a sort of complex conjugation, where
we exchanges between the representation and its conjugate, e.g. 27↔ 27 and
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351′ ↔ 351′. The superpotential, however, contains invariants which do not
respect this symmetry, such as the cubic invariants 351′3, so we need to exchange
the parameters in front of the invariants. Explicitly, conjugation symmetry can
be written as

ci ↔ di, (271)

ei ↔ fi, (272)

λ1 ↔ λ2, (273)

λ3 ↔ λ4, (274)

λ5 ↔ λ6, (275)

where ↔ denotes the exchange of the quantities we have on the left- and right-
hand side. Under the conjugation symmetry operation, the F -terms remain the
same set of equations; in fact, it is easiest to observe that the superpotential
W is invariant under the conjugation symmetry, which implies no change to the
F -terms. The D-terms change according to the rules DI 7→ −DI , DII 7→ −DII ,
DIII 7→ −DIII∗, which is again an equivalent set of D-terms.

The conjugate symmetry observation will have an impact on how we approach
the solving of the EOM. Its especially important feature is the exchange of the
parameters λ in front of invariants. Without it, we could start with an ansatz
〈351′〉 = 〈351′〉 and 〈27〉 = 〈27〉 (we mean ci = di and ei = fi at the level of
specific VEVs). Notice that it automatically solves the D-terms. But due to
the exchange in λ’s, this ansatz leads to a consistent set of F -terms only if the
VEVs vanish or we make an exact fine-tuning λ1 = λ2 and λ3 = λ4. Taking
the conjugate VEV pairs to have the same value thus forces us to take the same
values for the conjugate pairs of parameters. But we are trying to avoid any a
priori relations among parameters, especially exact fine-tunings; to avoid these
relations among parameters, we thus abandon this route of a symmetric ansatz
for the D-terms, but try to solve the F -terms first. The D-terms will then be
solved in a non-trivial way, which is not a priori obvious.

2. Alignment symmetry : there is another symmetry in the EOM, defined by the
exchanges

c1 ↔ c2, d1 ↔ d2, (276)

e1 ↔ e3, f1 ↔ f3, (277)

e4 ↔ e5, f4 ↔ f5. (278)

In the breaking part of the superpotential W of equation (247), every invariant by
itself remains unchanged under alignment symmetry, so the whole superpotential
W and the EOM are unchanged as well. Furthermore, the D-terms exchange
under alignment symmetry as DI ↔ DII and DIII ↔ DIII∗. The EOM system
thus indeed remains unchanged.

While conjugation symmetry was similar to performing a complex conjugation
operation, alignment symmetry is more tricky to understand intuitively.
Somewhat superficially, what we are in fact doing is exchanging the two 5̄’s
of SU(5) in the representation 27, as well as the two 1’s in the 27; this naturally
also has an impact on the 351′, since it can be constructed with the help of
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the symmetric tensor product 27 ⊗ 27, and by extension also to the conjugate
representations 27 and 351′.

This exchange of 1’s changes the embedding of some subgroups of E6, however.
From the point of view of SO(10), exchange of 5̄’s represents exchange of parts
of representations 16 and 10, and more importantly, also the SU(5) singlets
in the 1 and 16 of SO(10); since this operation exchanges which quantity is
SO(10) invariant, the alignment symmetry necessarily changes its embedding.
Similarly, the standard embedding of the Pati-Salam group is also changed, since
for example the Pati-Salam singlet e3 is exchanged with the Pati-Salam nonsinglet
e1 in the 351′. The SU(5) embedding does not change, and so the SM embedding
also does not change.

We can elucidate the alignment symmetry much further by considering, how the
change of embedding actually looks like at the Lie algebra level. We will see that
the symmetry operation is actually a specific 90◦ rotation, which is also part of the
E6 group. To find this rotation, consider the fact that the SM embedding remains
unchanged, which means that the rotation commutes with all the Standard Model
generators. Since the commutator [t, .] can be seed as the action of the generator
t on the adjoint representation, the generators corresponding to the mystery
rotation will be SM singlets. We know there are 5 SM singlets in the adnoint
78: t8L, t3R, t6R, t7R and t8R. We guess that the mystery rotation is part of a SU(2)
group, denoted as SU(2)′R and defined by the generators t6R, t7R and t3R −

√
3t8R.

This SU(2)′R is a subgroup of SU(3)R in E6, which rotates the second and third
component in the 3 of SU(3)R. We confirm our guess by looking at the properties
of these SU(2)′R rotations. By construction, the SU(2)′R rotations commute with
the Standard Model generators, and in fact with the SU(5) generators as well, so
the SM and SU(5) embeddings into E6 are not changed, exactly as we wanted.
But SU(2)′R rotations do not commute with the standard SU(2)R embedding into
SU(3)R, so the embedding of SU(2)R into EE is changed. Therefore, the SU(2)′R
has an impact on the left-right group, the Pati-Salam group and SO(10), since
they all contain SU(2)R.

An SU(2)′R real rotation between the second and third place of 90◦ essentially
exchanges the second and the third place in the SU(3)R triplet (up to a
minus sign). The new SU(2)R will therefore rotate between the first and third
component of the triplet instead of the usual rotation between the first and
second. The new SU(2)R will thus consist of ladder operators t45±

R instead of
ladder operators t12±

R . To understand how the new embeddings of the Pati-
Salam and SO(10) look graphically in Figures 6 and 7, we exchange generators
t1R and t2R by t4R and t5R, respectively, while in each 3-by-3 block of the complex
generators, the second column is exchanged with the third column.

4.3.1.3 The main branch of solutions To find a symmetry breaking solution,
we follow the strategy outlined in the discussion on conjugation symmetry: we start
by solving the F -terms in equations (248)-(261). That is a holomorphic system of
14 equations with 14 variables, with perhaps not all equations independent of each
other, especially if we choose an ansatz with some VEVs zero; remember that we also
have the D-terms, and the whole system of EOM is not overconstrained. Since the
superpotential is renormalizable, the the highest order of invariants is the cubic order,
which leads to the F -terms being quadratic equations. Since there is no universal way
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of symbolically computing solutions of a system of quadratic equations, we have to
proceed according to the specifics of our system. A general strategy, however, involves
finding a variable in an equation, which is present only with linear terms, and then
solving the equation for that variable and eliminating it in the rest of the system. The
advantage of finding variables with only linear terms lies in the fact that the linear
equation can be solved uniquely and without resorting to square roots, which after
insertion make the remaining equations much more complicated.

One solution, which always exists, is the trivial solution, where all the VEVs are
zero and E6 remains unbroken. Since we want to break all the way to the standard
model, we would like to have as many SM singlets to have non-zero VEVs as possible.
Therefore, assumptions that certain VEVs are considered to be “general” (almost
always true), while assumptions that certain VEVs are vanishing are to be considered
“specific”.

It turns out there are two main branches of solutions: the first branch makes the
general assumptions c1, d1, e5, f5 6= 0, while the second branch assumes c2, d2, e4, f4 6= 0.
The two main branches partly overlap, since the two sets of assumptions are not
mutually exclusive, so there may exist a solution, which conforms to both. We call
them the the main branches, since their assumptions are general, and all non-special
cases (which we will check later) fall in at least one of the two branches. Note that
under alignment symmetry, the two branches are exchanged, since the two sets of
assumptions are exchanged. We can therefore, without loss of generality, consider only
the first branch; any conclusions we will draw can then be translated into analogous
conclusions of the second branch via alignment symmetry.

We can now start with systematically solving the system of F -terms. We assume
we are in the first branch:

c1d1e5f5 6= 0. (279)

• First, we express e1, f1, e3, f3 from the terms Ff1 , Fe1 , Ff3 and Fe3 , respectively,
with all the expressions being linear.

e1 =
−λ3c2

2 − 3λ2f5
2

m351′
, f1 =

−λ4d2
2 − 3λ1e5

2

m351′
, (280)

e3 =
−λ3c1

2 − 3λ2f4
2

m351′
, f3 =

−λ4d1
2 − 3λ1e4

2

m351′
. (281)

• We use the assumptions c1 6= 0 and d1 6= 0 to express e2 and f2 from Fd2 and
Fc2 , respectively. The expressions are again linear, with the assumptions used so
that we can place c1 and d1 into the denominator.

e2 = −m351′m27c2 − 2λ3λ4d2c2
2 − 6λ2λ4d2f5

2

√
2m351′λ4 d1

, (282)

f2 = −m351′m27d2 − 2λ3λ4c2d22 − 6λ1λ3c2e5
2

√
2m351′λ3 c1

. (283)

• We express e4 and f4 from equations Fe2 , Ff2 , respectively. We make use of the
assumptions e5 6= 0 and f5 6= 0 in the denominator.

e4 =
2λ3λ4c2d2

2 −m351′m27d2 + 2λ3λ4c1d1d2 + 6λ1λ3c2e5
2

6λ1λ3c1e5

, (284)

f4 =
2λ3λ4d2c2

2 −m351′m27c2 + 2λ3λ4c1d1c2 + 6λ2λ4d2f5
2

6λ2λ4d1f5

. (285)
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• We express d1 from Fc1 . This F -term contains two factors, out of which we can
express d1 linearly, so there are two possible solutions. We choose

d1 =
m351′m27 − 2λ3λ4c2d2

2λ3λ4c1

. (286)

The alternative leads to an inconsistency, which is shown below. The alternative
solution of d1 from Fc1 would be

d1 =
m351′m27d2

2 − 6λ1λ3c2d2e5
2 − 2λ3λ4c2d2

3

2λ3c1 (3λ1e5
2 + λ4d2

2)
. (287)

Note that if the denominator in equation 287 is zero, that leads us back to the
first solution of d1. Assuming the second d1 solution and proceeding further, we
could then solve the Fe5 term by expressing f5:

f5 =
3m27λ1c2e5

m351′λ4d2

. (288)

The Fd1 term then becomes

m351′c1d2e5
2 (m2

351′λ3λ4 − 9m2
27λ1λ2)

3λ2 (3λ1e5
2 + λ4d2

2) (2λ3c2 (3λ1e5
2 + λ4d2

2)−m351′m27d2)
= 0. (289)

Since we assume no relations among the parameters, equation (289) cannot be
solved: c1 6= 0 and e5 6= 0 due to the first main branch assumptions, while d2 = 0
leads to an inconsistency due to an infinity in equation (288). This forces us to
take the first solution of d1.

• We express for example f5 from any of the remaining four F -terms, such as Ff5 .
This automatically solves also the remaining three F -terms.

Following the instructions above, we arrive at a solution, which solves all the F -terms:

d1 =
m351′m27 − 2λ3λ4c2d2

2λ3λ4c1

, (290)

e1 = −
λ3c2

2 +
m2

351′ (m351′m27−2λ3λ4c2d2)2

108m2
27λ

2
1λ2e5

2

m351′
, (291)

f1 = −λ4d2
2 + 3λ1e5

2

m351′
, (292)

e2 =
λ3c1 (m27λ4d2m

3
351′ − 2λ3λ

2
4c2d2

2m2
351′ − 54m2

27λ
2
1λ2c2e5

2)

27
√

2m351′m2
27λ

2
1λ2e5

2
, (293)

f2 =
2λ3c2 (λ4d2

2 + 3λ1e5
2)−m351′m27d2√

2m351′λ3c1

, (294)

e3 =
λ3c1

2
(
−m2

351′λ3λ
2
4d2

2

m2
27λ

2
1λ2e5

2 − 27
)

27m351′
, (295)

f3 = −m
2
351′m

2
27 − 4m351′λ3λ4c2d2m27 + 4λ2

3λ4c2
2 (λ4d2

2 + 3λ1e5
2)

4m351′λ2
3λ4c1

2
, (296)

e4 =
c2e5

c1

, (297)

f4 =
m351′λ3λ4c1d2

9m27λ1λ2e5

, (298)

f5 =
m351′(m351′m27 − 2λ3λ4c2d2)

18m27λ1λ2e5

. (299)
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Note that the above equations (290)–(299) are only a partial solution, since the
VEVs c1, c2, d2 and e5 remain undetermined. They are determined by considering the
D-terms in equations (268)–(270) with the partial solution plugged-in. Obtaining all
the solutions in the first main branch would require finding all the solutions to the
D-terms, which is a very complicated system of non-holomorphic polynomials. For
now, we will be satisfied with finding one simple solution: assuming c2 = d2 = 0,
equation DIII is then solved trivially, while equation DII determines e5. We get a
specific solution

c2 = 0, d2 = 0, (300)

e2 = 0, f2 = 0, (301)

e4 = 0, f4 = 0, (302)

d1 =
m351′m27

2λ3λ4c1

, (303)

e1 = − m351′

6λ
2/3
1 λ

1/3
2

, f1 = − m351′

6λ
1/3
1 λ

2/3
2

, (304)

e3 = −λ3c1
2/m351′ , f3 = −m351′m

2
27

4λ2
3λ4c1

2
, (305)

e5 =
m351′

3
√

2λ
2/3
1 λ

1/3
2

, f5 =
m351′

3
√

2λ
1/3
1 λ

2/3
2

. (306)

The only remaining term DI becomes a polynomial condition for |c1|2:

0 = |m351′ |4|m27|4 + 2|m351′ |4|m27|2|λ3|2|c1|2

− 8|m351′|2|λ3|4|λ4|2|c1|6 − 16|λ3|6|λ4|2|c1|8. (307)

Note that the |c1|0 coefficient is positive, while the coefficient of the highest power |c1|8
is negative. This will ensure that the polynomial always has a positive solution for |c1|,
since the value of the polynomial is positive at |c0| = 0, and becomes negative for large
enough |c1|, so it has to be zero for some intermediate value of |c1| (since polynomials
are continuous functions). Knowing that a solution for |c1| will suffice, its explicit will
fortunately not be needed.

We get the other main branch of solutions, if we perform the alignment symmetry
operation on the ansatz for the first main branch in equations (290)–(299). We can
again use alignment symmetry, to get a specific solution to the D-terms of the second
branch by applying it onto the specific solution of the first branch in equations (300)–
(306). Remember that this would correspond to a 90◦ real rotation by SU(2)′R, which
brings the second entry of the 3 of SU(3)R to the third entry. A 45◦ SU(2)′R rotation
of the original specific solution would also give a solution to the D-terms; it would
correspond to the symmetric ansatz c1 = d1, c2 = d2, e1 = e3, f1 = f3, e4 = e5,
f4 = f5. Notice that this last solution, which is alignment symmetric, has all VEVs
nonzero and can be found in the overlap of the two main branches. All three specific
solutions, which correspond to angles 0◦, 45◦ and 90◦ are equivalent, since the choice
of the solution merely chooses the embedding of SU(2)R into SU(3)R. In any further
calculations, we will be using the 0◦ solution.

4.3.1.4 Details of the specific solution We obtained a specific solution in
our model in equations (300)–(306). This solution has certain vanishing VEVs:
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c2 = d2 = e2 = f2 = e4 = f4 = 0, but all the other VEV’s are nonvanishing for generic
values of masses m and parameters λ.

The claim is that the found solution corresponds to the breaking E6 → SM. To see
this, we compute the masses of the gauge bosons, with only the vanishing VEVs already
plugged, and the non-vanishing VEVs not inserted for simplicity. We list the masses,
classified by the SM representations the gauge bosons transform under, in Table 16.
All the gauge bosons, except for those in the Standard Model, acquire non-zero masses.

Another important thing to consider is whether the specific solution is an isolated
point. If it were not, we could have a combination of VEVs undetermined by the
breaking, and therefore a flat directions in the F -terms (Fs̃ = ∂W/∂s̃ = 0 trivially
for some singlet mode s̃). This would imply a physical massless mode in the singlets
(since the mass matrix is given by double derivatives of the superpotential), which is
phenomenologically unacceptable. We can check the presence of the massless modes,
and thus whether the solution is an isolated point, by computing the mass matrix of
the SM VEV-acquiring singlets found in the breaking sector. We use the labels sx for
the singlet states, where x labels the corresponding VEV. The singlet mass matrix is a
14×14 matrix related to the states sci , sdi , sej and sfj , where i = 1, 2 and j = 1, . . . , 5.
The mass term in the Lagrangian can be written as

1

2

(
sdi sci sfj sej

)
Msinglets


sci
sdi
sej
sfj

 , (308)

where Msinglets is the matrix

m27 0 2λ4e3
√

2λ4e2 0
√

2λ4d2 2λ4d1 0 0 0 0 0 0 0

0 m27

√
2λ4e2 2λ4e1 2λ4d2

√
2λ4d1 0 0 0 0 0 0 0 0

2λ3f3
√

2λ3f2 m27 0 0 0 0 0 0 0
√

2λ3c2 2λ3c1 0 0√
2λ3f2 2λ3f1 0 m27 0 0 0 0 0 2λ3c2

√
2λ3c1 0 0 0

0 2λ3c2 0 0 m351′ 0 0 0 0 0 0 0 0 6λ2f5√
2λ3c2

√
2λ3c1 0 0 0 m351′ 0 0 0 0 0 0 −3

√
2λ2f5 −3

√
2λ2f4

2λ3c1 0 0 0 0 0 m351′ 0 0 0 0 0 6λ2f4 0

0 0 0 0 0 0 0 m351′ 0 0 −3
√

2λ2f5 6λ2f4 6λ2f3 −3
√

2λ2f2

0 0 0 0 0 0 0 0 m351′ 6λ2f5 −3
√

2λ2f4 0 −3
√

2λ2f2 6λ2f1
0 0 0 2λ4d2 0 0 0 0 6λ1e5 m351′ 0 0 0 0

0 0
√

2λ4d2
√

2λ4d1 0 0 0 −3
√

2λ1e5 −3
√

2λ1e4 0 m351′ 0 0 0
0 0 2λ4d1 0 0 0 0 6λ1e4 0 0 0 m351′ 0 0

0 0 0 0 0 −3
√

2λ1e5 6λ1e4 6λ1e3 −3
√

2λ1e2 0 0 0 m351′ 0

0 0 0 0 6λ1e5 −3
√

2λ1e4 0 −3
√

2λ1e2 6λ1e1 0 0 0 0 m351′


. (309)

If we plug-in the specific solution from equations (300)–(306), we can compute
that the eigenspace of null vectors has dimension 4. This implies 4 massless singlet
modes. Remember, however, that the adjoint 78 of E6 contains five SM singlets, with
only one of those (the hypercharge) in the Standard Model, and the remaining four
corresponding to broken generators. The Higgs mechanism will then ensure that 4
massless scalar degrees of freedom will be eaten-up by the 4 singlet gauge bosons,
which will acquire masses. The 4 massless modes in the matrix are thus only would-be
Goldstone bosons, and there are no massless singlet states, which are physical. We
conclude the obtained solution is isolated and therefore valid.

4.3.1.5 Alternative solutions We have shown that there are two main branches
of solutions, which are exchanged if an alignment symmetry transformation is applied.
There are of course other possible solutions, present in neither of the two branches.
In this subsection, we will analyze all other solutions of this model and show that the
main branch solutions are the only ones which break into the Standard Model group.
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Table 16: Masses-squared for the specific solution in the prototype model of gauge
bosons in SM representations using c2 = d2 = e2 = f2 = e4 = f4 = 0.

SO(10) ⊃ SU(5) ⊃ SM ⊃ (mass)2/g2

45 24 (8, 1, 0) 0

45 24 (1, 3, 0) 0

45 24 (1, 1, 0) 0

45 24 (3, 2,+5
6
) 5

6
|e5|2 + 5

6
|f5|2

(3, 2,−5
6
)

45 10 (3, 2,+1
6
) |e1|2 + |f1|2 + 1

2
|e5|2 + 1

2
|f5|2

10 (3, 2,−1
6
)

45 10 (3, 1,−2
3
) |e1|2 + |f1|2 + 1

2
|e5|2 + 1

2
|f5|2

10 (3, 1,+2
3
)

45 10 (1, 1,+1) |e1|2 + |f1|2 + 1
2
|e5|2 + 1

2
|f5|2

10 (1, 1,−1)

16 10 (3, 2,+1
6
) 1

2
|c1|2 + 1

2
|d1|2 + |e3|2 + |f3|2 + 5

6
|e5|2 + 5

6
|f5|2

16 10 (3, 2,−1
6
)

16 10 (3, 1,−2
3
) 1

2
|c1|2 + 1

2
|d1|2 + |e3|2 + |f3|2

16 10 (3, 1,+2
3
)

16 10 (1, 1,+1) 1
2
|c1|2 + 1

2
|c1|2 + |e3|2 + |f3|2

16 10 (1, 1,−1)

16 5 (3, 1,+1
3
) 1

2
|c1|2 + 1

2
|d1|2 + |e1|2 + |f1|2+

16 5 (3, 1,−1
3
) +|e3|2 + |f3|2 + 1

2
|e5|2 + 1

2
|f5|2

16 5 (1, 2,−1
2
) 1

2
|c1|2 + 1

2
|d1|2 + |e1|2 + |f1|2+

16 5 (1, 2,+1
2
) +|e3|2 + |f3|2 + 1

2
|e5|2 + 1

2
|f5|2

45
1

1
1

(1, 1, 0)
(1, 1, 0)

They mix:

2
3

(
(A+B)±

√
(A+B)2 − 15

4
AB

)
,

A ≡ 4|e1|2 + 4|f1|2 + |e5|2 + |f5|2
B ≡ 4|e3|2 + 4|f3|2 + |c1|2 + |d1|2

16
16

1
1

(1, 1, 0)
(1, 1, 0)

They mix:

1
2

(
(C +D)±

√
(C −D)2 + 16|E|2

)
,

C ≡ |c1|2 + 2|f1|2 + 2|e3|2 + |e5|2
D ≡ |d1|2 + 2|e1|2 + 2|f3|2 + |f5|2
E ≡ e1e3

∗ + f1
∗f3

We will get the alternative solutions by carefully proceeding through the assumptions
of the main branches and selectively violating them, which is a bit tedious.

Remember that under the assumption m351′ 6= 0, we can always determine the
VEVs e1, f1, e3, f3 via the F -terms Ff1 , Fe1 , Ff3 and Fe3 , respectively:
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e1 := −λ3c2
2 + 3λ2f5

2

m351′
, (310)

f1 := −λ4d2
2 + 3λ1e5

2

m351′
, (311)

e3 := −λ3c1
2 + 3λ2f4

2

m351′
, (312)

f3 := −λ4d1
2 + 3λ1e4

2

m351′
. (313)

Case 1 The first step in the main branch was to assume c1, d1 6= 0 so that we could
determine e2 and f2 from the F -terms Fd2 and Fc2 respectively. The other branch
has the initial assumption c2, d2 6= 0 (determining the e2 and f2 VEVs from
Fd1 and Fc1 , respectively). To avoid these assumptions altogether, we need to
properly negate the statement that c1, d1 6= 0 or c2, d2 6= 0:

¬
(

(c1 6= 0 ∧ d1 6= 0) ∨ (c2 6= 0 ∧ d2 6= 0)

)
⇔ (c1 = 0 ∨ d1 = 0) ∧ (c2 = 0 ∨ d2 = 0).

(314)

Case 1.1 Assuming symmetrically c1 = c2 = 0, we get the following F terms:

Fc1 = m351′d1 = 0, (315)

Fc2 = m351′d2 = 0. (316)

We conclude d1 = d2 = 0. That means that the 27 and 27 have no VEVs:
〈27〉, 〈27〉 = 0. Note the model then reduces to the 351′ ⊕ 351

′
model from

section 4.2.3. The F -terms are solved by expressing the VEVs e1, f1, e2, f2, e3,
f3 from the terms Ff1 , Fe1 , Ff2 , Fe2 , Ff3 and Fe3 , respectively. We get

c1 = 0, d1 = 0, (317)

c2 = 0, d2 = 0, (318)

e1 = −3λ2f5
2

m351′
, f1 = −3λ1e5

2

m351′
, (319)

e2 =
3
√

2λ2f4f5

m351′
, f2 =

3
√

2λ1e4e5

m351′
, (320)

e3 = −3λ2f4
2

m351′
, f3 = −3λ1e4

2

m351′
, (321)

f4 =
m2

351′ − 18λ1λ2e5f5

18λ1λ2e4

. (322)

The above solution solves all the F -terms in this case. Computing the masses
of the gauge bosons gives already 21 massless gauge bosons, corresponding to
the Pati-Salam group. Using rotations of SU(2)′R, we can choose a particular
solution by the ansatz e5 = f5 = 0:
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c1 = 0, d1 = 0, (323)

c2 = 0, d2 = 0, (324)

e1 = 0, f1 = 0, (325)

e2 = 0, f2 = 0, (326)

e3 = − m351′

6λ
2/3
1 λ

1/3
2

, f3 = − m351′

6λ
1/3
1 λ

2/3
2

, (327)

e4 =
m351′

3
√

2λ
2/3
1 λ

1/3
2

, f4 =
m351′

3
√

2λ
1/3
1 λ

2/3
2

, (328)

e5 = 0, f5 = 0. (329)

From this solution, the unbroken Pati-Salam symmetry is obvious, since the
only non-vanishing VEVs e3, f3, e4 and f4 are all Pati-Salam singlets under the
standard Pati-Salam embedding into E6 (see Table-6).

The ansatz (317)-(322) assumed that e4 6= 0. Alignment symmetry and conjugate
symmetry can transform this condition to either f4 6=, e5 6= 0 or f5 6= 0. If none
of these is true, then e4 = f4 = e5 = f5 = 0 and consequently all VEVs are zero.

The alternative assumptions e5 6= 0 or f5 6= 0 lead to a specific solution for the
D-terms with the ansatz e4 = f4 = 0. In this alignment, the assumptions
are compatible with those in Table 16, so we can easily see that with only
e5, f5, e1, f1 6= 0, we get 9 more massless gauge bosons over the SM: they consists
of exactly the correct SM representations so that the unbroken group is Pati-
Salam.

Case 1.2 Assuming asymmetrically c1 = d2 = 0, we get the following relevant F -
terms:

Fd1 = 2λ4d1e3 = 0, (330)

Fc2 = 2λ3c2f1 = 0. (331)

If d1 = 0 or c2 = 0, it reduces to Case 1.1, so we conclude e3 = f1 = 0. Plugging
this into the F -terms and solving further, we uniquely obtain all VEVs to be
zero —

0 = 〈27〉 = 〈27〉 = 〈351′〉 = 〈351′〉, (332)

so no breaking occurs.

Case 2 In case 1 the initial assumptions of nonzero c1, d1 or c2, d2 in the two main
branches were bypassed. In case 2, we accept the first assumption of the branches
and bypass the second assumption on e5, f5 or e4, f4.

Let us assume that c1 6= 0 and d1 6= 0, so that we proceed in accordance with the
first main branch. There is no loss of generality, since the assumptions c2 6= 0
and d2 6= 0 would instead lead us to the second branch, which is equivalent due
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to alignment symmetry. We can determine e2 and f2 from the terms Fd2 and Fc2 ,
respectively:

e2 := −−2λ3λ4d2c2
2 +m351′m27c2 − 6λ2λ4d2f5

2

√
2m351′λ4d1

, (333)

f2 := −−2λ3λ4c2d2
2 +m351′m27d2 − 6λ1λ3c2e5

2

√
2m351′λ3c1

. (334)

The only remaining assumptions of the first main branch are e5 6= 0 and f5 6= 0.
We violate them by putting

e5 = 0. (335)

Note that the other possible assumption f5 = 0 would lead to an analogous
analysis due to the conjugation symmetry of the equations of motion.

With the assumption e5 = 0, we get the following equation for Fe2 :

Fe2 = 0 =
d2√
2λ3c1

(
2λ3λ4(c1d1 + c2d2)−m351′m27

)
. (336)

We now proceed to systematically find all possible solutions that satisfy
equation (336): either the first or the second factor have to be zero.

Case 2.1 Suppose we solve equation (336) in the simplest possible manner by
assuming

d2 = 0. (337)

We can then determine f5 from equation Fe5

f5 = −3m27λ1c2e4

m351′λ4d1

. (338)

This leads to the following equation for Ff2 :

Ff2 = 0 =
c2√

2m351′λ4d1

(
−m27m

2
351′ + 2λ3λ4c1d1m351′ + 18m27λ1λ2e4f4

)
.

(339)

We are again forced to check multiple possibilities.

Case 2.1.1 Assume that the first factor in equation (339) is zero:

c2 = 0. (340)

It is then possible to determine e2
4 and f 2

4 from Fd1 and Fd2 respectively. The
VEVs e4 and e5 are then

e4 = ±
√

d1

6λ1λ3c1

(m351′m27 − 2λ3λ4c1d1), (341)

f4 = ±
√

c1

6λ2λ4d1

(m351′m27 − 2λ3λ4c1d1). (342)
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The remaining two F -terms Fe4 and Ff4 become

Fe4 = 0 =
m351′

√
λ3λ4 − 3m27

√
λ1λ2

λ4

√
6λ2λ3

√
c1

d1

√
m351′m27 − 2λ3λ4c1d1, (343)

Ff4 = 0 =
m351′

√
λ3λ4 − 3m27

√
λ1λ2

λ3

√
6λ1λ4

√
d1

c1

√
m351′m27 − 2λ3λ4c1d1. (344)

Assuming no special relations among superpotential parameters, they can only
be solved by the condition√

m351′m27 − 2λ3λ4c1d1 = 0. (345)

This condition implies e4 = f4 = 0, which we see from equations (341) and (342).
Also, e5 = 0 due to the assumption of case 2. Furthermore, the current case 2.1.1
assumes c2 = 0. The VEV f5 was determined in equation (338) of case 2.1 to be
proportional to c2, so f5 = 0. Since all VEVs 〈24〉 are now zero, the unbroken
group will be contain SU(5), so potential solutions of this case are not of interest.

Case 2.1.2 Assume that the second factor in equation (339) is zero. We can then
determine d1 to be

d1 =
m27 (m2

351′ − 18λ1λ2e4f4)

2m351′λ3λ4c1

. (346)

The Fc1 term then takes the form

Fc1 = 0 = −3λ1e4 ((2λ2
3λ4c1

2e4 − 3m2
27λ2f4)m2

351′ + 54m2
27λ1λ

2
2e4f4

2)

m3
351′λ3λ4c1

. (347)

This term can again be solved in multiple ways.

Case 2.1.2.1 Assume that the first factor in equation (347) is zero. Then

e4 = 0, (348)

and due to equation (338) also

f5 = 0. (349)

We already know that e5 = 0, since this is the assumption of all cases under
case 2. Also, f4 = 0, which can be computed from the Fe4 term:

Fe4 = 0 = m351′f4. (350)

We again have 〈24〉 = 0 in the SU(5) language, so this branch of (potential)
solutions leaves at least the group SU(5) unbroken.

Case 2.1.2.2 Assume that the second factor in equation (347) is zero. We can then
determine e4 to be

e4 =
3m2

351′m
2
27λ2f4

2m2
351′λ

2
3λ4c1

2 + 54m2
27λ1λ2

2f4
2
. (351)
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The Fd1 term becomes

Fd1 = 0 =
3m27λ2 (9m2

27λ1λ2 −m2
351′λ3λ4)

m2
351′λ

2
3λ4c1

2 + 27m2
27λ1λ2

2f4
2

c1f4
2. (352)

Since c1 6= 0 by assumption, we must have f4 = 0. Then e4 = 0 from
equation (351) and consequently f5 = 0 from equation (338). We also have
e5 as an assumption in all of case 2. Since all 〈24〉 = 0, the group SU(5) remains
unbroken.

One possible loophole is the above argument is the possibility, where the
denominator in equation (351) is zero. That implies

f4 := ±m351′λ3c1

3m27λ2

√
− λ4

3λ1

. (353)

For Fc1 we get

Fc1 = 0 = ±m27e4

√
−3λ1

λ4

. (354)

Therefore e4 = 0. With that equation Fd1 becomes

Fd1 = 0 =
m2

351′λ3λ4

9m27λ1λ2

c1. (355)

This equation cannot be solved for c1 6= 0, which we assumed in case 2. The
loophole is therefore closed.

Case 2.2 We return all the way back to equation (336), the last equation of case 2.
Instead of taking the first factor to be zero, as in case 2.1, we take the second
factor to be zero and determine the VEV d1:

d1 :=
m351′m27 − 2λ3λ4c2d2

2λ3λ4c1

. (356)

The term Fc1 then becomes

Fc1 = 0 = −6λ1λ3c1e4
2

m351′
. (357)

Due to the assumption c1 6= 0 of case 2, we conclude e4 = 0. This implies

Fe4 = 0 = m351′f4, (358)

Fe5 = 0 = m351′f5. (359)

We again get 〈24〉 = 0 and the SU(5) group remains unbroken.

This exhausts all the possible avenues of finding a solution, proving that all the
solutions, which break to the Standard Model, are found in the two main branches.
In fact, all but one of the alternative solutions leave the group SU(5) unbroken. The
exception is Case 1.1, where we are using the ansatz 〈27〉 = 〈27〉 = 0. This case
corresponds to solving the model with the breaking sector 351′⊕351′ from section 4.2.3
and the solution breaks E6 to the Pati-Salam group.
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4.3.2 Doublet-triplet splitting

If we have the breaking sector 351′⊕ 351′⊕ 27⊕ 27, the fermionic 27F ’s will couple to
the 27 and the 351′. The MSSM Higgses Hu and Hd need to be present in both the
27 and the 351′, as already discussed in section 4.1.4. The mass terms, which connect
weak doublets (1, 2,+1

2
) to weak antidoublets (1, 2,−1

2
) and the color triplets (3, 1,−1

3
)

to color antitriplets (3, 1,+1
3
), come from the breaking part of the superpotential in

equation (247). Note that even though the fermionic 27iF also have (anti)doublets and
(anti)triplets with the correct quantum numbers, the mass matrices of the fermionic
sector and breaking sector do not mix due to Z2 matter parity.

All doublets and triplets in the representations of the breaking sector are defined
in Table 9. The doublets (antidoublets) are denoted by D (D), and the triplets
(antitriplets) by T (T ). There are 11 doublet-antidoublet pairs and 12 triplet-
antitriplet pairs, so the mass matrices have dimensions 11×11 and 12×12, respectively.
If we write the mass terms as

(
D1 · · · D11

)
Mdoublets

D1
...

D11

+
(
T1 · · · T12

)
Mtriplets

 T 1
...
T 12

 , (360)

the two mass matrices Mdoublets and Mtriplets can be computed and are compactly
written in equation (361). The parameters α and β control which of the mass matrices
we want to write: for the triplet matrix take α = β = 2, and for the doublet matrix
remove the last row and column and take α = −3 and β = −

√
3. The last row

and column represent the triplet-antitriplet pair in the representations 50 and 50 of
SU(5) with no doublet-antidoublet counterpart pair. The α and β are related to the
Clebsch-Gordan coefficients of the doublet or triplets in the SU(5) representations 5
and 45. The values for α come directly from the VEV 〈24〉 ∝ diag(2, 2, 2,−3,−3),
which couples a 5 and a 5. The parameter β comes from the terms coupling a 5 to
a 45 of SU(5) (or the conjugate of that). The strange

√
3 is present in the β for the

triplets due to the normalization of these states in the representations 45 and 45.
Notice that the parameters α and β are only in front of entries with VEVs

e4, e5, f4, f5, since these are the SU(5)-breaking VEVs. We see that e1, e2, e3 and
f1, f2, f3 from 351′ and 351′ are not present in the matrix at all, while the c1, c2 and
d1, d2 from 27 and 27 are SU(5) singlets, so the coefficients of the doublets and triplets
in front of these VEVs are the same (no parameters α and β).



m27 αλ3
f4√
15
−6λ5c1 αλ3

f5√
15

+6λ5c2 −
√

8
5
λ3c1 0 0 0 0

√
8
5
λ3c2 0 0 0

αλ4
e4√
15
−6λ6d1 m27 0 0 −

√
8
5
λ4d1 0 0 0 0 −

√
2λ4d2 0 0

αλ4
e5√
15

+6λ6d2 0 m27 0 −λ4 d2√
10

−
√

2λ4d1 −
√

3
2
λ4d2 0 0 0 0 0

−
√

8
5
λ4d1 0 0 m351′ α

√
3
5
λ1e4 0 0 0 0 −α

√
3

2
λ1e5 0 0

0 −
√

8
5
λ3c1 −λ3 c2√

10
α
√

3
5
λ2f4 m351′ 0 0 0 −α 1

4

√
3
5
λ2f5 0 −β 5

√
3

4
λ2f5 0

0 0 −
√

2λ3c1 0 0 m351′ 0 0 α
√

3
2
λ2f4 0 β

√
15
2
λ2f4 0

0 0 −
√

3
2
λ3c2 0 0 0 m351′ β

√
5λ2f4 −α 3

4
λ2f5 0 β

√
5

4
λ2f5 0

0 0 0 0 0 0 β
√

5λ1e4 m351′ 0 −β
√

15
2
λ1e5 0 α

√
10λ1e4√

8
5
λ4d2 0 0 0 −α 1

4

√
3
5
λ1e5 α

√
3

2
λ1e4 −α 3

4
λ1e5 0 m351′ 0 0 0

0 −
√

2λ3c2 0 −α
√
3

2
λ2f5 0 0 0 −β

√
15
2
λ2f5 0 m351′ 0 0

0 0 0 0 −β 5
√

3
4
λ1e5 β

√
15
2
λ1e4 β

√
5

4
λ1e5 0 0 0 m351′ α

√
10λ1e5

0 0 0 0 0 0 0 α
√

10λ2f4 0 0 α
√

10λ2f5 m351′



.

(361)

Observe the particular form of theMij matrix in equation (361). For index values
i, j = 1, 2, 3, the doublets and triplets come from the pair 27 ⊕ 27, while indices
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i, j = 4, . . . , n correspond to fields coming from the pair 351′ ⊕ 351′, where n = 11 for
doublets and n = 12 for triplets. The mass matrix therefore has a block structure:(

M3×3 M3×(n−3)

M(n−3)×3 M(n−3)×(n−3)

)
. (362)

The blocks are populated by the following invariants:

• Block M3×3 is populated by the terms from 272 × 〈27, 351′〉 and 27
2 × 〈27, 351′〉.

• Blocks M3×(n−3) and M(n−3)×3 are populated by the terms from 27× 351′ × 〈27〉
and 27× 351′ × 〈27〉.

• BlockM(n−3)×(n−3) is populated by the terms from 351′2×〈351′〉 and 351′
2×〈351′〉.

• The 3× 3 block and (n− 3)× (n− 3) block also contain the mass terms.

We now have to perform doublet-triplet splitting in the matrices encoded in
equation (361). The simplest possible way to do this is to perform a fine-tuning
of the parameters in the model: m351′ , m27 and λi. The fine-tuning procedure is
usually (in model building of this type in general) specified by the requirement that
all triplets remain heavy, while one doublet mode becomes massless: this massless
doublet-antidoublet pair then corresponds to Hu and Hd. By relaxing the fine-tuning,
so that a condition is satisfied only approximately (up to order MEW/MGUT), one can
obtain a small EW-scale mass µ with the term µHuHd.

In our specific case, the procedure is a little more complicated due to the Higgs
mechanism. Among the broken generators going from E6 to the Standard Model, a
doublet-antidoublet pair and a triplet-antitriplet pair of generators in the 16 ⊕ 16 of
SO(10) is broken; consequently, in a solution breaking to the SM, there will already be
a doublet and a triplets massless mode present in the two mass matrices, corresponding
to would-be Goldstone bosons. One can check this explicitly by plugging-in the general
VEV solution from equations (290)–(299) into the mass matrices in equation (361) and
compute the dimensions of the left and right null-eigenspaces to be 1.

Doublet-triplet splitting in our case thus involves making a second doublet-
antidoublet pair to be massless (the MSSM Higgses), while keeping the remaining
triplets heavy. The masses of the scalars doublet and triplets can be in principle
computed from the squared-mass matricesM†

doubletsMdoublets andM†
tripletsMtriplets. In

our case, we are interested only in the zero-modes, so we shall use methods applicable
to the matrices Mdoublets and Mtriplets directly, and shall avoid squaring the mass
matrices and unnecessarily complicating the calculation. We write this method on the
generic matrix M below.

Having a massless mode already present in the square M†M implies

detM = 0. (363)

The condition for an additional massless mode in M†M can be written as (see [74])

Cond(M) :=
limε→0 det(M+ εI)/ε

〈f |e〉
= 0, (364)

where I is the identity matrix, with |e〉 and |f〉 the already present right and left
zero-mass eigenmodes of M:

M|e〉 =M†|f〉 = 0. (365)
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We now apply this method on our specific case. Using the general vacuum solution
in equations (290)–(299) and confirming the presence of would-be Goldstone bosons
by

detMdoublets = detMtriplets = 0, (366)

the DT splitting conditions read

Cond(Mdoublets) =
1

72
m9

351′m27
λ3λ4

λ1λ2

= 0, (367)

Cond(Mtriplets) =
4

243
m10

351′m27
λ3λ4

λ1λ2

6= 0. (368)

We see the obtained fine-tuning conditions are very simple, which is catastrophic.
The expressions are merely a product of the Lagrangian parameters, so we cannot
perform a fine-tuning on the doublets independently from the triplets: making a
doublet mode massless would involve taking one of the masses or λ’s to be zero, but
that would also imply a massless triplet. The usual procedure of DT splitting via
fine-tuning is therefore not possible in this case, which is a very surprising result. We
further discuss and summarize the results in the next subsection.

As a last remark, we take special notice of the fact that the model contains one more
triplet-antitriplet pair than a doublet-antidoublet pair. One could thus naively hope
to incorporate the missing partner mechanism [51, 52, 53] for doublet-triplet splitting.
The mechanism requires though, apart from a very specific setup of the mass matrix,
an E6 representation with a 75 of SU(5) (see section 2.5), with the smallest such
representation being the 650 of E6 (see Figure 8). An implementation of the missing
partner mechanism in E6 thus leads to a prohibitively complicated model.

4.3.3 Discussion and summary of the prototype model

The model with the breaking sector 351′ ⊕ 351′ ⊕ 27⊕ 27 does not seem to be viable.
A successful breaking E6 → SM in this model is possible, as shown in

subsection 4.3.1.3, but only through the main branches of solutions, as shown in
subsection 4.3.1.5. The only solutions to break to the SM model do not allow, however,
for a DT splitting by fine-tuning, as shown in subsection 4.3.2. Is it possible to save
the model? We study minimal extensions of the prototype model in sections 4.4 and
4.5 and name them model I and model II, respectively. In the extensions, the DT
splitting problem is cured and the models are viable.
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4.4 Model I: 351′ ⊕ 351′ ⊕ 27 ⊕ 27 ⊕ 2̃7 ⊕ 2̃7

In this model, we extend the prototype model from section 4.3 with an additional
fundamental-antifundamental pair of representations, which we denote by an overhead

tilde symbol: 2̃7⊕ 2̃7. The breaking sector thus consists of

351′ ⊕ 351′ ⊕ 27⊕ 27 ⊕ 2̃7⊕ 2̃7. (369)

Alongside the usual Z2 matter parity, another restriction will be imposed in this model,
otherwise the EOM become severely complicated to the point that an analytic solution
is hard to obtain. In this simplification, we shall effectively separate the tilde and the
non-tilde fields, so that the GUT-scale VEVs are in the non-tilde fields of the breaking
sector, while the EW-scale VEVs are in the tilde fields. The light Higgs doublets will
therefore be present solely in the tilde sector.

The separation of the tilde and non-tilde fields will be achieved similar to how
matter parity separates the fermionic and breaking sector. We assume that in the
breaking sector, the tilde fields need to be present in pairs, as if they have parity −1
under a Z2 symmetry. But since Hu and Hd are in the tilde fields, and they MSSM
Higsses need to couple to fermions, we also need a 27F · 27F · 2̃7 term. Since the exotic
fermions of the model need to be heavy, the fermionic representations also need to
couple to the regular 27 and 351′. Therefore we cannot describe the restrictions on
the tilde fields in terms of a symmetry group (such as a Z2 parity), since the tilde
field 2̃7 would need to correspond to the same group element as the 27 and 351′,
thus negating the restrictions in the breaking sector. The restrictions thus have to
be viewed not as a symmetry, but as setting certain parameters in the superpotential
to zero. Remember that in SUSY theories, the superpotential is subject to the non-
renormalization theorem, so a non-presence of an operator at one scale also implies non-
presence at another. Although setting certain parameters to zero is a simplification, it
is therefore not inconsistent to build a symmetry breaking solution with this ansatz.

The Z2 matter parity and the extra restrictions on the tilde fields yield the following
superpotential of this model:

W = WSSB +WDT +WYukawa, (370)

with

WSSB = m351′ I351′⊗351′ +m27 I27⊗27

+ λ1 I351′3 + λ2 I351′
3 + λ3 I272⊗351′ + λ4 I27

2⊗351′

+ λ5 I273 + λ6 I27
3 , (371)

WDT = m2̃7 I2̃7⊗2̃7
+ κ1 I2̃7

2⊗351′
+ κ2 I

2̃7
2
⊗351′

+ κ3 I2̃7
2⊗27

+ κ4 I
2̃7

2
⊗27

, (372)

WYukawa =
3∑

i,j=1

1
2

(
Y ij

27 I27iF⊗27jF⊗27 + Y ij

351′
I27iF⊗27jF⊗351′ + Y ij

2̃7
I27iF⊗27jF⊗2̃7

)
. (373)

The WSSB is responsible for the spontaneous symmetry breaking, WDT for DT
splitting, while WYukawa is the Yukawa sector in this model. Comparing this with
the superpotential of the prototype model in equation (247), we see that the WDT

terms were added, along with an extra term in the Yukawa sector.
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4.4.1 Symmetry breaking

Due to the extra restrictions on the tilde fields, one can ignore these additions in the
spontaneous symmetry breaking. Indeed, taking the ansatz

0 = 〈27iF 〉 = 〈2̃7〉 = 〈2̃7〉, (374)

the terms in equations (373) and (372) for WYukawa and YDT do not contribute to the F -
term equations, and the EOM are reduced to the familiar case of the prototype model
in equations (268)–(270) for the D-terms and equations (248)–(261) for the F -terms.
This system of equations was already solved and analyzed in subsection 4.3.1, so we
will merely copy the specific solution from equations (300)–(306):

c2 = 0, d2 = 0, (375)

e2 = 0, f2 = 0, (376)

e4 = 0, f4 = 0, (377)

d1 =
m351′m27

2λ3λ4c1

, (378)

e1 = − m351′

6λ
2/3
1 λ

1/3
2

, f1 = − m351′

6λ
1/3
1 λ

2/3
2

, (379)

e3 = −λ3c1
2/m351′ , f3 = −m351′m

2
27

4λ2
3λ4c1

2
, (380)

e5 =
m351′

3
√

2λ
2/3
1 λ

1/3
2

, f5 =
m351′

3
√

2λ
1/3
1 λ

2/3
2

, (381)

with |c1|2 determined by the polynomial condition

0 = |m351′ |4|m27|4 + 2|m351′ |4|m27|2|λ3|2|c1|2

− 8|m351′|2|λ3|4|λ4|2|c1|6 − 16|λ3|6|λ4|2|c1|8. (382)

We already know this solution does indeed break to the Standard Model.

4.4.2 Doublet-triplet splitting

Note that the breaking sector of this model contains the previous 11 doublet-
antidoublet pairs and 12 triplet-antitriplet pairs from the prototype model (see
subsection 4.3.2), along with 3 new doublet-antidoublet pairs and 3 triplet-antitriplet

pairs from the tilde fields 2̃7 and 2̃7. We denote the new doublets D and triplets T
with the same indices as we did in the 27 and 27, but with a tilde on top, as shown in
Table 17.

Since the fermionic 27iF and tilde fields 2̃7 and 2̃7 do not have GUT-scale VEVs,
and due to the form of the superpotential in equation (370), there is no mixing between
the tilde and the non-tilde mass matrices. In fact, there are three separate blocks of
mass matrices for doublets and triplets: from the fermionic sector, from the tilde part
of the breaking sector, and the non-tilde part of the breaking sector. These three block
are populated exactly by the WYukawa, WDT and WSSB parts of the superpotential,
respectively.

We already computed the mass matrix block of the non-tilde fields of the breaking
sector in equation (361). Since the model I (the tilde model) uses the same symmetry
braking of E6 as the prototype model, we can apply the conclusions of section 4.3.2:
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Table 17: Labels of doublets and triplets in the tilde fields. The corresponding EW-
VEVs are also labeled.

doublet,triplet ⊂ SU(5) ⊂ SO(10) ⊂ E6 doublet VEV

D̃1, T̃1 5 10 2̃7 v1

D̃2, T̃2 5 10 2̃7 v2

D̃3, T̃3 5 16 2̃7 v3

D̃1, T̃ 1 5 10 2̃7 v̄1

D̃2, T̃ 2 5 10 2̃7 v̄2

D̃3, T̃ 3 5 16 2̃7 v̄3

the non-tilde block contains the would be Goldstone bosons, but fine tuning cannot be
performed there. We now compute the new 3× 3 mass matrices for the tilde doublets
and triplets. Fine-tuning will be successfully accomplished in the tilde sector with the
new κ parameters. The MSSM Higgses Hu and Hd will therefore have components in
the tilde doublets and antidoublets, respectively, so these states will have electroweak
VEVs. We denote the EW VEVs by v’s and v̄’s, as shown in Table 17.

The mass matrix terms are written as

(
D̃1 D̃2 D̃3

)
M̃doublets

D̃1

D̃2

D̃3

+
(
T̃1 T̃2 T̃3

)
M̃triplets

T̃ 1

T̃ 2

T̃ 3

 , (383)

with the mass matrices explicitly written in compact form as

M̃ =

 m2̃7 −2κ3c1 + ακ1
f4√
15

2κ3c2 + ακ1
f5√
15

−2κ4d1 + ακ2
e4√
15

m2̃7 0

2κ4d2 + ακ2
e5√
15

0 m2̃7

 . (384)

with α = −3 for M̃doublets and α = 2 for M̃triplets. The α values are the values from
the VEV 〈24〉 of SU(5).

Since the would-be Goldstone bosons of the Higgs mechanism are in the other mass
matrix block of the non-tilde fields, there are generically no massless modes in M̃doublets

M̃triplets, so the zero-mode condition in the doublets and the violation of that condition
in the triplets is written as

det
(
M̃doublets

)
= 0, (385)

det
(
M̃triplets

)
6= 0. (386)

Plugging in the vacuum solution from equations (375)–(381), we get the fine-tuning
conditions

0 = m3
2̃7
− 1

30
m2̃7m

2
351′

κ1κ2

λ1λ2

− 2m2̃7m351′m27
κ3κ4

λ3λ4

, (387)

0 6= m3
2̃7
− 2

135
m2̃7m

2
351′

κ1κ2

λ1λ2

− 2m2̃7m351′m27
κ3κ4

λ3λ4

. (388)
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Unlike the non-tilde block, both conditions can be simultaneously satisfied, for example
by fixing κ1:

κ1 ≈ 30 (m2
2̃7
λ3λ4 − 2m351′m27κ3κ4)

λ1λ2

m2
351′λ3λ4κ2

. (389)

This fine-tuning of κ1 ensures a zero-mode doublet as the left eigenvector and a
zero-mode antidoublet mode as the right eigenvector of M̃doublets. These zero-modes
correspond to Hu and Hd of MSSM, respectively. We compute them to be

Hu ∝
√

1/30 m2̃7m351′λ
−2/3
1 λ

−1/3
2 λ3λ4κ2

m2
2̃7
λ3λ4 − 2m351′m27κ3κ4

D̃1

+

√
2/15 m351′c1λ

−2/3
1 λ

−1/3
2 λ3λ4κ2κ3

m2
2̃7
λ3λ4 − 2m351′m27κ3κ4

D̃2 + D̃3, (390)

Hd ∝
√

30 m2̃7λ
2/3
1 λ

1/3
2

m351′κ2

D̃1 +

√
30 m27λ

2/3
1 λ

1/3
2 κ4

c1λ3λ4κ2

D̃2 + D̃3. (391)

Notice that the two MSSM Higgses have non-zero components in all the tilde
doublets and antidoublets: Hu has components in D̃1, D̃2 and D̃3, while Hd has

components in D̃1, D̃2 and D̃3. This means that all of the VEVs vi and v̄i are nonzero,
where

v2
u = v1

2 + v2
2 + v3

2, (392)

v2
d = v̄1

2 + v̄2
2 + v̄3

2. (393)

In particular, v1, v̄2 and v̄3, which are the EW VEVs of the 2̃7, are all non-vanishing.
This will be important for the viability of Yukawa sector fermion masses.

4.4.3 Yukawa sector

The Yukawa terms of the superpotential are denoted by WYukawa in equation (373).
Schematically, we have the terms

27iF27jF

(
Y ij

27 27 + Y ij

351′
351′ + Y ij

2̃7
2̃7
)
. (394)

Note that since the representations 27 and 351′ of E6 couple to the symmetric product
of two 27’s, the matrices Y27, Y351

′ and Y2̃7 can be taken to be symmetric.
Excluding the tilde part, this is analogous to the Yukawa sector in the minimal

renormalizable SO(10) model [32, 33]:

WYukawa –SO(10) = 1
2

16iF 16jF
(
Y ij

10 10 + Y ij

126
126
)
. (395)

In our model, the role of the 27 is analogous to the 16 of SO(10), while the role
of 351′ is analogous to the role of 126 of SO(10). This is not a coincidence, since
10 ⊂ 27 and 126 ⊂ 351′. Furthermore, since also 16iF ⊂ 27iF , our model contains all
the terms from the renormalizable SO(10) model, but also some additional ones, such

as 16Fi 10Fi (Y 27 16+Y 351′ 144) and 10Fi 10Fi (Y 27 1+Y 351′ 54) and some others involving
the SO(10) singlets.

The mechanism of achieving flavor-mixing, however, is completely different in the
two models. In the SO(10) model, we have the usual GUT case with the MSSM
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Higgses present in both 10 and 126. The two generic matrices Y10 and Y126 cannot be
diagonalized simultaneously, so we get flavor mixing.

In our model, however, the mechanism is more subtle. Remember that the MSSM
Higgses are present only in the tilde fields, so we have only one Higgs terms 2̃7. But
after the breaking at the GUT scale, the breaking sector representations 27 and 351′

acquire VEVs. These VEVs mix the two 5̄’s of SU(5) in the 27F , and the SU(5)
breaking VEVs (e4, f4, e5, f5) ensure that this mixing is different for different SM
representations in the 5̄’s. Although there will still be a heavy vector-like pair 5 ⊕ 5̄
of SU(5) of exotic fermions, the mixing of the 5̄’s causes a mixing between the 16
and the 10, so the Standard Model fields are not contained just in the 16 of SO(10).
Flavor mixing therefore arises due to mixing to produce vector-like heavy states at
the GUT scale, and not from the simultaneous presence of the Higgs in two different
representations at the EW scale. This situation is analogous to [8].

We now compute the mass matrices, taking all the relevant terms of WYukawa into
account. They are (skipping the hermitian conjugate terms)

uT (−v1)Y2̃7u
c +
(
dcT d′cT

)( v̄2Y2̃7 c2Y27 + f5√
15
Y351

′

−v̄3Y2̃7 −c1Y27 + f4√
15
Y351

′

)(
d
d′

)

+
(
eT e′T

)(−v̄2Y2̃7 c2Y27 − 3
2
f5√
15
Y351

′

v̄3Y2̃7 −c1Y27 − 3
2
f4√
15
Y351

′

)(
ec

e′c

)

+
(
νT ν ′T

)(v1Y2̃7 0 c2Y27 − 3
2
f5√
15
Y351

′

0 −v1Y2̃7 −c1Y27 − 3
2
f4√
15
Y351

′

)νcs
ν ′c


+

1

2

(
νcT sT ν ′cT

)f1Y351
′

f2√
2
Y351

′ −v̄3Y2̃7
f2√

2
Y351

′ f3Y351
′ v̄2Y2̃7

−v̄3Y2̃7 v̄2Y2̃7 0


νcs
ν ′c


+

1

2

(
νT ν ′T

)( ∆1Y351
′ 1√

2
∆2Y351

′

1√
2
∆2Y351

′ ∆3Y351
′

)(
ν
ν ′

)
. (396)

For greater clarity, flavor indices are suppressed; they are present in the Yukawa
matrices Y27, Y351

′ and Y2̃7, as well as in every field written to the left or right of
the matrices.

Notice that the mass matrix contributions are both from GUT scale VEVs (red),
and EW scale VEV from the Higgses (blue). Each entry can be traced back to an
invariant part in the SU(5) and SO(10) languages with the help of Tables 6 and 9, so
they can also be checked, except for the numeric coefficients, manually. For example,
the second term with the f5 in the 12-entry of the down-quark matrix comes from the
5̄F · 5F · 〈24〉 term in SU(5) language, which is part of the terms 16F · 10F · 〈144〉 in
SO(10) language, which in turn is part of the term 27F · 27F · 〈351′〉 of E6.

Also note the forms of matrices of the down-quark sector and charged lepton sector.
They are of very similar form, since the doublet and the triplet are part of the same
representation 5̄ (or 5) of SU(5). For GUT scale VEVs, the coefficients are the same,
except for the −3/2 factors in front of f4 and f5, which come directly from the 〈24〉 of
the the SU(5). The EW scale VEVs are also equal up to a minus sign, which is due to
the definitions of the fields in Figure 5.

In addition to the terms with GUT and EW VEVs, we also have to pay special
attention to the masses of the neutrino sector; for now, note only that ∆̄ ∼ (1, 3,+1)
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and ∆ ∼ (1, 3,−1) weak triplets, which are defined via Table 18, will be important for
type II seesaw. Since there are no such weak triplet states in the 27 of E6, they all
come from the representations 351′ and 351′.

Table 18: Weak triplet scalars (1, 3,±1) relevant for seesaw type II.

label E6 ⊇ SO(10) ⊇ SU(5) p.n. label E6 ⊇ SO(10) ⊇ SU(5) p.n.

∆1 351′ ⊇ 126 ⊇ 15 L L ∆1 351′ ⊇ 126 ⊇ 15 L̄ L̄
∆2 351′ ⊇ 144 ⊇ 15 L L′ ∆2 351′ ⊇ 144 ⊇ 15 L̄ L̄′

∆3 351′ ⊇ 54 ⊇ 15 L′L′ ∆3 351′ ⊇ 54 ⊇ 15 L̄′L̄′

∆4 351′ ⊇ 54 ⊇ 15 L′cL′c ∆4 351′ ⊇ 54 ⊇ 15 L̄′cL̄′c

The triplets ∆ and ∆ get non-zero VEVs, which we can determine by writing all
the terms with these triplets that we get, when turning on both GUT-scale VEVs and
EW VEVs, coming from WSSB and WDT , respectively. The terms are computed to be

W
∣∣
∆

=
(
∆1 ∆2 ∆3 ∆4

)
m351′ 0 0 6λ1e1

0 m351′ 0 −6λ1e2

0 0 m351′ 6λ1e3

6λ2f1 −6λ2f2 6λ2f3 m351′




∆1

∆2

∆3

∆4



+
(
∆1 ∆2 ∆3 ∆4

)
κ2v3

2

κ2

√
2v2v3

κ2v2
2

κ1v1
2



+
(
κ1v3

2 κ1

√
2v3v2 κ1v2

2 κ2v1
2
)

∆1

∆2

∆3

∆4

 . (397)

Wee see these ∆-triplets are heavy, so they can be integrated out of the theory by the
conditions ∂W/∂∆i = 0 and ∂W/∂∆i = 0 to determine how they effectively alter the
low-energy theory. These conditions yield

∆1

∆2

∆3

∆4

 =


m351′ 0 0 6λ1e1

0 m351′ 0 −6λ1e2

0 0 m351′ 6λ1e3

6λ2f1 −6λ2f2 6λ2f3 m351′


−1

κ2v3
2

κ2

√
2v2v3

κ2v2
2

κ1v1
2

 . (398)

Although equation (397) gives the full matrices, the EW scale and GUT scale
masses are all entangled, so it is hard to see what is going on. The first thing we
notice, however, is that there is a heavy vector-like pair of down-quarks and leptons,
which receive their mass through the GUT scale VEVs c1, c2, f4 and f5: the particle d′

becomes heavy by coupling to a combination of dc and d′c, while the particle e′c becomes
heavy by coupling to a combination of e and e′. The possibility of light vector-states
is phenomenologically very intriguing, but although E6 models have vector-like quarks
and leptons automatically included, they generically seem to predict them to be at the
GUT scale.
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We would ultimately like to compute the masses in the low energy limit E �MGUT,
so we need to integrate out the heavy vector-like pairs and neutrinos, with methods
described in [75, 76] and also outlined below.

Suppose a matrix M has the block form

M =

(
M1 A
M2 B

)
, (399)

whereM1,2 are n×nmatrices with entries of orderO(mW ), whileA,B are n×nmatrices
with entries of order O(MGUT ). In our case, n = 3 (due to having 3 generations of
fermions).

We define a rotation matrix U by

U :=

(
Λ −ΛX
X†Λ Λ̄

)
, (400)

where we used the definitions

X := AB−1, (401)

Λ :=
(
1 +XX†

)−1/2
, (402)

Λ̄ :=
(
1 +X†X

)−1/2
. (403)

In the above, we use 1 to denote the n × n identity matrix. The matrix power −1/2
is defined and can be computationally handled by the Taylor series for this function.

One can check that U is a unitary matrix and thus indeed a rotation:
U U † = U † U = I. Also, the following identities hold:

X†Λ = Λ̄X†, (404)

XΛ̄ = ΛX. (405)

If we multiply the matrix M with the rotation matrix U from the left, we get

UM =

(
Λ(M1 −XM2) 0
X† ΛM1 + Λ̄M2 X† ΛA+ Λ̄B

)
=

(
O(MEW) 0
O(MEW) O(MGUT)

)
. (406)

We see that we managed to separate the light and heavy parts of the states, as seen by
the order of the masses in the diagonal blocks: the first half of the states is light and
the second half of the states is heavy. Due to the presence of the off-diagonal block,
the separation is valid only up to relative corrections of order MEW/MGUT, which is
sufficient for our purposes.

With the separation of the light and heavy states in the UM matrix, we can now
unambiguously integrate out the heavy states in the lower right part. We are left, in
leading order of MEW/MGUT, with the matrix M for the light states:

M = Λ (M1 −XM2). (407)

The neutrino sector is a bit more complicated to unravel, since alongside a vector-
like pair of neutrinos, it also contains heavy right-handed states. The light states are all
left-handed, so the right-handed states need to be integrated out. Suppose we denote
the column of left handed states ν and ν ′ simply by ν, and the right-handed states νc,
s and ν ′c by n. We can then write the Yukawa terms of the neutrino sector as

W
∣∣
neutrino

= νTMνn+ 1
2
nTMnn+ 1

2
νTM∆ν. (408)
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We denoted the matrix of Dirac type masses by Mν , the matrix of Majorana type
masses by Mn, and the matrix from type II seesaw contributions with M∆. We first
integrate out the right-handed states by ∂W/∂n = 0:

νTMν + nTMn = 0, (409)

n = −(MT
n )−1MT

ν ν. (410)

Plugging this into the Yukawa terms, we get

W
∣∣
neutrino

= 1
2
νT
(
M∆ −Mν(M

T
n )−1MT

ν

)
ν. (411)

We now take care of the projection due to vector-like pairs. If U denotes the matrix,
which rotates to light states in the matrix ((UM)1,1 is light), we have

W = 1
2
νTlight

(
U
(
M∆ −Mν(M

T
n )−1MT

ν

)
UT
)
νlight, (412)

where only the (1, 1) block entry in the matrix in the middle is important.
We now have all the tools to compute the masses of the light states. We use

the described procedures on the matrices in equation (397), using also the ansatz
c2 = f2 = f4 = 0 due to the vacuum solution. We define

X0 :=

√
3

20

f5

c1

Y351
′Y −1

27 , (413)

and the light fermion masses become

MT
D =

(
1 + (4/9)X0X

†
0

)−1/2

(v̄2 − (2/3)v̄3X0)Y2̃7, (414)

ME = −
(

1 +X0X
†
0

)−1/2

(v̄2 + v̄3X0)Y2̃7, (415)

MU = −v1Y2̃7, (416)

MN =
1

2

(
1 +X0X

†
0

)−1/2

×
(

∆1Y351
′ − ∆2√

2

(
X0Y351

′ + Y351
′XT

0

)
+ ∆3X0Y351

′XT
0

−v1
2

f1

Y2̃7Y
−1

351
′Y2̃7 −

v1
2

f3

X0Y2̃7Y
−1

351
′Y2̃7X

T
0

)
×
(
1 +X∗0X

T
0

)−1/2
. (417)

Notice that there both type I [41, 42, 43, 44, 45] and type II [46, 47, 48, 49] seesaw
contributions to neutrino masses in MN . The type I terms are proportional to v2

1,
while the type II terms are proportional to ∆1,2,3. As one expects from the seesaw

mechanism, both contributions are of the scale O(M2
EW/MGUT ): factors

v21
f1

and
v21
f3

for

type I contributions, while type II contributions have factors ∆i ∼ O(m2
W/MGUT ),

with the scale of ∆’s easily seen from equation (398).
There are no other contributions to the neutrino matrix at tree-level. Although type

III [50] seesaw with (fermionic) weak triplets (1, 3, 0) exists, our model does not have
any seesaw type III contributions, which can be deduced by group-theoretic arguments.
First notice that the weak triplets χ ∼ (1, 3, 0) are only in the 351′ and 351′ (in the
24 of §(5)). To have type III seesaw, one needs a vertex HLχ (see section 2.5), which
combines the SM Higgs, the light SM lepton doublet, and the weak triplet. The Higgses
are in the tilde fields, the SM fermions are in 27F while the weak triplets are in the
non-tilde part of the breaking sector. But since we forbade such mixed terms with
matter parity, there are no type III interaction vertices in our model.

The general conclusions on the fermion masses in this model are the following:
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• In addition to the SM fermions, we have additional degrees of freedom in each
generation of 27F : a vector-like pair of quarks and leptons, and two SM singlets,
which have the role of right-handed neutrinos. The additional degrees of freedom
are all automatically massive (of the order MGUT): we have no light exotics, or
in particular, no light vector-like states.

• The light states are not purely in the 16 of SO(10). In fact, the state in the light
states in the 5̄ of SU(5) are a mixture of the 5̄’s in the 16 and 10 of SO(10). This
mixing manifests itself as flavor mixing at low energies.

• The masses of the light neutrinos have type I and type II seesaw contributions.

We conclude the section on the Yukawa sector by some remarks on the prospects
of an explicit fit of the mass matrices to the experimental values of the masses and
mixing angles. This numerics themselves will not be performed within this PhD thesis.

Our model has the following parameters :

• 3 mass parameters: m27, m351′ and m2̃7.

• 10 couplings: 6 λ’s and 4 κ’s. The parameters λ5 and λ6 are not involved in the
low-energy mass matrices of fermions.

• 3 symmetric Yukawa matrices. (Not all parameters here are physical though,
since one of the matrices can be diagonalized by family rotations).

The fit is complicated by the non-linear way in which the Yukawa matrices Y27, Y351
′

and Y2̃7 enter into the low energy matrices of equations (414)–(417), which is a typical
feature when vector-like families are present. Since there are 3 Yukawa matrices in this
model instead of the typical 2 (such as in minimal renormalizable SO(10) [32, 33]), it
seems very likely that a fit can be performed; in fact, one will have many degrees of
freedom in the parameters still left-over, so we conclude with a high degree of certainty
that the Yukawa sector of this model is viable, but not predictive.

4.4.4 Proton decay

As a final phenomenological feature of model I, we study D = 5 proton decay [37,
38, 39, 40] in this model (see also section 2.4.3). It is mediated by the color triplet-
antitriplet pairs (3, 1,−1/3)–(3, 1,+1/3). Although there are also triplet–antitriplet
pairs of the type (3, 1,−4/3)–(3, 1 + 4/3) present in the theory, they give no direct
contribution, since the triplets (3, 1,−4/3) are present only in the representation 351′,
but their corresponding antitriplets are in the 351′, which does not couple to the
fermionic 27F ’s.

All such triplets in our model have been identified in section 4.4.2 and their labels
can be found in Tables 9 and 17: there are 15 triplet–antitriplet pairs in the breaking
sector altogether, with 12 pairs coming from the non-tilde fields of the breaking sector

(27, 27, 351′,351′), while 3 pairs are in the tilde fields (2̃7, 2̃7).The triplets and
antitriplets in the fermionic sector 27iF do not mediate proton decay, since the Z2

matter parity forbids cubic vertices 273
F .

Noting the full superpotential of our model I in equations (370),(371),(372) and
(373), we can compute the relevant couplings for proton decay. In terms of SM
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representations in the fermionic 27F ’s, they are

W
∣∣
proton

= TA (MT )AB TB + CijA
1 QiQj TA + CijA

2 uci e
c
j TA

+ C
ijA

1 Qi Lj TA + C
′ijA
1 Qi L

′
j TA + C

ijA

2 dci u
c
j TA + C

′ijA
2 d′ci u

c
j TA, (418)

where i, j are generation indices and A,B = 1, . . . , 15 are indices over all the color
triplets/antitriplets, with sums over repeated indices meant implicitly; we have defined

T12+A := T̃A and T 12+A := T̃A (with A = 1, 2, 3). We suppressed the SU(3)C and
SU(2)L indices in our notation; it is understood that these indices are contracted with
the epsilon tensors in the order the fields themselves are written, with the convention
ε123 = ε12 = 1.

The relevant terms consists of the mass terms of the triplets, along with the
cubic couplings, written with the C coefficients. The triplet mass matrix MT has
contributions from the mass terms m27, m351′ and m2̃7, the λ-terms and the κ-terms.
The tilde and non-tilde fields do not mix in the mass terms (the tilde fields have
vanishing VEVs), so MT has the following block form:

MT =

((
Mtriplets

)
12×12

0

0
(
M̃triplets

)
3×3

)
. (419)

The two block matrices can be found in equations (361) (with appropriate α and β)
and (384), respectively. We also need to plug-in the vacuum solution of equations (375)-
(381) and the DT fine-tuning from equation (389).

We now focus on the C-coefficient terms in equation (418), which come from the
three Yukawa terms Y ij

27 , Y ij

351
′ and Y ij

2̃7
in equation (373). We distinguish between

the unbarred C’s which couple to the triplets T , and the barred C’s, which couple to
the antitriplets T . Furthermore, the barred C coefficients come in pairs, e.g. C1 and
C
′
1, since the light leptons, denoted by L̂, are a linear combination of L and L′, and

similarly the light down-type quarks d̂c are a combination of dc and d′c. Since we are
interested in the low-energy effective theory, we are interested in diagrams containing
only light states (MSSM), so the terms of interest contain L̂ and d̂c. The coefficients
C are computed to have the explicit form

2 CijA
1 = −Y ij

27 δ
A

1 − Y ij

2̃7
δA1+12 + 1

2
√

10
Y ij

351
′ δ
A

5 − 1
2
√

6
Y ij

351
′ δ
A

7 − 1
2
√

3
Y ij

351
′ δ
A

12,

(420)

2 CijA
2 = −Y ij

27 δ
A

1 − Y ij

2̃7
δA1+12 + 1

2
√

10
Y ij

351
′ δ
A

5 − 1
2
√

6
Y ij

351
′ δ
A

7 + 2
2
√

3
Y ij

351
′ δ
A

12,

(421)

2 C
ijA

1 = −Y ij
27 δ

A
2 − Y ij

2̃7
δA2+12 + 1

2
√

10
Y ij

351
′ δ
A

4 + 1
2
√

2
Y ij

351
′ δ
A

8, (422)

2C
′ijA
1 = Y ij

27 δ
A

3 + Y ij

2̃7
δA3+12 − 1

2
√

10
Y ij

351
′ δ
A

9 − 1
2
√

2
Y ij

351
′ δ
A

11, (423)

2 C
ijA

2 = −Y ij
27 δ

A
2 − Y ij

2̃7
δA2+12 + 1

2
√

10
Y ij

351
′ δ
A

4 − 1
2
√

2
Y ij

351
′ δ
A

8, (424)

2C
′ijA
2 = Y ij

27 δ
A

3 + Y ij

2̃7
δA3+12 − 1

2
√

10
Y ij

351
′ δ
A

9 + 1
2
√

2
Y ij

351
′ δ
A

11. (425)

Note that the different coefficients in front of δA12 are a consequence of different
Clebsch-Gordan coefficients.

We obtain the effective superpotential operators by integrating out the triplets
TA and antitriplets TA from the relevant terms. We obtain (to lowest order in the
operators)
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W = −
(
C
ijA
1 Qi Lj + C

′ijA
1 Qi L

′
j + C

ijA
2 dci u

c
j + C

′ijA
2 d′ci u

c
j

)(
M̂−1

T

)
AB

(
CklB1 QkQl + CklB2 uck e

c
l

)
.

(426)

There is an important detail concerning the mass matrix MT , so we wrote the
inverse matrix M̂−1

T with a hat. Note that a triplet–antitriplet mode is massless
(due to the Higgs mechanism, which start operating once we plug-in the vacuum
solution). This means the block Mtriplets cannot be inverted, and the massless would-
be Goldstone modes somehow need to be removed, since they represent unphysical
degrees of freedom (we know these fields can be rotated out of the Yukawa terms by a
gauge transformation, which is equivalent to plugging a zero for their field value, thus
removing them). The removal of the would-be Goldstone modes is formally equivalent
to introducing a mass term for these modes, integrating them out, and then pushing
the introduced mass to infinity, so they decouple from the theory. With this idea,
one can write a basis independent ansatz for the computation of the inverse matrix
of the physical degrees of freedom, with the would-be Goldstone bosons automatically
decoupled:

M̂−1
T = lim

M→∞

(
MAB +M fAeB

)−1
, (427)

where eA and fA are components of right and left null-mass eigenvectors of MT ,
respectively. We need not normalize them, since the normalization factors can be
absorbed into the parameter M of the added mass term. In our basis of triplets, we
take for example (the normalization)

eA =
3
√

2c1λ
2/3
1 λ

1/3
2

m351′
δA3 +

λ
1/3
1√

6λ
1/3
2

δA4 +
6c1

2λ
2/3
1 λ

1/3
2 λ3

m2
351′

δA6 +

√
5λ

1/3
1√

6λ
1/3
2

δA8 + δA10,

(428)

fA =
3m27λ

1/3
1 λ

2/3
2√

2c1λ3λ4

δA3 +
λ

1/3
2√

6λ
1/3
1

δA4 +
3m2

27λ
1/3
1 λ

2/3
2

2c1
2λ2

3λ4

δA6 +

√
5λ

1/3
2√

6λ
1/3
1

δA8 + δA10.

(429)

Although the procedure of adding the mass term is formally elegant, the method
is hard to implement, since it requires an explicit inversion of a large matrix, and only
then taking the limit M → ∞ to remove the unphysical degrees of freedom. We now
present an equivalent but computationally less troublesome procedure: we consider a
general (N + 1) × (N + 1) matrix with one left and one right null eigenmode, and
rotate it into a physical basis, where the basis vectors, in addition to the zero-mass
vector, are the N states orthogonal to the Nambu-Goldstone mode. Suppose we write
the normalized right and left Nambu-Goldstone eigenstates respectively by

e

|e|
≡
(√

1− α†α
α

)
,

f

|f |
≡
(√

1− ᾱ†ᾱ
ᾱ

)
, (430)

with the columns α = αa and ᾱ = ᾱa, a = 1, . . . , N . The unitary (N + 1) × (N + 1)
matrix

U(α) =

(√
1− α†α −α†
α 1− αα†

1+
√

1−α†α

)
(431)
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then transforms the old basis TA by

TA → UA
B(α)TB, (432)

where now the new basis is TB = (T0, Ta) with T0 the would-be Nambu-Goldstone
triplet. The old basis antitriplets TA are analogously transformed by U(ᾱ). The choice
of U represents just one simple possibility of choosing the transformations matrix;
the transformation is not unique and is defined up to an arbitrary rotation in the
orthogonal complement of the zero mode (space of Ta’s). Dropping the unphysical
zero modes T0, T 0, equation (418) can now be written in the new basis of physical
states as

W
∣∣
proton

= Ta (UT )aA(α) (MT )AB UB
b(ᾱ)T b + Ta (UT )aA(α)

(
CijA

1 QiQj + CijA
2 uci e

c
j

)
+
(
C
ijB

1 Qi Lj + C
′ijB
1 Qi L

′
j + C

ijB

2 dci u
c
j + C

′ijB
2 d′ci u

c
j

)
UB

b(ᾱ)T b. (433)

We now define the N ×N invertible matrix

(mT )ab ≡ (UT )aA (α)(MT )AB UB
b(ᾱ), (434)

and obtain the form of the proton decay superpotential written in equation (433) with
the inverse of the Mtriplets block given by(

M̂−1
T

)
AB

= UA
a(ᾱ)

(
m−1
T

)
ab

(UT )bB(α). (435)

Finally, we also need to project the states onto the light matter superfields, i.e.onto
L̂ and d̂c. This projection involves finding the light combination of the two 5’s of SU(5)
in the 27F ’s, and has been computed in from the fermion masses in the Yukawa sector
section 4.4.3, so dc mixes with d′c and L mixes with L′. This old basis is rotated into
the basis of light and heavy states with the help of the matrix U in equation (400).
Writing generically, the particles q and q′ can be decomposed into light and heavy
states ql and qH , respectively, with(

q q′
)

=
(
ql qH

)
U . (436)

This implies the following projections to the light states d̂c and L̂:

dci =
[
(1 + 4

9
X∗0 X

T
0 )−1/2

]
i
j d̂cj + . . . , (437)

d′ci =
[

2
3
XT

0 (1 + 4
9
X∗0 X

T
0 )−1/2

]
i
j d̂cj + . . . , (438)

Li =
[
(1 +X∗0 X

T
0 )−1/2

]
i
j L̂j + . . . , (439)

L′i =
[
−XT

0 (1 +X∗0 X
T
0 )−1/2

]
i
j L̂j + . . . , (440)

with X0 defined in equation (413).
Writing only the terms of the light states (those at the scale mW ) for the lepton and

baryon number violating operators, we get the following low-energy effective operators
for D = 5 proton decay:

W
∣∣
proton

= −
[(
C
inA

1 − C ′imA1 (XT
0 )m

n
)[

(1 +X∗0X
T
0 )−1/2

]
n
j (M̂−1

T )AB C
klB
1

]
QiL̂jQkQl

−
[(
C
njA

2 + 2
3
C
′mjA
2 (XT

0 )m
n
)[

(1 + 4
9
X∗0X

T
0 )−1/2

]
n
i (M̂−1

T )AB C
klB
2

]
d̂ciu

c
ju
c
ke
c
l .

(441)

Although the final expression is rather complicated, we can still draw some general
conclusions without doing a detailed numerical analysis.
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• Since we have a E6, with many heavy particles and thus the possibility of several
possible heavy thresholds, coupling unification does not necessarily require
a light color triplet as in the minimal renormalizable SU(5) with low-scale
supersymmetry [77, 34, 35].

• Similar to the minimal SO(10) case, which also has contributions from multiple
triplets, only some elements of the inverse matrix need to be small. This is due

to the fact that the triplets in 351′, 27 and 2̃7 do not couple to the matter fields
in the 27F ’s, and neither do some triplets in 351′ (seen from the C-coefficients).

• The final expressions for proton decay are functions of the following parameters:
the masses, the λ and κ parameters, as well as three Yukawa matrices (one λ
is not arbitrary, and is determined by fine-tuning). Since the constraints on
these parameters come from the fit to a smaller number of parameters of the
SM Yukawas, there will likely be some residual freedom present in the parameter
space; it is conceivable that this freedom can then be further used for proton
decay suppression if necessary.

For the reasons above, we very likely have sufficient suppression of proton decay not
to violate the phenomenological bounds. Finally, if all this fails, we can still use some
version of a (moderately) split supersymmetric spectrum.

4.4.5 Summary

The model 3 · 27F ⊕ 27⊕ 27⊕ 351′ ⊕ 351′ ⊕ 2̃7⊕ 2̃7, as far as a non-numeric study
shows, is realistic. The model was found to contain the following features:

• There exist vacuum solutions which break E6 directly to the Standard Model, all
of them equivalent. We obtained the full classification of solutions, proving that
the solutions breaking to the Standard Model are equivalent, while others break
either to Pati-Salam, SU(5), or higher. We only considered solutions where the
non-tilde part of the breaking sector acquires non-vanishing VEVs. This does
not seem a major limitation, and we likely get an analogous result even if we
allow for the tilde fields to get VEVs and write the full superpotential without
any distinction between the tilde and non-tilde sectors.

• Doublet-triplet splitting can only occur in the tilde sector, while the non-tilde
part of the breaking sector contains would-be Goldstone bosons of the doublets
and triplets. All the doublets in the tilde block get EW VEVs.

• The Yukawa sector gives realistic masses: we get the correct number of light
SM degrees of freedom. There are 3 Yukawa matrices, with 2 involved in high
energy mixing between the two 5’s in the 27F , while the tilde Yukawa matrix is
relevant for EW masses. Flavor mixing occurs due to different parts of the 5’s
being mixed differently at the GUT scale. Neutrino masses are light and get type
I and II seesaw contributions. Vector-like states are at the GUT scale.

• We computed the contributions to D = 5 proton decay and argued why the
proton decay rate can be made sufficiently small.

• The β function in the RG running of the coupling for this model is −153.
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• Although the model is realistic, it is likely not very predictive due to the 3 Yukawa
matrices.
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4.5 Model II: 351′ ⊕ 351′ ⊕ 27 ⊕ 27 ⊕ 78

This model is the second possible minimalistic extension of the prototype model of
section 4.3. We add an adjoint 78 chiral supermultiplet, so that the breaking sector
consists of

351′ ⊕ 351′ ⊕ 27⊕ 27 ⊕ 78. (442)

In contrast to model I in section 4.4, we shall not impose any further restrictions
than the usual matter parity (under which the fermionic fields 27F are odd, while
all the multiplets in the breaking sector are even). Due to the representation 78 not
coupling to two symmetric 27F ’s, the Yukawa sector will be a simpler than in model I,
but the presence of the new representation 78 in the breaking sector will make the old
symmetry breaking solution invalid, so we will need to solve the EOM from scratch.
In this model, there is no further division of the breaking sector, and fields can and
will acquire both GUT and EW scale VEVs.

The superpotential of this model is the following:

W = WSSB +WYukawa, (443)

with

WSSB = m351′ I351′⊗351′ +m27 I27⊗27 +m78 I782

+ λ1 I351′3 + λ2 I351′
3 + λ3 I272⊗351′ + λ4 I27

2⊗351′

+ λ5 I273 + λ6 I27
3 + λ7 I27⊗78⊗78 + λ8 I351′⊗78⊗351′ , (444)

WYukawa =
3∑

i,j=1

1
2

(
Y ij

27 I27iF⊗27jF⊗27 + Y ij

351′
I27iF⊗27jF⊗351′

)
. (445)

Compared to the superpotential of the prototype model in equation (247), we
identify the Yukawa sector to be identical, while the breaking sector has an extra
mass term and two extra λ terms.

4.5.1 Symmetry breaking

4.5.1.1 Equations of motion Since we will be considering solutions with
〈78〉 6= 0, the equations of motion will differ from those of the prototype model. We still
take the ansatz 〈27iF 〉 = 0, so the fermion sector is not involved in symmetry breaking
and can be ignored in the equations of motion (due it being odd under matter parity).

In this model, the number of SM singlets is 19 = 14 + 5, with the 14 being familiar
from the prototype model, while there are 5 new ones in the representation 78, which
we denote by u1, u2, v, w and y, as is shown in Table 6.

The F -terms will not be given in explicit form here, since they are quite
complicated, but are easily computed by considering the breaking part of the
superpotential WSSB in equation (444), and plugging in the explicit expressions for
the invariants from Table 11 and equations (174)–(190). One computes the F terms
by taking derivatives over the all the singlet fields, so we have 19 F -terms:

Fci , Fdi , Fej , Ffj , Fui , Fv, Fw, Fy, (446)
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where i = 1, 2 and j = 1, 2, 3, 4, 5.
The D-terms are also different and have to be computed. They have the schematic

form

Da = (27†)i (t̂a 27)i + (27
†
)i (t̂a 27)i + (78†)j i (t̂a 78)ij

+ (351′†)ij (t̂a 351′)ij + (351′
†
)ij (t̂a 351′)ij, (447)

where t̂a is the action of the a-th generator, where a runs from 1 to 78. As in the
prototype model, only 5 D-terms do not vanish trivially, and they correspond to the
generators, which are singlets under the Standard Model: t8L, t3R. t6R, t7R and t8R. They
are computed to be

D8
L = 1√

3

(
|c1|2 + |c2|2 + 2|e1|2 + 2|e2|2 + 2|e3|2 − |e4|2 − |e5|2

−|d1|2 − |d2|2 − 2|f1|2 − 2|f2|2 − 2|f3|2 + |f4|2 + |f5|2
)
, (448)

D3
R = 1

6

(
−3|c2|2 − 6|e1|2 − 3|e2|2 + 3|e5|2 − |u1|2

+3|d2|2 + 6|f1|2 + 3|f2|2 − 3|f5|2 + |u2|2
)
, (449)

D6
R = 1

12
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6c2c1

∗ + 6c1c2
∗ −
√
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√
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√
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√
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√
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√
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√
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√
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∗
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√
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√
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∗ + 6
√
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√
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√
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√
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, (450)

D7
R = i
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√
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∗ + 6e4e5
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√

2f1f2
∗ − 6

√
2f2f1

∗ + 6
√

2f2f3
∗ − 6

√
2f3f2

∗ + 6f4f5
∗ − 6f5f4

∗
)
, (451)

D8
R = 1

2
√

3

(
−2|c1|2 + |c2|2 + 2|e1|2 − |e2|2 − 4|e3|2 + 2|e4|2 − |e5|2 + |u1|2

+2|d1|2 − |d2|2 − 2|f1|2 + |f2|2 + 4|f3|2 − 2|f4|2 + |f5|2 − |u2|2.
)

(452)

As in the prototype mode, the combination corresponding to the hypercharge
generator Y/2 has to be trivially zero. There are therefore 4 real constraints from
the D-terms, 2 of which can be written with a single complex equation. Using the
same combinations DI =

√
3D8

L + 2D3
R, DII = −2D3

R, DIII = D6
R + iD7

R as in the
prototype model, the new D-terms are

DI = |c1|2 − |d1|2 + |e2|2 − |f2|2 + 2|e3|2 − 2|f3|2 − |e4|2 + |f4|2 − 1
3
|u1|2 + 1

3
|u2|2,

(453)

DII = |c2|2 − |d2|2 + |e2|2 − |f2|2 + 2|e1|2 − 2|f1|2 − |e5|2 + |f5|2 + 1
3
|u1|2 − 1

3
|u2|2,

(454)

DIII = +c1c2
∗ −

√
3

6
wu1

∗ +
√

5
6
vu1

∗ +
√

2e2e1
∗ +
√

2e3e2
∗ + e5e4

∗

− d2d1
∗ +

√
3

6
u2w

∗ −
√

5
6
u2v

∗ −
√

2f1f2
∗ −
√

2f2f3
∗ − f4f5

∗. (455)
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The new D-terms are of course similar to the old D-terms from equations (268)–
(270), except for the extra terms with the new SM singlet VEVs u1, u2, v, w and
y.

One can immediately notice that y is not present in the D-terms, while it is present
only in the mass term of W (see equations (174)–(190) and also the group-theoretic
discussion in section 4.2.4), so we automatically have y = 0.

4.5.1.2 Symmetries of EOM In the prototype model in section 4.3.1.2, we looked
at two symmetries of the EOM. We now look at those symmetries again in light of the
presence of a new representation 78, which plays a part through the 3 new invariants
in the model.

1. Conjugation symmetry : we extend the symmetry operation by defining its action
on the 78. For complex representations, conjugation symmetry exchanges the
representation and its conjugate. But 78 is a real representation: its conjugate
is again 78, so we expect conjugation symmetry to operate by exchanging VEVs
within the 78. By looking at U(1)′ and U(1)′′ quantum numbers of the SM
singlets in Table 6, we can deduce that u1 and u2 need to be exchanged, since
they have opposite quantum numbers, while the other SM singlets in the 78 can
remain the same. Indeed, we can define the conjugation symmetry operation by

ci ↔ di, (456)

ei ↔ fi, (457)

u1 ↔ u2, (458)

λ1 ↔ λ2, (459)

λ3 ↔ λ4, (460)

λ5 ↔ λ6. (461)

Under this symmetry, each of the 3 new invariants I782 , I27⊗78⊗27 and I351′⊗78⊗351′

remains the same, so the superpotential W in equation (443) stays the same,
and hence the system of equations of F -terms stays the same. Note that the
mass m78 and the two new couplings λ7 and λ8 do not need to change, since
each new invariant is conjugate to itself. The D-terms in equations (453)–(455),
change the same way as in the prototype model: DI → −DI , DII → −DII and
DIII → −DIII∗. The transformed D-terms represent equivalent conditions to
the untransformed versions, so conjugation symmetry also preserved the D-term
part.

Due to the presence of conjugation symmetry, we again approach solving the
EOM by first solving the F -terms, and worrying about the D-terms after.

2. Alignment symmetry : no longer present. This symmetry operated within
each representation and each of the old invariants is symmetric under the
alignment operation. Since the new invariants are constructed from different
representations, they too should each be symmetric. We could again define the
exchange u1 ↔ u2, and we take care of the mass term I782 . But the new cubic
invariants are not alignment symmetric and the singlets v and w pose problems.
y is not present in the cubic terms, so it can remain the same. If we keep
v and w, v → v and w → w, the new cubic’s change under the alignment
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transformation. Suppose now that we want to change them non-trivially with a
linear transformation. If we want this to be a parity transformation, its square
needs to be the identity (A2 = I), so it needs to have one of the following forms:(

α β
1−α2

β
−α

)
,

(
±1 0
0 ±1

)
, (462)

where the ± signs are independent of each other. We can check by explicit
computation that all these transformations fail to impose symmetry on the new
cubic invariants for any α and β independent from the other VEVs. This means
the alignment symmetry operation cannot be extended as a parity transformation
when we include the 78.

4.5.1.3 A solution of EOM Due to conjugation symmetry, our strategy for
solving the EOM will again be to first solve the F -terms, and then deal with the
D-terms. With the inclusion of the 78, the EOM now become much more complicated,
and there is little hope we will be able to make a full analysis of the solutions; knowing
alternative solutions in this case is not that crucial, however, since the solution we will
present here already seem to be viable. We proceed in the following steps:

• First, we see that Fy leads directly to y = 0. Taking the ansatz

c1 = d1 = f5 = e5 = 0, (463)

and further

u1 = u2 = e2 = f2 = 0, (464)

the system simplifies quite a bit: Fc1 , Fd1 , Fe2 , Ff2 , Fe5 , Ff5 , Fu1 , Fu2 , Fy and DIII

are solved automatically.

• Solve Fe3 and Ff3 for f3 and e3, respectively.

e3 = − 9f4
2λ2

3m27 −
√

2wλ8

, f3 = − 9e4
2λ1

3m27 −
√

2wλ8

. (465)

• Solve Fc2 and Fd2 for f1 and e1, respectively.

e1 =
−12c2m351′ +

√
2wc2λ7 +

√
30vc2λ7

24d2λ4

, (466)

f1 =
−12d2m351′ +

√
2wd2λ7 +

√
30vd2λ7

24c2λ3

. (467)

• Simultaneously solve Fe4 and Ff4 for f4:

f4 =
18m2

27 − 3
√

2wλ8m27 − 2w2λ2
8

324e4λ1λ2

. (468)

• Simultaneously solve Fe1 and Ff1 for d2:

d2 =
1

144c2λ3λ4

(
λ7λ8w

2 − 6
√

2m27λ7w − 6
√

2m351′λ8w + 2
√

15wvλ7λ8

+72m27m351′ − 6
√

30vm27λ7 − 6
√

30vm351′λ8 + 15v2λ7λ8

)
. (469)
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• For our convenience, we shall define the VEV quantity A through w ≡ A−15v√
15

,
which explicitly gives

A := 15v +
√

15w. (470)

We can now solve Fv for v:

v =
1

34560m78λ3λ4

(
360
√

30λ8m
2
351′ + 720

√
30m27λ7m351′

−240Aλ7λ8m351′ − 120Am27λ
2
7 +
√

30A2λ2
7λ8

)
. (471)

• Three variables remain to be determined: A, c2 and e4. We are left with only
one unsolved F -term Fw, which is a polynomial in A:

0 = P0 + P1A+ P2A
2 + P3A

3 + P4A
4, (472)

P0 = −m351′ (2m27λ7 +m351′λ8)

165888
√

2m2
78λ1λ2λ2

3λ
2
4

(
25m351′ (2m27λ7 +m351′λ8)λ3

8

− 480m27m78λ3λ4λ
2
8 + 110592m2

78λ1λ2λ3λ4

)
, (473)

P1 =
1

497664
√

15m2
78λ1λ2λ2

3λ
2
4

(
995328λ1λ2λ

2
3λ

2
4m

3
78

+ 4608λ3λ4

(
24m351′λ1λ2λ7λ8 +m27

(
12λ1λ2λ

2
7 − λ3λ4λ

2
8

))
m2

78

+ 240λ3λ4λ
2
8

(
−m2

27λ
2
7 + 2m27m351′λ8λ7 + 2m2

351′λ
2
8

)
m78

+ 25m351′λ7λ
3
8

(
2m2

27λ
2
7 + 5m27m351′λ8λ7 + 2m2

351′λ
2
8

) )
, (474)

P2 = − 1

89579520
√

2m2
78λ1λ2λ2

3λ
2
4

(
λ8

(
18432λ3λ4

(
9λ1λ2λ

2
7 + λ3λ4λ

2
8

)
m2

78

+240λ3λ4λ7λ
2
8 (5m27λ7 + 16m351′λ8)m78

+25λ2
7λ

2
8

(
2m2

27λ
2
7 + 14m27m351′λ8λ7 + 11m2

351′λ
2
8

)) )
, (475)

P3 =
λ2

7λ
4
8 (96m78λ3λ4 + 5λ7 (m27λ7 + 2m351′λ8))

35831808
√

15m2
78λ1λ2λ2

3λ
2
4

, (476)

P4 = − λ4
7λ

5
8

859963392
√

2m2
78λ1λ2λ2

3λ
2
4

. (477)

Note that the coefficients Pi depend only on the Lagrangian parameters; choosing
those, we can determine A numerically.

The remaining D-terms are

0 = DI = 2|e3|2 − |e4|2 − 2|f3|2 + |f4|2, (478)

0 = DII = |c2|2 − |d2|2 + 2|e1|2 − 2|f1|2. (479)

Note that w and v are determined, once A is. Fixing w and v and examining
the obtained expressions so far, we can see that f4 ∝ 1/e4, e3 ∝ f 2

4 ∝ 1/e2
4

and f3 ∝ e2
4. Therefore DI can be written as a quartic polynomial in |e4|2;

the constant term has a positive coefficient (coefficient in front of the e3 term),
while the highest order term in |e4|2 has a negative coefficient: a solution for
a real e4 > 0 will always exist. Similarly, d2 ∝ 1/c2, e1 ∝ c2/d2 ∝ c2

2
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and f1 ∝ d2/c2 ∝ 1/c2
2, DII is a quartic polynomial in c2 independent of e4;

the constant coefficient will be negative (the f1 term), while the highest order
coefficient in |c2|2 is positive (the e1 term), which again guarantees a real solution
c2 > 0.

The solution is then as follows: A is determined through the polynomial in
equations (472)–(477), e4 and c2 are determined at the end through the polynomials
in DI and DII , respectively, while the other VEVs are:

c1 = 0, d1 = 0, (480)

e2 = 0, f2 = 0, (481)

e5 = 0, f5 = 0, (482)

u1 = 0, u2 = 0, (483)

y = 0, (484)

w =
1

2304
√

15m78λ3λ4

(
−
√

30A2λ8λ
2
7 − 360

√
30m351′ (2m27λ7 +m351′λ8)

+ 24A (96m78λ3λ4 + 5λ7 (m27λ7 + 2m351′λ8))

)
, (485)

v =
1

34560m78λ3λ4

((
360
√

30m2
351′ − 240Aλ7m351′ +

√
30A2λ2

7

)
λ8

−120m27λ7

(
Aλ7 − 6

√
30m351′

))
. (486)

Then in terms of A, w, v, c2 and e4:

d2 =
6m27

(
180m351′ −

√
30Aλ7

)
+ A

(
Aλ7 − 6

√
30m351′

)
λ8

2160c2λ3λ4

, (487)

e1 =
6c2

2λ3

(
180m351′ −

√
30Aλ7

)
m27

(
6
√

30Aλ7 − 1080m351′
)

+ A
(
6
√

30m351′ − Aλ7

)
λ8

, (488)

f1 =
1

777600c2
2λ2

3λ4

(
A
(

1080
√

30m2
351′ − 360Aλ7m351′ +

√
30A2λ2

7

)
λ8

− 180m27

(
1080m2

351′ − 12
√

30Aλ7m351′ + A2λ2
7

))
, (489)

e3 = −
(
−18m2

27 + 3
√

2wλ8m27 + 2w2λ2
8

)
2

11664e4
2λ2

1λ2

(
3m27 −

√
2wλ8

) , (490)

f3 = − 9e4
2λ1

3m27 −
√

2wλ8

, (491)

f4 =
18m2

27 − 3
√

2wλ8m27 − 2w2λ2
8

324e4λ1λ2

. (492)

As we can see, the solution is very complicated and has to be computed in steps;
finding all the solutions of the EOM in model II would be prohibitively complicated,
if analytically possible at all.
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4.5.1.4 Properties of the solution There are two things we need to check:

1. We have to confirm that the solution from subsection 4.5.1.3 does indeed break
E6 into the SM group. We do that by computing gauge boson masses, similar to
what we did for the solution in the prototype model in section 4.3.1.4. Using the
ansatz of vanishing VEVs

0 = c1 = d1 = e5 = f5 = e2 = f2 = u1 = u2 = y, (493)

we get 12 massless gauge bosons (exactly those of the SM) as shown in Table 19,
assuming the remaining VEVs are non-vanishing. It is hard to analytically check
that other VEVs do not vanish, but we did check numerically, by taking generic
values for the breaking parameters of the model: the masses and the λ’s.

2. We also need to check that there are no flat directions in the F -terms, so that all
singlet fields are massive. In this model, there are 19 SM singlets in the breaking
sector, so their mass matrix is a 19×19 matrix. Since the matrix is prohibitively
large to be written on A4 paper, we will not write it here explicitly. But assisted
by a computer and doing it numerically, it is indeed possible to see that generic
values of parameters give 4 massless singlets, which are exactly the 4 would-be
Goldstone bosons in the E6 → SM breaking, as discussed in section 4.3.1.4.

Both conditions check out proving that the solution is viable.

4.5.2 Doublet-triplet splitting

We shall now perform doublet triplet splitting in this model. Compared to the
prototype model of section 4.3, we now have an additional doublet-antidoublet pair
and an additional triplet-antitriplet pair, so the mass matrices now become 12 × 12
for the doublets and 13 × 13 for the triplets. The doublet D and triplet T states are
defined in Table 9, with the new states in the 78 having the index 0. The mass terms
are written as

(
D0 · · · D11

)
Mdoublets

D1
...

D11

+
(
T0 · · · T12

)
Mtriplets

 T 1
...
T 12

 . (494)

The two mass matrices Mdoublets and Mtriplets can be compactly written with
equation (495), where we remove the last row and column and take α = −3 and
β = −

√
3 for the doublet matrixMdoublets, while we keep the full size matrix and take

α = β = 2 for the triplet matrix Mtriplets. Also, the ansatz of vanishing VEVs in
equation (493) is already applied. Note that the compact matrix has the block form
(1 + 3 + 9)× (1 + 3 + 9), where the numbers correspond to states in the representations
78, 27⊕ 27 and 351′⊕ 351′, respectively. The compact matrix is written in block form(

M11 M12

M21 M22

)
, (495)
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where the diagonal blocks are

M11 =



m78 0
λ7d2
2
√

3
0 0 0

0 m27+
λ7(
√
3v+
√
5w)

3
√
10

αλ3f4√
15

6λ5c2 0 0

λ7c2
2
√
3

αλ4e4√
15

m27+
λ7(
√

5w−
√

3v)

3
√

10
0 0 0

0 6λ6d2 0 m27+
λ7(3

√
3v−
√

5w)

6
√
10

0 −λ4d2√
10

0 0 0 0 m351′+
λ8v

2
√
30
−λ8w

6
√

2

√
3
5
αλ1e4

0 0 0 −λ3c2√
10

√
3
5
αλ2f4 m351′−

λ8v

2
√
30
−λ8w

6
√
2


, (496)

M22 =



m351′+
√

3
4
√

10
λ8v− 5λ8w

12
√

2
0 0 1

2

√
3αλ2f4 0 1

2

√
15βλ2f4 0

0 m351′−
λ8v

2
√

30
−λ8w

6
√

2

√
5βλ2f4 0 0 0 0

0
√

5βλ1e4 m351′+
λ8v

2
√

30
−λ8w

6
√

2
0 0 0 2

√
10λ1e4

1
2

√
3αλ1e4 0 0 m351′−

√
3

4
√

10
λ8v+

λ8w

12
√

2
0 0 0

0 0 0 0 m351′−
7λ8v

4
√

30
+
λ8w

12
√

2
0 0

1
2

√
15βλ1e4 0 0 0 0 m351′−

√
3

4
√

10
λ8v+

λ8w

12
√

2
0

0 0 2
√

10λ2f4 0 0 0 m351′−
λ8v

2
√

30
−λ8w

6
√

2


,

(497)

and the off-diagonal blocks are

M12 =


−λ8f3

2
√
6

0 0
αλ8e4
24
√
2

−λ8f1
2
√

6

√
5βλ8e4
24
√
2

0

0 0 0 2
√

2
5
λ3c2 0 0 0

0 0 0 0 −
√

2λ4d2 0 0

0 −
√

3
2
λ4d2 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

, (498)

M21 =



−λ8e3
2
√

6
0 0 0 0 0

0 0 0 −
√

3
2
λ3c2 0 0

0 0 0 0 0 0
αλ8f4
24
√
2

2
√

2
5
λ4d2 0 0 0 0

−λ8e1
2
√

6
0 −

√
2λ3c2 0 0 0

√
5βλ8f4
24
√
2

0 0 0 0 0

0 0 0 0 0 0

. (499)

We note that taking the full vacuum solution from subsection 4.5.1.3, the
determinants of both matrices are zero:

det(Mdoublets) = 0, (500)

det(Mtriplets) = 0. (501)

This implies that there is a massless doublet-antidoublet pair and a massless triplet-
antitriplet pair, which are would-be Goldstone modes corresponding to E6 → SM
breaking, as discussed in section 4.3.2. Fine tuning now needs to be performed, so that
the doublet matrix gets an extra massless mode, while keeping the triplets massive.
The condition on the mass matrix has already been discussed in the section of the
prototype model:

Cond(M) :=
limε→0 det(M+ εI)/ε

〈f |e〉
= 0, (502)

where |e〉 and |f〉 are the right and left zero-mass eigenmodes of M.
We now want to perform a fine-tuning, such that

Cond(Mdoublets) = 0, (503)

Cond(Mtriplets) 6= 0. (504)

(505)

The best parameters in which to perform the fine-tuning are λ5 and λ6 due to the
following two reasons:
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• These are the coupling constants in front of the operators 273 and 27
3
. These

invariants do not contain singlet-only terms, so they do not appear in the EOM
or the vacuum solution. Choosing values for them has no impact on the vacuum
solution or its properties.

• There is only one instance of λ5 and one instance of λ6 in the mass matrix of
equation (495). This means they will be present linearly in conditions (503) and
(504). Since they are located at entries which exchange under transposing the
mass matrix, it turns out they are always present in the form of the product, so
that the fine-tuning condition have the form

K1 −K2 λ5 λ6 = 0, (506)

K ′1 −K ′2 λ5 λ6 6= 0, (507)

where K1, K ′1, K2 and K ′2 are expressions of the other parameters of the breaking
sector (m351′ ,m78,m27, λ1, λ2, λ3, λ4, λ5, λ8).

Computing the expressions K1, K ′1, K2 and K ′2 analytically is very hard, since even
the left and right zero-mode eigenvectors of the matrices have a very complicated form.
But we checked numerically that taking generic values for the other parameters and
computing the values of K1, K ′1, K2 and K ′2, it is possible to satisfy both conditions.
For the fine-tuning, we take for example

λ5 =
K1

K2 λ6

, (508)

and plugging this into the second condition, we get

K ′1K2 6= K ′2K1. (509)

For generic values of parameters, we indeed do not get an equality, so the doublet-triplet
splitting is successful, although computationally not particularly simple. Numerically,
we can check, after identifying which zero-mode is the would-be Goldstone, that the
new Higgs zero-modes (the MSSM fields Hu ad Hd) have components in all the doublets
and anti-doublets. We denote the EW VEVs by vi and v̄i with i = 0, 1, . . . , 11. The
Higgses having components in all the doublets implies all the EW VEVs vi and v̄i are
nonzero. Also, we have the relations

vu =
11∑
i=0

v2
i , (510)

vd =
11∑
i=0

v̄2
i , (511)

where vu and vd are EW VEVs of Hu and Hd (choosing a basis, which has these two
among the basis vectors).

Finally, we compare the DT-splitting scenario in the prototype model and model II.
The current model has the mass matrices of the doublets and triplets enlarged by one
(both in rows and in columns). In the prototype model, we also had a single appearance
of the same parameters λ5 and λ6, but when computing the limε→0 det(M+ εI)/ε part
of Cond, the product term λ5λ6 disappeared once the vacuum solution was inserted
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(essentially K2 = K ′2 = 0 in the prototype model). In the current model, however,
it appears that the addition of the new row and column, as well as a new vacuum
solution, now do not make the λ5λ6 term vanish. The specific of why this happens are
not clear and we are not aware of any theoretical arguments, which would predict such
a result a priori : it is only after explicit computation that we discover this fact.

4.5.3 Yukawa sector

The Yukawa terms of this model are the in the WYukawa part of the superpotential in
equation (445). Schematically, we have the terms

27iF27jF

(
Y ij

27 27 + Y ij

351′
351′

)
. (512)

We therefore have two symmetric Yukawa matrices in our model: Y27 and Y351
′ . The

Yukawa sector in this model is analogous to the 10 ⊕ 126 Yukawa sector of minimal
SO(10).

In model II, flavor mixing will come about in the standard way: the Higgs fields
need to be both in the 27 and in the 351′. In fact, both Hu and Hd are part of 351′

and 27 also, so the fermions only see part of both Higgs fields.
Computing the mass terms explicitly, we get (skipping the hermitian conjugate

terms)

uT
(
−v1Y27 + 1

2
√

10
v5Y351

′ − 1
2
√

6
v7Y351

′

)
uc

+
(
dcT d′cT

)( v̄2Y27 + 1
2
√

10
v̄4Y351

′ + 1
2
√

6
v̄8Y351

′ c2Y27 + 1√
15
f5Y351

′

−v̄3Y27 − 1
2
√

10
v̄9Y351

′ − 1
2
√

6
v̄11Y351

′ −c1Y27 + 1√
15
f4Y351

′

)(
d
d′

)

+
(
eT e′T

)−v̄2Y27 − 1
2
√

10
v̄4Y351

′ +
√

3
8
v̄8Y351

′ c2Y27 − 3
2

1√
15
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The notation used above suppresses flavor indices. We again color coded GUT scale
VEVs and EW scale VEVs. The ansatz of vanishing VEVs in equation (493) is not yet
taken into account. The EW VEVs correspond to the following doublet/antidoublets:
vi is the EW VEV of the doublet Di, while v̄i is the VEV of the antidoublet Di (see ).
Due to the structure of the Yukawa sector, only the VEVs (both EW, but also GUT
scale) from the representations 351′ and 27 are present.

As in model I, the matrices in the down-quark sector and the charged lepton sector
(and also the appropriate part of the neutrino matrices) have very similar structure
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due to these field being part of the same SU(5) representations 5̄ or 5. Comparing
these matrices of different sectors, the GUT scale VEVs are positioned in the same
places. The coefficients in front of GUT scale VEVs are the same, if the VEV is an
SU(5) singlet, or are in the ratio of −3/2 if the GUT scale VEV comes from the 24
of SU(5). The situation is very similar for EW VEVs: the down and charged lepton
sectors have them in the same places, with also the same coefficients (up to a minus
sign coming from the definition of the fermion states in Figure 5) in front of most of
the EW VEVs. The exceptions are the EW VEVs v̄8 and v̄11, which are part of the 45
of SU(5), so they couple differently to doublets and triplets, unlike the more standard
5̄’s of SU(5) (for Higgs doublet definitions see Table 9).

Notice the following peculiarity: if a solution has for example an ansatz c2 = f5 = 0,
we eliminate the upper-right entry in the down-quark and charged lepton matrices,
which means that up to leading order in MEW/MGUT

, the heavy states are in the
remaining heavy block in the lower-right part of the matrices, and the light states
are the ones in the upper-left corner: the states in the 16 are light and the states in
the 10 are heavy, so there is no mixing between the two 5̄’s in the 27F . A similar
situation would occur if we instead chose c1 = f4 = 0, when the upper-right part
would become heavy and the lower-left would become light. If we had these situations,
and if we further had v̄8 = v̄11 = 0 (the 〈45〉EW’s of SU(5)), all the Higgses would
be in the 5̄’s in either the lower- or the upper-left part, and we would have the bad
SU(5) prediction MT

D = ME at the GUT scale (see section 2.4.1). This presence of
the 45’s is even more crucial in SO(10) GUT theories, where there are no vector-like
quarks to alleviate the problem; for this reason, the minimal SO(10) models needs to
have a 126 representation of the Higgs (which has a 45 of SU(5)) in addition to the 10
(with the 5 of SU(5)). If we just had multiple 10’s of Higgses, they would all couple
to the down-quarks and to the charged leptons equally, again recreating the Yukawa
couplings MT

D = ME.

In our solution, we have the ansatz c1 = f5 = 0. This means that both the upper-
and lower-left part of the matrices in the down sector and the charged-lepton sector
are non-vanishing. This means that in our case, we indeed do have a mixing of 16F and
10F , so that the light states are present in both. Since the coefficients in front of the f4

VEV differ, the 16F–10F mixing for the light states in the down sector is different than
in the charged lepton sector. Furthermore, we determined in section 4.5.2 that all EW
VEVs are nonzero, so the difference in the down sector and lepton sector is also due to
the different coefficients in front of the 〈45〉EW’s of SU(5) (the v̄8 and v̄11). Ultimately,
the important fact is that our model contains mechanisms to have ME 6= MT

D for the
light states.

Some comments on the masses of the neutrino sector. Again, as in model I, we have
similar terms, where νc and s are Majorana neutrinos due to upper-left 2× 2 block in
the second neutrino matrix; νc and s are thus heavy. We also have an additional heavy
pair of ν ′c and a combination of ν and ν ′ due to the last column in the first neutrino
matrix.

The third neutrino matrix represents type II seesaw contributions from
∆̄ ∼ (1, 3,+1) and ∆ ∼ (1, 3,−1) weak triplet scalars, as discussed in section 4.4.3.
Note that the matrix has the same form as in model I, but the values of ∆’s are not
the same. The triplets ∆ and ∆ are still only in 351′ and 351′, with their definitions
already given in Table 18. There are, however, new terms with the 78 in WSSB, so the
∆’s are integrated out differently: writing out all the terms from equation (444), we
get
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The mass matrix M∆ gets contributions from both the 351′ · 351′ term, as well as from
351′ · 〈78〉 · 351′. It has the explicit form

M∆ =
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Integrating out the heavy triplets and inserting our F -term ansatz of vanishing VEVs
in the 78 (u1 = u2 = y = 0),) we get
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 . (516)

To get the mass matrices of the light states, we integrate the heavy states out of
the matrices in equation (513), as discussed for the Yukawa sector in model I in
section 4.4.3. Using c1 = f5 = 0 from the vacuum solution, we define the “ratio
matrix” X0 by

X0 = −2
√

5
3

c2

f4

Y27 Y
−1

351
′ . (517)

After some computation, which is a bit more involved especially in the neutrino sector,
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we get the low energy matrices:

MU = −v1Y27 +
(

1
2
√
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2
√
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)
Y351

′ , (518)

MT
D =

(
1 + (9/4)X0X

†
0

)−1/2 ((
v̄2 − 3

2
v̄3X0

)
Y27 +

(
1

2
√

10
(v̄4 − 3

2
v̄9X0) + 1

2
√

6
(v̄8 − 3

2
v̄11X0)

)
Y351

′

)
,

(519)
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Analogous to model I, the neutrinos have seesaw type I (the non-∆ terms) and
type II (the ∆ terms) contributions, but no type III. All contributions to the neutrinos
are O(M2

EW/MGUT ): type I contributions manifestly have this structure (with possible
extra factors c2/f4 ∼ O(1)), while we see the scale of ∆’s from equation (516).

The general conclusions on the fermion masses in model II are very similar to model
I: all the exotic degrees of freedom are heavy (vector-like states are thus at the GUT
scale), the light states in the 5̄ of SU(5) are a mixture of the 5̄’s in the 16F and 10F
of SO(10) (mixing controlled by X0), and neutrinos have type I and type II seesaw
contributions.

The main difference between the two models, however, is in the number of Yukawa
matrices and the mechanism of flavor mixing. In this model, we get flavor mixing in the
usual way of GUTs: the Higgs is simultaneously present in two representations, which
couple to the fermions. Furthermore, having only two Yukawa matrices decreases the
number of parameters compared to model I, and makes the parameter situation similar
to minimal SO(10) models [32, 33]. Therefore, this Yukawa structure seems viable, but
it is not a forgone conclusion that the fit can work out. Due to the smaller number of
parameters in the Yukawa sector, model II is more predictive, so a numeric fit would
be instructive.

We leave the numeric fit to be done in the future.
Our model has the following parameters :

• 3 mass parameters: m27, m351′ and m78.

• 10 couplings: 8 λ’s. The parameters λ5 and λ6 are not involved in the low-energy
mass matrices of fermions, but one is determined by the fine-tuning condition.
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• 2 symmetric Yukawa matrices. (Not all parameters here are physical though,
since one matrix can be diagonalized by a rotation in the 3 families).

4.5.4 Proton decay

We now perform the same analysis of D = 5 proton decay in model II as was done
in section 4.4.4 for model I. The results are completely analogous, we only need to
compute the new triplet mass matrix and the new C coefficients. The proton decay
operators in the superpotential are

W
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with the X0 in model II now defined by equation (517), the mass matrix T is now from
equation (495) (with the solution from equations (480)–(492) and a numeric fine-tuning
of the product λ5λ6), and the C coefficients now computed to be
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We see that the C-coefficients are the same as the coefficient in equations (420)–
(425) of model I, when we remove the tilde fields of model I by Y2̃7 = 0. In particular,
there are no A = 0 contributions from triplet/antitriplets in the new representation
78. No A = 0 triplets/antitriplets is expected due the fact that the 78 does not couple
to two 27F ’s (no 78 term in the Yukawa sector), which is a requirement due to the
definition of the C terms.

The general remarks on why proton decay rate can be very likely made small are
the same as in section 4.4.4 for model I: not all values of the inverse (M̂T )−1 need to
be small (since not all triplets contribute to proton decay), no necessary lighter triplet
(multiple possible thresholds), and some possible redundancy in the parameter space.
In this model, however, the number of parameters is smaller than in model I, so less
redundancy in parameter space is expected, and similar to the Yukawa section of this
model, a numeric analysis would be needed to fully confirm that the proton decay rate
can be made small enough.

4.5.5 Summary

The model 3 · 27F ⊕ 27⊕ 27⊕ 351′ ⊕ 351′ ⊕ 78, as far as a non-numeric study shows,
is realistic. The model was found to contain the following features:

• We found a solution, which break E6 to the Standard Model. A full classification
of solutions, however, was not obtained.
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• Doublet-triplet splitting occurs by fine-tuning in the breaking part, where all
representations contribute with doublets and triplets. The triplet matrix is
a 13 × 13 matrix, allowing for some features only to be checked numerically.
The big matrices contain would-be Goldstone bosons of the vacuum solution.
The massless doublet/antidoublet are present in all the doublet/antidoublet
components — all components get a nonzero EW VEV.

• The Yukawa sector gives realistic masses: we get the correct number of light SM
degrees of freedom. There are 2 Yukawa matrices, which allow for flavor mixing
in the standard way in GUT. The 5’s in the 27F mix. Neutrino masses are light
and get type I and II seesaw contributions. Vector-like states cannot be light
and are at the GUT scale.

• We computed the contributions to D = 5 proton decay and argued why the
proton decay rate can be made sufficiently small in the same way as in model I.

• The β function in the RG running of the coupling for this model is −159.

• Since this model contains only 2 Yukawa matrices, it is more predictive than
model I, and a numeric fit of the results is left for the future.
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Table 19: Masses-squared of gauge bosons in model II using the ansatz
c1 = d1 = e2 = f2 = e5 = f5 = u1 = u2 = y = 0.
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5 Conclusion

In this PhD thesis, we studied various renormalizable supersymmetric E6 models,
constructing the breaking sector with representations 27, 78, 351, 351′ and 650 (and
their conjugates, where applicable) in various combinations.

We concluded that some of the simplest models are not viable. The following
models were found not to be able to break to the Standard Model group:

• Renormalizable models with only representations 27, 27 and 78, with arbitrary
many copies of each representation.

• A model with 351⊕ 351, and arbitrary many copies of 27 and 27.

• The 351′ ⊕ 351′ model.

• The 650 model.

The model 351′ ⊕ 351′ ⊕ 27⊕ 27, which we called the prototype model, was found
to have a solution breaking E6 to the Standard Model group, but it failed due to its
inability to perform doublet-triplet splitting. Building on the partial success of this
model, we found two realistic extensions:

• Model I: 351′ ⊕ 351′ ⊕ 27⊕ 27 ⊕ 2̃7⊕ 2̃7.

• Model II: 351′ ⊕ 351′ ⊕ 27⊕ 27 ⊕ 78.

For both models, we found a vacuum breaking E6 to the Standard Model group,
successfully performed doublet-triplet splitting, analyzed the Yukawa sector, computed
the low-energy mass matrices and computed contributions to D = 5 proton decay. At
the analytic level, both models are realistic. Numerically, however, we expect model
II to be more predictive, since it has only 2 Yukawa matrices compared to 3 Yukawa
terms of model I. To really check whether model II can predict the correct values of
the masses and mixing angles, a numeric fit would need to be performed.

We did not consider, however, the details of the RG flow of the gauge couplings in
these models. Since both in model I and II the low-energy theory is MSSM, with all
other degrees of freedom approximately at the GUT scale, we assumed that unification
of gauge couplings does indeed take place (since heavy extra degrees of freedom have
little effect on the running at that late stage). Another concern in the running are the
large negative β functions −153 and −159, which can lead to a Landau pole relatively
quickly once all the degrees of freedom are present (though a similar problem is also
present in SO(10); the minimal SUSY model has the β function −109 [21, 22, 23]). To
study the details of the gauge coupling unification, and to study the RG flow of the
single coupling after unification, one would tediously need to compute the masses of
all degrees of freedom in the models. A spread in the masses of the heavy states could
alleviate the Landau pole problem.

We argue that models I and II are likely the minimal realistic E6 models, which
are supersymmetric and renormalizable. We studied the models from simpler to more
complicated in a roughly systematic manner, and models I and II were the simplest
realistic ones we found. We did for example omit models with breaking sectors
351⊕ 78⊕ 351 or 351′ ⊕ 78⊕ 351′, but it does seem these models are incomplete
in regards to the Yukawa sector; a minimal extension with 27 ⊕ 27 would lead to
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model II in the second case, while the first case would likely have problems with the
antisymmetric Yukawa of the 351. Note that by minimal we can mean many things, for
example the minimal number of degrees of freedom, the minimum number of Yukawa
matrix parameters, the minimal β function of the model; whichever criteria we choose,
models I and/or II are at least on the short-list of minimal models. It is interesting
to point out, however, that the prototype model is even simpler, but alas not realistic.
Naively, one would expect the prototype model to be the candidate for the minimal
realistic model, but it failed due to its surprising inability to split the doublet and the
triplet mass; this non-trivial result was discovered only after a detailed analysis was
performed.

As a final point, let us reiterate the results obtained in the Yukawa sectors in
model I and model II. Although the mechanisms of flavor mixing are different in the
two models, the conclusions are the same. The low-energy spectrum of fermions is that
of the MSSM, where the neutrinos get contributions from seesaw type I and type II. All
other particles are heavy. Take special note that this includes the vector-like states of
quarks and leptons; light vector-like states are an attractive option in phenomenology,
but E6 models seem to predict for the vector-like states to be generically at the GUT
scale.
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6 Razširjeni povzetek

6.1 Uvod

Spoznanja raziskav v 20. in 21. stoletju na področju osnovnih delcev so uspešno
združena v teoriji, ki jo imenujemo Standardni model. V tej teoriji opǐsemo vse
znane delce in vse njihove medsebojne interakcije z izjemo gravitacijske: opis združuje
močno, šibko in elektromagnetno interakcijo. Čeprav se napovedi Standardnega
modela neverjetno dobro ujemajo z eksperimentalnimi opažanji, kljub temu obstajajo
eksperimentalne in teoretične uganke, ki morebiti nakazujejo na novo fiziko onkraj
Standardnega modela. Med zanimivi kandidati te fizike so Teorije poeotenja, v katerih
poenotimo interakcije Standardnega modela, tako da vse postanejo del interakcije
istega tipa na visokih energijskih skalah.

Med najpogosteje študiranimi kandidati v Teoriji poenotenja sta grupi SU(5)
in SO(10). Še en obetaven kandidat je grupa E6, ki se pogosto omenja že od
začetkov Teorij poenotenja (glej [1]), a kljub temu v svetovni literaturi ne obstaja
(vsaj po poznavanju avtorja) noben E6 model, ki bi bil obravnavan v celoti in
bi bil hkrati realističen. Z obravnavo v celoti imamo tu v mislih analizo modela
s pristopom “od zgoraj navzdol”, kjer hkrati obravnavamo tako spontani zlom
simetrije, kot tudi Yukawin sektor in ostale podrobnosti, kot na primer razcep dublet-
triplet. Z besedo realističen imamo tu v mislih predvsem ustrezen opis mas in
mešalnih kotov Standardnega modela, kjer vsaj na analitičnem nivoju ni očitnih
težav. Posamezne teme v modelih E6 so bile občasno študirane, npr. Yukawin sektor
v [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] ter zlom simetrije v nekaterih preprostih modelih
v [14, 15, 16, 7].

Za manj aktivnosti na področju sestave modelov poenotenja, ki temeljijo na grupi
E6, sta verjetno dva razloga. Prvi je njena relativna kompliciranost v primerjavi z
grupama SU(5) in SO(10), ki sta obe njeni podgrupi. Za razliko od ortogonalnih
in unitarnih grup imamo pri predstavi in intuiciji z grupo E6 veliko težav, hkrati
je pa tudi njena matematična konstrukcija bolj komplicirana. Drugi razlog pa je
odsotnost konkretne motivacije: SU(5) je na primer najmanša grupa primerna za
poenotenje, medtem ko ima grupa SO(10) ugodne lastnosti, kot so npr. avtomatična
prisotnost desnoročnega nevtrina, kar elegantno razloži nevtrinske mase. Grupa E6 ima
sicer fenomenološko zanimivo vsebino, npr. njena fundamentalna upodobitev vsebuje
dodatne vektorske kvarke in leptone, vendar se določene prednosti SO(10) nad SU(5)
pri prehodu na E6 izgubijo. Primer je denimo R-parnost, ki jo moramo v modelih z
E6 postulirati, medtem ko je v SO(10) modelih, kjer rang grupe zlomi upodobitev 126,
avtomatična (glej npr. [18, 19, 20, 21, 22, 23]. Situacija v modelih E6 je nekoliko bolj
komplicirana tudi zato, ker pri najpreprosteǰsih modelih zlom do Standardnega modela
ni možen, npr. pri renormalizabilnem supersimetričnem modelu 27⊕ 27⊕ 78 iz [14].

Namen te doktorske disertacije je, da zapolnimo praznino v modeliranju z grupo E6,
tako da študiramo najpreprosteǰse modele in skušamo najti realistične kandidate. V
tej disertaciji so prav tako zbrane tudi mnoge tehnične podrobnosti v zvezi z grupo E6,
kar lahko služi kot referenca. Zaradi njihove sorazmerne preprostosti se bomo omejili
na renormalizabilne in supersimetrične modele.

Razširjeni povzetek v slovenščini je razdeljen na naslednji način: v poglavju 6.2 so
zbrane tehnične informacije v zvezi z grupo E6, medtem ko v poglavju 6.3 obravnavamo
konkretne modele: najprej določimo osnovno izhodǐsče za te modele, nato pa po
predstavitvi nerealističnih kandidatov navedemo dva realistična, ki jih poimenujemo
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model I in model II. V obeh modelih spekter lahkih delcev ustreza MSSM, medtem ko
so vektorski delci na skali poenotenja.

Ta disertacija temelji na članku [24], vsebuje pa tudi dodatne vsebine, ki še niso
objavljene.

Barvni dogovor glede pričakovanih vrednosti: rdeče, če so na skali poenotenja, in
modro, če so na elektrošibki skali.

6.2 Grupa E6 in poenotenje

6.2.1 Motivacija

Grupa E6 je preprosta Liejeva grupa, ki je dober kandidat za grupo v Teorijah
poenotenja (prvič študirana v [1]). Izrek o klasifikaciji preprostih Liejevih algeber
(glej npr. [56, 54]) nam ponudi naslednje kandidate Liejevih grup (glej tudi tabelo 2):

• Specialne ortogonalne grupe, v Dynkinovi notaciji so lihe in sode po vrsti označene
z Bn in Dn, v klasični notaciji pa se uporablja oznake SO(2n+ 1) in SO(2n).

• Specialne unitarne grupe, v Dynkinovi notaciji označene z An, klasično pa s
SU((n+ 1)2 − 1).

• Simplektične grupe, v Dynkinovi notaciji označene s Cn, klasično pa s Sp(n).

• Izjemne grupe, ki jih je natanko 5: G2, F4, E6, E7 in E8.

Za grupo poenotenja bi bili smiselni naslednji kriteriji:

• Grupa, ki vsebuje interakcije Standardnega modela, je preprosta, torej ena od
zgoraj naštetih v klasifikaciji.

• Na skali poneotenja pride do spontanega zloma simetrije, kjer se simetrija grupe
poenotenja zmanǰsa na grupo Standardnega modela SU(3)C × SU(2)L × U(1)Y .
Zato mora grupa poenotenja vsebovati grupo SM kot podgrupo.

• Grupa poenotenja ima kompleksne upodobitve. Stanadardni model je namreč
kiralna teorija (levoročni delci so v drugačnih upodobitvah kot desnoročni
delci), in ima vse delce v kompleksnih upodobitvah. V kolikor bi grupa
poenotenja ne imela kompleksnih upodobitev, bi vse njene upodobitve poleg
delcev Standardnega modela vsebovale tudi konjugirane upodobitve, in bi se
s tem število prostostnih stopenj (vsaj) podvojilo, kjer bi za konjugirane delce
morali nekako poskrbeti, da so težki (recimo nekje blizu skale poenotenja MGUT).

• Kjer je več podobnih kandidatov, naj bo grupa čim manǰsa. V neskončni družini
SU(n) bi lahko npr. vzeli poljubno velik n ≥ 5, a bolj zanimive so razširitve
Standardnega modela, kjer je potrebno predpostaviti le manǰse število novih
prostostnih stopenj.

Na podlagi kriterija o kompleksnih reprezentacijah so izločene lihe ortogonalne
grupe SO(2n+1) in simplektične grupe Sp(n), ter izjemni grupi E7 in E8. Grupi G2 in
F4 ne vsebujeta grupe Standardnega modela kot podgrupe, zato sta prav tako izločeni.
Na podlagi zgornjih meril ostanejo kot najbolj primerni trije kandidati: SU(5), SO(10)
in E6. Spodaj si bomo na kratko ogledali vsakega od kandidatov, kjer bomo podatke
o upodobitvah črpali iz [57].
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• SU(5) je najmanǰsa unitarna grupa, ki vsebuje standardni model. Na njeni
podlagi je bil zasnovan tudi prvi model poenotenja Georgi-Glashow [2], ki je
bil sicer nesupersimetričen. V SU(5) teorijah običajno fermione Standardnega
modela (ene družine) združimo v naslednje upodobitve: 5F = dc ⊕ L,
10F = Q ⊕ uc ⊕ ec. V supersimetričnih teorijah nato dodamo še Higgsovi polji
Hu in Hd, ki sta del 5 in 5, za zlom SU(5) pa naprimer uporabimo adjungirano
upodobitev 24.

• SO(10) je najmnaǰsa ortogonalna grupa, ki vsebuje Standardni model. Prav tako
kot podgrupo vsebuje tudi SU(5). Fermioni Standardnega modela se poenotijo
v eno samo upodobitev 16F , ki je v SO(10) spinorska in kompleksna. Njena
dekompozicija v ireducibilne upodobitve SU(5) se glasi 16 = 10 ⊕ 5 ⊕ 1, kjer 1
predstavlja desnoročni nevtrino νc. Za Yukawine člene uporabimo tiste SO(10)
upodobitve, ki se sklapljajo z dvema fermionskima 16F , za kar sta primerni npr.
10 in 126. Za zlom SO(10) pa so primerne upodobitve, ki vsebujejo singlete
Standardnega modela, npr. 126 in 126, 210 ali 54 (glej npr. [32]).

• E6 je edina med izjemnimi grupami, ki ima hkrati kompleksne upodobitve in
vsebuje Standardni model kot podgrupo. Grupi SU(5) in SO(10) sta njeni
podgrupi, zato so E6 teorije poenotenja običajno bolj komplicirane in z večjimi
upodobitvami, kot ostale grupe poenotenja. Fermioni ene družine so v E6

poenoteni v upodobotvi 27F , ki ima naslednjo SO(10) dekompozicijo:

27 = 16⊕ 10⊕ 1. (529)

V 10 in 1 grupe SO(10) se skrivajo eksotični delci: 10 vsebuje vektorske kvarke
d′⊕ d′c in vekorske leptone L′⊕L′c, medtem ko 1 predstavlja dodatni desnoročni
nevtrino, ki ga označimo s s, in je singlet ne samo pod SU(5) ampak celo
pod SO(10). Za opis Yukawine interakcije potrebujemo take upodobitve, ki se
sklapljajo z dvema fermionskima upodobitvama 27F ; to sta na primer upodobitvi
27 in 351′. Za zlom E6 v grupo Standardnega modela uporabimo take upodobitve
E6, ki vsebujejo singlete Standardnega modela; ker so upodobitve E6 dokaj velike,
tipično vsebujejo večje število teh singletov, tako da za zlom na skali poenotenja
lahko v principu pridejo v poštev katerekoli upodobitve E6. Katere kombinacije
teh upodobitev omogočijo želeni zlom simetrije študiramo v tem doktorskem
delu.

6.2.2 Obravnva grupe E6

Za razliko od klasičnih grup, npr. ortogonalnih in unitarnih, generatorjev E6 ne moremo
zapisati v preprosti in pregledni obliki; prav tako se grupa E6 ne podreja najbolje kaki
intuitivni predstavi, zato moramo k njej pristopiti nekoliko formalno.

Najlažje je grupo E6 obravnavati skozi dekompozicijo njene adjungirane
upodobitve 78, in s tem generatorjev, v upodobitve njene (maksimalne) podgrupe
SU(3)C × SU(3)L × SU(3)R:

78 = (8, 1, 1)⊕ (1, 8, 1)⊕ (1, 1, 8)⊕ (3, 3, 3)⊕ (3, 3, 3), (530)

kjer generatorje, ki po vrsti pripadajo tem upodobitvam, označimo s tAC , tAL , tAR,
tαaa′ in t̄αaa′ . Tu je A = 1, . . . , 8 adjungirani indeks grupe SU(3), medtem ko
(anti)fundamentalne indekse grup SU(3)C , SU(3)L in SU(3)R označimo po vrsti z α,
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a in a′. Algebra grupe E6 je definirana prek (povzeto po [59] in prirejeno, tako da je
faktor SU(3)C konjugiran glede na SU(3)L in SU(3)R, kar nudi za fiziko bolj primerno
vložitev podgrupe SU(3)3)

[
tAC , t

B
R

]
=
[
tAR, t

B
L

]
=
[
tAL , t

B
C

]
= 0, (531)

[
tAC , t

B
C

]
= ifABC tCC , (532)[

tAL , t
B
L

]
= ifABC tCL , (533)[

tAR, t
B
R

]
= ifABC tCR, (534)

[
tAC , t

α
aa′
]

= −1
2
(λA)αβ t

β
aa′ , (535)[

tAL , t
α
aa′
]

= 1
2
(λA)ba t

α
ba′ , (536)[

tAR, t
α
aa′
]

= 1
2
(λA)b

′
a′ t

α
ab′ , (537)[

tAC , t̄α
aa′
]

= 1
2
(λA)βα t̄β

aa′ , (538)[
tAL , t̄α

aa′
]

= −1
2
(λA)ab t̄α

ba′ , (539)[
tAR, t̄α

aa′
]

= −1
2
(λA)a

′
b′ t̄α

ab′ , (540)

[
tαaa′ , t

β
bb′
]

= −εαβγ εabc εa′b′c′ t̄γcc
′
, (541)[

t̄α
aa′ , t̄β

bb′
]

= εαβγ ε
abc εa

′b′c′ tγcc′ , (542)

[
t̄α
aa′ , tβbb′

]
= (λA)βα δ

a
b δ

a′
b′ t

A
C − δβα (λA)ab δ

a′
b′ t

A
L − δβα δab (λA)a

′
b′ t

A
R. (543)

Tu smo z fABC označili strukturne konstante grupe SU(3), λA so Gell-Mannove
matrike (zapisane v poglavju o konvencijah), medtem ko je δ Kroneckerjev simbol in
ε predstavlja Levi-Civita tenzor (dogovor ε123 = ε123 = 1).

Generatorje lahko zapǐsemo v fundamenalni upodobitvi kot matrike 27 × 27, če
poznamo njihovo delovanje na stolpec dolžine 27. Fundamentalna upodobitev grupe
E6 ima naslednjo SU(3)3 dekompozicijo:

27 = (3, 3, 1)⊕ (1, 3, 3)⊕ (3, 1, 3). (544)

Zgornje tri upodobitve SU(3)3 lahko zapǐsemo v obliki treh matrik 3×3, ki jih po vrsti
označimo z L, M in N . Delovanje generatorjev na te matrike lahko nato zapǐsemo kot

(tAC L)αa = 1
2
(λA)αβ L

βa, (545)

(tAC M)a
a′ = 0, (546)

(tAC N)a′α = −1
2
(λ∗A)α

β Na′β, (547)
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(tAL L)αa = 1
2
(λA)ab L

αb, (548)

(tAL M)a
a′ = −1

2
(λ∗A)a

b Mb
a′ , (549)

(tAL N)a′α = 0, (550)

(tAR L)αa = 0, (551)

(tAR M)a
a′ = 1

2
(λA)a

′
b′ Ma

b′ , (552)

(tAR N)a′α = −1
2
(λ∗A)a′

b′Nb′α, (553)

(tαaa′ L)βb = εαβγ δba Na′γ, (554)

(tαaa′ M)b
b′ = −εabc δb

′
a′ L

αc, (555)

(tαaa′ N)b′β = −εa′b′c′ δαβ Ma
c′ , (556)

(t̄α
aa′ L)βb = εabc δβα Mc

a′ , (557)

(t̄α
aa′ M)b

b′ = εa
′b′c′ δab Nc′α, (558)

(t̄α
aa′ N)b′β = −εαβγ δa

′
b′ L

γa. (559)

S pomočjo teh relacij lahko sestavimo generatorje E6 v eksplicitni obliki, kar
uporabljamo v nadaljnih računih, opravljenih na računalniku. Kateri od teh
generatorjev so del zanimivih podgrup E6, je prikazano na sliki 7.

Za modeliranje teorij poenotenja z grupo E6 bomo uporabljali njene upodobitve. S
pomočjo tenzorskih metod v E6 (splošno o teh metodah glej [56], za E6 glej [59]) lahko
ireducibilne upodobitve E6 dimenzije manj od 1000 zapǐsemo na naslednji način:

• Fundamentalno upodobitev 27 lahko zapǐsemo kot stolpec vǐsine 27, torej kot
ψi, kjer i = 1, . . . , 27. Če gre za upodobitev fermionskega tipa, bomo stanja
označevali z oznakami delcev iz Standardnega modela, kot prikazuje slika 5.
Konjugirano upodobitev 27 lahko zapǐsemo v obliki vrstice ψi.

• Adjungirana upodobitev 78 se lahko zapǐse kot linearna kombinacija generatorjev,
torej v obliki 27×27 matrike. Upodobitev označimo s φ = φa ta, kjer a = 1, . . . , 78
in φa stanja v tej upodobitvi. Napisano eksplicitno z (anti)fundamentalnimi
indeksi se 78 zapǐse kot φij.

• Upodobitev 351 lahko zapǐsemo v obliki antisimetrične matrike 27× 27 z dvema
zgornjima (fundamentalnima) indeksoma: Ξij. Konjugirana upodobitev 351
lahko zapǐsemo z antisimetrično matriko Ξij.

• Upodobitev 351′ lahko zapǐsemo v obliki simetrične matrike 27 × 27 z dvema
indeksoma zgoraj, ki zadošča dodatni relaciji: Θij, z relacijo dijkΘ

jk = 0,
kjer je dijk invarianten tenzor grupe E6 (definiramo ga kasneje). Konjugirano
upodobitev 351′ zapǐsemo v obliki simetrične matrike Θij, ki zadošča analogni
relaciji dijkΘjk = 0.

• Upodobitev 650, ki je realna, zapǐsemo v obliki matrike 27× 27 X i
j, ki zadošča

relacijam Tr(X) = Tr(taX) = 0.
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Nekaj več informacij o teh upodobitvah je možno razbrati iz tabele 5.
Dekompozicije teh upodobitev v ireducibilne upodobitve grupe SO(10) in nadalje
SU(5), so predstavljene na sliki 8.

Invariante sestavljene iz teh upodobitev tvorimo, tako da sestavimo izraze, kjer pri
vseh indeksih pride do kontrakcije in nastali objekt nima več prostih indeksov. Pri
tem si lahko pomagamo s tenzorjema Kroneckerjev delta δij (kjer i, j = 1, . . . , 27) in
d-tenzorjema dijk in dijk, ki sta posebnost E6. Tenzor dijk je definiran z relacijo

1
6
dijkψ

iψjψk = − detL+ detM − detN − Tr(LMN). (560)

Tenzor z zgornjimi indeksi dijk ima numerično enake vrednosti kot dijk, zanju pa veljajo
naslednje lastnosti (naštete najpomembneǰse):

• Tenzorja dijk in dijk sta popolnoma simetrična na zamenjavo indeksov.

• Čim sta dva indeksa enaka, je njuna vrednost enaka 0. Edine neničelne vrednosti
v teh tenzorjih so 1 in −1.

• Velja normalizacija

dikl djkl = 10 δij. (561)

• Kontrakcija le enega indeksa definira nov tenzor, ki je neodvisen od produktov
in vsot, ki jih lahko sestavimo s Kroneckerjevimi delta simboli:

dijm dklm =: Dij
kl. (562)

Ker bomo študirali renormalizabilne supersimetrične modele, kjer bo pomemben
superpotencial W masne dimenzije 3, nas bodo zanimale invariante največ reda 3. V
tabelah 11, 12 in 14 so navedene vse take invariante za kombinacije upodobitev 27, 27,
78, 351, 351, 351′ in 351′.

V upodobitvah E6 bodo poseben pomen imela tista stanja, ki se pod Standardnim
modelom transformirajo na enega od naslednjih načinov:

• Singleti (1, 1, 0), ki so pomembni pri spontanem zlomu simetrije iz E6 v
Standardni model. Z oznakami so definirani v tabelah 6 in 8. Nekaj teh informacij
bo v nadaljevanju posebej pomembnih. Upodobitvi 27 in 27 imata vsaka po dva
singleta, označimo pa jih s ck in dk, k = 1, 2. Upodobitve 351′, 351′, 351 in 351
pa imajo vsaka po 5 singletov, ki jih označimo po vrsti z ek, fk, gk in hk, kjer
k = 1, . . . , 5. Adjungirana upodobitev 78 ima prav tako 5 singletov, označimo
jih z u1, u2, v, w, y.

• Dubleti (1, 2,+1/2) in “antidubleti” (1, 2,−1/2), med katerimi se morata
nahajati polji Hu in Hd minimalnega supersimetričnega Standardnega modela
(MSSM). Označimo jih s črkami D in D, z bolj podrobnimi definicijami v tabeli 9.
V naših modelih morajo biti vsi (anti)dubleti težki (na skali poenotenja), medtem
ko mora biti en par dublet-antidublet lahek (ustrezata Higgsom Hu in Hd).

• Tripleti (3, 1,−1/3) in antitripleti (3, 1,+1/3), ki so v naših modelih mediatorji
protonskega razpada. Za njih mora veljati, da imajo vsi maso na skali poenotenja.
Označimo jih s T in T , bolj podrobne definicije pa so podane v tabeli 9.

Eksplicitni izračuni invariant, kjer so neničelne le pričakovane vrednosti singletov
Standardnega modela, so podane v seznamu enačb (174)–(190) in (191)–(195).
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6.3 Renormalizabilni supersimetrični modeli E6

6.3.1 O izbiri modelov

Modeli, ki jih bomo študirali, bodo renormalizabilni supersimetrični modeli zgrajeni
na naslednjih načelih:

• Iščemo renormalizabilne supersimetrične modele, ki v enem koraku zlomijo E6

do grupe Standardnega modela. Naša nizko-energijska teorija bo v resnici
MSSM; zloma supersimetrije ne bomo obravnavali, saj predstavlja vprašanje,
ki je ortogonalno na vprašanje zloma umeritvene simetrije E6 (obstajajo izjeme,
npr. [66, 67]).

• Fermione Standardnega modela bomo vključili prek treh družin upodobitve 27.
Označimo jih s 27iF , kjer i = 1, 2, 3. Te upodobitve sestavljajo “fermionski
sektor”.

• Ostale upodobitve v modelu sestavljajo “Higgsov sektor”. Te upodobitve bodo
dobile pričakovane vrednosti na skali poenotenja MGUT, kar zlomi E6 v grupo
Standardnega modela. Prav tako bodo vsebovala Higgsova polja Hu in Hd iz
MSSM, zato bodo upodobitve Higgsovega sektorja dobila pričakovane vrednosti
tudi na elektrošibki skali (kar bo pomembno v Yukawinem sektorju).

• Predpostavili bomo dodatno Z2 simetrijo, pod katero je fermionski sektor
lih, Higgsov sektor pa sod. To pomeni, da morajo fermionske upodobitve
v superpotencialu nastopati v parih. S tem v teorijo uvedemo R-parnost,
hkrati pa omenjena simetrija omogoči nastavek, kjer so pričakovane vrednosti
v fermionskem sektorju enake 0.

Za realistične modele bomo preverili, ali je zlom simetrije do grupe SM možen,
ali je možen razcep dublet-triplet (en par tipa (1, 2,±1/2) mora biti lahek, medtem
ko morajo biti vsi tripleti tipa (3, 1,−1/3) in (3, 1,+1/3) na skali poenotenja, saj
ti povzročajo protonski razpad) ter preverili, kakšno napoved dobimo za mase v
fermionskem sektorju. Izbira modelov v tem kontekstu pomeni izbiro upodobitev v
Higgsovem sektorju.

Spomnimo, da ima Lagrangeva funkcija v supersimetričnih modelih obliko, kot
je navedena v enačbah (20)–(24), kjer je W holomorfna funkcija skalarnih polj,
ki jo imenujemo superpotencial. Enačbe gibanja se delijo na F -člene in D-člene
(podrobnosti zloma v supersimetričnih modelih npr. v [69, 70, 71]): F -členi imajo
obliko Fs = ∂W/∂s = 0, kjer so s vsa skalarna polja, medtem ko imajo D-členi obliko
Da = 0, kjer smo definirali (seštejemo prispevke vseh upodobitev φ za skalarje)

Da = −g
∑
φ

φ†i (ta)ij φ
j. (563)

6.3.2 Nerealistični modeli

V sistematičnem študiju najpreprosteǰsih E6 modelov, ki ustrezajo opisanim načelom,
lahko mnoge relativno hitro zavržemo kot nerealistične. Spodaj je podan seznam teh
modelov in opisi, kje v fenomenologiji teh modelov se zalomi.
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• Modeli tipa n1 · 27⊕n2 · 78⊕n3 · 27: v teh modelih se zalomi pri zlomu simetrije.
Singleti v 27 in 27 so tudi SU(5) singleti, le 78 vsebuje singlet y, ki je del 24
grupe SU(5). Če je y = 0, potem zlomimo lahko največ v SU(5). Edine kubične
invariante, ki vsebujejo upodobitev 78, so 27 · 78 · 27 in 783. Singlet y v prvi
invarianti ne nastopa, ker se bi v jeziku SU(5) moral povezati z ostalimi členi
v obliki 1 · 24 · 1, kar pa ni invarianta. Kubični člen 783 pa je antisimetričen
v faktorjih, a členi 24 · 24 · 1 in 24 · 24 · 24 v jeziku SU(5) tvorijo invariante
simetrične v faktorjih 24. Singlet y je tako prisoten le v masnem členu 782,
zato je njegova pričakovana vrednost enaka 0, s tem pa imamo možnost zloma
kvečjemu do SU(5).

• Modeli tipa n1 ·27⊕n2 ·27⊕351⊕351: tu se ponovno zalomi pri zlomu simetrije.
Singleti SM, ki niso hrkati tudi singleti SU(5), se nahajajo le v 351 in 351 kot 24
grupe SU(5). Kubične invariante s tema dvema upodobitvama, ki bodo prisotne
v superpotencialu, bodo 272 · 351, 27 · 351. Ker v SU(5) jeziku 1 · 1 · 24 ne tvori
invariante, singleti 〈24〉 ne bodo prisotni drugje kot v masnem členu 351 · 351,
torej bodo njihove pričakovane vrednosti 0, s tem pa bomo zlomili E6 le do SU(5).

Kubični invarianti 3513 in 351
3

v tem modelu nista prisotni, ker sta antisimetrični
v svojih faktorjih, obravnavani model ima pa le po eno različico upodobitev 351
in 351.

• Model 351′ ⊕ 351: ta model lahko zlomi kvečjemu do grupe Pati-Salam,
tj. SU(4)C × SU(2)L × SU(2)R. To se izkaže pri obravnavi enačb gibanja za
SM singlete, kar je možno preveriti kot poseben primer pri obravnavi bolj
kompliciranega modela, 351′ ⊕ 351 ⊕ 27 ⊕ 27, ki ga obravnavamo v poglavju
o modelu I.

6.3.3 Model I

V tem modelu se odločimo za Higgsov sektor z upodobitvami

351′ ⊕ 351′ ⊕ 27⊕ 27 ⊕ 2̃7⊕ 2̃7. (564)

V tem modelu Higgsov sektor razdelimo na dva dela: upodobitve brez tilde bodo dobile
pričakovane vrednosti na skali poenotenja, medtem ko se bodo elektrošibke pričakovane
vrednosti polj Hu in Hd nahajale v upodobitvah s tildo. Da je taka ureditev lahko
konsistentna, izpustimo nekatere člene s tilda upodobitvami iz superpotentciala. Za
superpotencial vzamemo

W = WSSB +WDT +WYukawa, (565)

kjer so posamezni kosi definirani kot

WSSB = m351′ I351′⊗351′ +m27 I27⊗27

+ λ1 I351′3 + λ2 I351′
3 + λ3 I272⊗351′ + λ4 I27

2⊗351′
+ λ5 I273 + λ6 I27

3 ,

(566)

WDT = m2̃7 I2̃7⊗2̃7
+ κ1 I2̃7

2⊗351′
+ κ2 I

2̃7
2
⊗351′

+ κ3 I2̃7
2⊗27

+ κ4 I
2̃7

2
⊗27

, (567)

WYukawa =
3∑

i,j=1

1
2

(
Y ij

27 I27iF⊗27jF⊗27 + Y ij

351′
I27iF⊗27jF⊗351′ + Y ij

2̃7
I27iF⊗27jF⊗2̃7

)
. (568)
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Členi v WSSB so odgovorni za zlom simetrije, WDT za razcep dublet-triplet, medtem
ko so členi WYukawa del Yukawinega sektorja, od koder pridejo mase fermionov
Standardnega modela.

Najprej si oglejmo zlom simetrije. Higgsov sektor brez tilde ima 14 singletov: ci,
di, ej, fj, kjer i = 1, 2 in j = 1, . . . , 5. Posledično imamo v enačbah gibanja 14 F -
členov, ki jih dobimo z odvajanjem superpotenciala po teh singletih (enačbe se trivialno
izpeljejo, zato jih tu ne bomo zapisali; eksplicitno obliko superpotenciala preberemo
s pomočjo izračunanih invariant v enačbah(174)–(190) in tabelo 11). Med D-členi pa
moramo zadostiti trem neodvisnim enačbam (dve sta realni, ena je pa kompleksna,
torej imamo 4 realne pogoje):

DI ≡
√

3D8
L + 2D3

R = |c1|2 − |d1|2 + |e2|2 − |f2|2 + 2|e3|2 − 2|f3|2 − |e4|2 + |f4|2,
(569)

DII ≡ − 2D3
R = |c2|2 − |d2|2 + |e2|2 − |f2|2 + 2|e1|2 − 2|f1|2 − |e5|2 + |f5|2,

(570)

DIII ≡ D6
R + iD7

R = c1c2
∗ − d1

∗d2 +
√

2e1
∗e2 −

√
2f1f2

∗

+
√

2e2
∗e3 −

√
2f2f3

∗ + e4
∗e5 − f4f5

∗. (571)

Enačbe gibanja reši npr. naslednja rešitev:

c2 = 0, d2 = 0, (572)

e2 = 0, f2 = 0, (573)

e4 = 0, f4 = 0, (574)

d1 =
m351′m27

2λ3λ4c1

, (575)

e1 = − m351′

6λ
2/3
1 λ

1/3
2

, f1 = − m351′

6λ
1/3
1 λ

2/3
2

, (576)

e3 = −λ3c1
2/m351′ , f3 = −m351′m

2
27

4λ2
3λ4c1

2
, (577)

e5 =
m351′

3
√

2λ
2/3
1 λ

1/3
2

, f5 =
m351′

3
√

2λ
1/3
1 λ

2/3
2

, (578)

kjer je edina preostala količina c1 določena prek polinoma

0 = |m351′|4|m27|4 + 2|m351′|4|m27|2|λ3|2|c1|2

− 8|m351′ |2|λ3|4|λ4|2|c1|6 − 16|λ3|6|λ4|2|c1|8. (579)

Ta rešitev zlomi E6 v Standardni model, kar lahko preverimo s pomočjo mas
umeritvenih bozonov, izračunanih v tabeli 16.

Nato skušamo izvesti razcep dublet-triplet. Higgsov sektor brez tilde vsebuje skupaj
11 parov dublet-antidublet in 12 parov triplet-antitriplet (preštejemo s pomočjo slike 8
in definicijami v tabeli 9), medtem ko Higgsov sektor s tildo vsebuje 3 pare dublet-
antidublet in 3 pare triplet-antitriplet (oznake definirane v tabeli 17). Bloka stanj
s tildo in brez tilde sta v masni matriki ločena zaradi odsotnosti določenih členov v
superpotencialu tega modela. Analiza pokaže, da dublet-triplet za zgornjo vakuumsko
rešitev v bloku brez tilde ni možen, prav tako pa tudi ne za nobeno drugo rešitev,
ki zlomi v Standardni model, kar pokaže komplicirana analiza rešitev enačb gibanja.
Razcep zato izvedemo v bloku stanj s tildo. Masna matrika tega bloka za dublete in
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triplete se glasi

M̃ =

 m2̃7 −2κ3c1 + ακ1
f4√
15

2κ3c2 + ακ1
f5√
15

−2κ4d1 + ακ2
e4√
15

m2̃7 0

2κ4d2 + ακ2
e5√
15

0 m2̃7

 , (580)

kjer postavimo α = −3 za dublete in α = 2 za triplete. Z natančno nastavitvijo
parametra κ1 na

κ1 ≈ 30 (m2
2̃7
λ3λ4 − 2m351′m27κ3κ4)

λ1λ2

m2
351′λ3λ4κ2

, (581)

postane en par dublet-antidublet brezmasen, medtem ko ostanejo vsi tripleti težki. Pri
zgornjem izboru κ1 izračun levega in desnega lastnega vektorja z maso 0 za dublete
pokaže, da so prisotne vse komponente dubletov s tildo, zato vse te komponente dobijo
elektrošibko pričakovano vrednost.

Za konec izračunamo še mase fermionov v tem modelu. Eksplicitni računalnǐski
izračun členov v Yukawinem sektorju superpotenciala nam za mase poda naslednje
izraze:

uT (−v1)Y2̃7u
c +
(
dcT d′cT

)( v̄2Y2̃7 c2Y27 + f5√
15
Y351

′

−v̄3Y2̃7 −c1Y27 + f4√
15
Y351

′

)(
d
d′

)

+
(
eT e′T

)(−v̄2Y2̃7 c2Y27 − 3
2
f5√
15
Y351

′

v̄3Y2̃7 −c1Y27 − 3
2
f4√
15
Y351

′

)(
ec

e′c

)

+
(
νT ν ′T

)(v1Y2̃7 0 c2Y27 − 3
2
f5√
15
Y351

′
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. (582)

Družinskih indeksov nismo pisali. V sektorju kvarkov tipa d in v sektorju nabitih
leptonov imamo mešanje med 16F in 10F deli upodobitve 27F : nas bo zanimala
le tista linearna kombinacija, ki je lahka. V nevtrinskem sektorju je kombinacija
še bolj komplicirana, saj je kombinacija levoročnih nevtrinov ν in ν ′ težka skupaj
z ν ′c, desnoročna nevtrina νc in s imata prispevek Majorananih mas in prispevata
h gugalničnemu mehanizmu tipa I, medtem ko so polja ∆ šibki tripleti (1, 3,±1)
definirani v tabeli 18 in predstavljajo prispevek gugalničnega mehanizma tipa II.

Po dalǰsem tehničnem postopku lahko težka stanja integriramo ven iz teorije in
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dobimo sledeče matrike za lahke fermione Standardnega modela:

MT
D =

(
1 + (4/9)X0X

†
0

)−1/2

(v̄2 − (2/3)v̄3X0)Y2̃7, (583)

ME = −
(

1 +X0X
†
0

)−1/2

(v̄2 + v̄3X0)Y2̃7, (584)

MU = −v1Y2̃7, (585)

MN =
1

2

(
1 +X0X

†
0

)−1/2

×
(

∆1Y351
′ − ∆2√

2

(
X0Y351

′ + Y351
′XT

0

)
+ ∆3X0Y351

′XT
0

−v1
2

f1

Y2̃7Y
−1

351
′Y2̃7 −

v1
2

f3

X0Y2̃7Y
−1

351
′Y2̃7X

T
0

)
×
(
1 +X∗0X

T
0

)−1/2
, (586)

kjer je matrika X0 definirana prek

X0 :=

√
3

20

f5

c1

Y351
′Y −1

27 , (587)

in pričakovane vrednosti tripletov ∆ enake
∆1

∆2

∆3

∆4

 =


m351′ 0 0 6λ1e1

0 m351′ 0 −6λ1e2

0 0 m351′ 6λ1e3

6λ2f1 −6λ2f2 6λ2f3 m351′


−1

κ2v3
2

κ2

√
2v2v3

κ2v2
2

κ1v1
2

 . (588)

Med zgornjimi masnimi matrikami ni nobenih posebnih relacij (npr. ne velja
MT

D = ME), prav tako nimajo nobenih neželenih lastnosti (npr. MU in MD nista hkrati
diagonalni, torej imamo lahko ustrezen opis CKM matrike). Do mešanja okusov pride
v tem modelu na neobičajen način: čeprav se Higgsovi polji Hu in Hd nahajata le v
enem Yukawinem členu (torej na EW skali ni nujno eksplicitnega mešanja na nivoju
vseh stanj v 27F ), pa preostala Yukawina člena mešata SU(5) dela 5 v 27F ; to mešanje
na skali poenotenja se na nizki skali manifestira kot mešanje okusov.

Enačbe za masne matrike so nelinearne, kar otežuje analitično obravnavo. A glede
na dovolǰsnje število parametrov (imamo 3 Yukawine matrike, poleg tega imamo na
voljo še 3 mase, 6 parametrov λ in 4 parametre κ) sklepamo, da je numerični fit na
eksperimentalne vrednosti mas možen, zelo verjetno s kar nekaj svobode v prametrskem
prostoru.

Model I je torej realističen: imamo zlom do grupe Standardnega modela, razcep
dublet in triplet je uspešen (v poljih s tildo), prav tako pa napovemo tudi pravilno
število lahkih fermionov. Zaradi 3 Yukawinih matrik ta model verjetno ni zelo
prediktiven.

6.3.4 Model II

V tem modelu se odločimo za Higgsov sektor z upodobitvami

351′ ⊕ 351′ ⊕ 27⊕ 27 ⊕ 78, (589)

in sicer brez kakršnihkoli omejitev (z izjemo R-parnosti). Superpotencial shematsko
napǐsemo kot

W = WSSB +WYukawa, (590)
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kjer so posamezni kosi definirani kot

WSSB = m351′ I351′⊗351′ +m27 I27⊗27 +m78 I782

+ λ1 I351′3 + λ2 I351′
3 + λ3 I272⊗351′ + λ4 I27

2⊗351′

+ λ5 I273 + λ6 I27
3 + λ7 I27⊗78⊗78 + λ8 I351′⊗78⊗351′ , (591)

WYukawa =
3∑

i,j=1

1
2

(
Y ij

27 I27iF⊗27jF⊗27 + Y ij

351′
I27iF⊗27jF⊗351′

)
. (592)

Členi v WSSB bodo povzročili zlom simetrije, v WYukawa pa so členi Yukawinega sektorja.

Za zlom simetrije do Standardnega modela nam je na voljo 19 singletov
standardnega modela: ci, di, ui, ej, fj, v, w in y, kjer i = 1, 2 in j = 1, . . . , 5. Definicije
teh singletov so v tabeli 6. Eksplicitno obliko členov s temi singleti lahko preberemo
iz enačb (174)–(190) ter iz tabele 11. V tem modelu imamo torej 19 F -členov, ki jih
ne bomo zapisali eksplicitno, ter naslednje neodvisne D-člene:

DI = |c1|2 − |d1|2 + |e2|2 − |f2|2 + 2|e3|2 − 2|f3|2 − |e4|2 + |f4|2 − 1
3
|u1|2 + 1

3
|u2|2,

(593)

DII = |c2|2 − |d2|2 + |e2|2 − |f2|2 + 2|e1|2 − 2|f1|2 − |e5|2 + |f5|2 + 1
3
|u1|2 − 1

3
|u2|2,

(594)

DIII = +c1c2
∗ −

√
3

6
wu1

∗ +
√

5
6
vu1

∗ +
√

2e2e1
∗ +
√

2e3e2
∗ + e5e4

∗

− d2d1
∗ +

√
3

6
u2w

∗ −
√

5
6
u2v

∗ −
√

2f1f2
∗ −
√

2f2f3
∗ − f4f5

∗. (595)

V tem modelu smo našli naslednjo rešitev enačb gibanja: ko uvedemo pomožno
polje A, lahko zapǐsemo

c1 = 0, d1 = 0, (596)

e2 = 0, f2 = 0, (597)

e5 = 0, f5 = 0, (598)

u1 = 0, u2 = 0, (599)

y = 0, (600)

w =
1

2304
√

15m78λ3λ4

(
−
√

30A2λ8λ
2
7 − 360

√
30m351′ (2m27λ7 +m351′λ8)

+ 24A (96m78λ3λ4 + 5λ7 (m27λ7 + 2m351′λ8))

)
, (601)

v =
1

34560m78λ3λ4

((
360
√

30m2
351′ − 240Aλ7m351′ +

√
30A2λ2

7

)
λ8

−120m27λ7

(
Aλ7 − 6

√
30m351′

))
. (602)
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Od tod, izraženo s pričakovanimi vrednostmi A, w, v, c2 in e4, nato sledi

d2 =
6m27

(
180m351′ −

√
30Aλ7

)
+ A

(
Aλ7 − 6

√
30m351′

)
λ8

2160c2λ3λ4

, (603)

e1 =
6c2

2λ3

(
180m351′ −

√
30Aλ7

)
m27

(
6
√

30Aλ7 − 1080m351′
)

+ A
(
6
√

30m351′ − Aλ7

)
λ8

, (604)

f1 =
1

777600c2
2λ2

3λ4

(
A
(

1080
√

30m2
351′ − 360Aλ7m351′ +

√
30A2λ2

7

)
λ8

− 180m27

(
1080m2

351′ − 12
√

30Aλ7m351′ + A2λ2
7

))
, (605)

e3 = −
(
−18m2

27 + 3
√

2wλ8m27 + 2w2λ2
8

)
2

11664e4
2λ2

1λ2

(
3m27 −

√
2wλ8

) , (606)

f3 = − 9e4
2λ1

3m27 −
√

2wλ8

, (607)

f4 =
18m2

27 − 3
√

2wλ8m27 − 2w2λ2
8

324e4λ1λ2

. (608)

Vrednosti polj c2 in e4 sta določeni s pomočjo D-členov

0 = DI = 2|e3|2 − |e4|2 − 2|f3|2 + |f4|2, (609)

0 = DII = |c2|2 − |d2|2 + 2|e1|2 − 2|f1|2, (610)

medtem ko je pomožna vrednost A določena kot rešitev polinoma v enačbah (472)–
(477). Rešitev res zlomi v grupo Standardnega modela, kar se lahko prepričamo s
pomočjo izrazov za mase umeritvenih bozonov, ki so za ta model izračunane v tabeli 19.
Nasploh lahko rečemo, da je dobljena rešitev dokaj komplicirana, zato je v tem modelu
določene lastnosti potrebno preveriti numerično.

Razcep dublet-triplet je v tem modelu možen, kar lahko numerično preverimo na
masni matriki za dublete in triplete (enačba (495)). Tu tesno prilagodimo vrednost
produkta parametrov λ5λ6, ki v zlomu simetrije nista udeležena. Numerično prav tako
lahko preverimo, da ima brezmasno stanje dubletov vse komponente neničelne, zato vsi
dubleti Di in Di za i = o, . . . 11 (za definicijo oznak glej tabelo 9) dobijo pričakovane
vrednosti na elektrošibki skali.

V tem modelu je Yukawin sektor preprosteǰsi kot v modelu I, saj imamo le dve
Yukawini matriki, zato tudi način mešanja okusov poteka na običajen način za teorije
poenotenja (glej npr. zgoraj opisani SO(10) model s Higgsi v 10 in 126), tako da se lahki
Higgs nahaja hkrati v obeh členih Yukawinega sektorja (v 27 in v 351′). Eksplicitni
račun pokaže, da so masne matrike v fermionskem sektorju naslednje:



162 6.3 Renormalizabilni supersimetrični modeli E6
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. (611)

Z analogno itegracijo težkih prostostnih stopenj kot v modelu I dobimo naslednje
matrike za fermione Standardnega modela:
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′ , (612)
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kjer definiramo

X0 = −2
√

5
3

c2

f4

Y27 Y
−1

351
′ , (616)

medtem ko so vrednosti šibkih tripletov ∆ (definicije v tabeli 18, upoštevan nastavek
u1 = u2 = y = 0 iz rešitve za vakuum) naslednje:

∆1

∆2

∆3

∆4

 =


m351′−λ8

(
w

6
√
2
− 1

2

√
3
10
v
)

0 0 6λ1e1

0 m351′+λ8
(

w
12
√
2

+ v
4
√
30

)
0 0

0 0 m351′+λ8
(

w
3
√
2
− v√

30

)
6λ1e3

6λ2f1 0 6λ2f3 m351′+λ8
(

w
3
√
2

+ v√
30

)


−1


λ4v3

2

λ4

√
2v2v3

λ4v2
2

λ3v1
2

 . (617)

Analogno z modelom I imamo tudi tu mešanje med SU(5) upodobitvama 5, ki se
nahajata v 27F , kar se odraža v sektorju kvarkov d in leptonov. V nevtrinskem sektorju
imamo prispevka gugalničnega mehanizma tipa I in tipa II. Izrazi za masne matrike
nizkoenergijskih fermionov so nelinearni, a ne zadoščajo nobenim posebnim relacijam;
s tega vidika so, vsaj kar se njihove analitične oblike tiče, mase fermionov realistične.

Model II je na analitičnem nivoju realističen: našli smo vakuumsko rešitev, ki zlomi
v Standardni model, uspeli smo z razcepom dublet-triplet (tako da imamo en par
dublet-antidublet lahek), ter dobili realistično obliko mas za fermione Standardnega
modela, medtem ko so ostali delci težki. Model II ima naslednje parametre v
superpotencialu: dve simetrični Yukawini matriki Y27 in Y351

′ , 3 mase, ter 8 parametrov
λ. Za razliko od modela I smo v Yukawinem sektorju zdaj bolj prediktivni, saj sta
prisotni le 2 Yukawini matriki. V tem primeru bi zato bilo zanimivo preveriti, ali je
možno napovedati mase in mešalne kote Standardnge modela tudi numerično, kar pa
ne bo del te doktorske disertacije.
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6.4 Zaključek

V tej doktorski disertaciji smo študirali različne renormalizabilne supersimetrične
modele poenotenja z grupo E6. Njihove Higgsove sektorje smo sestavljali iz upodobitev
27, 78, 351, 351′ in 650 (in njihovih konjugiranih slik) v različnih kombinacijah.

Ugotovili smo, da nekateri najpreprosteǰsi modeli niso ustrezni. Probleme z zlomom
v Standardni model imajo naslednji modeli:

• Model s poljubnim številom upodobitev 27, 27 in 78.

• Model 351⊕ 351, ki mu lahko dodamo poljubno število upodobitev 27 in 27.

• Model 351′ ⊕ 351′.

• Model 650.

Za model 351′ ⊕ 351′ ⊕ 27 ⊕ 27, ki smo ga poimenovali “prototipni” model, smo
našli ustrezno vakuumsko rešitev, a se je izkazalo, da v tem modelu razcep dublet-
triplet ni možen. Na delnem uspehu prototip modela smo nato študirali dve realistični
nadgradnji:

• Model I: 351′ ⊕ 351′ ⊕ 27⊕ 27 ⊕ 2̃7⊕ 2̃7.

• Model II: 351′ ⊕ 351′ ⊕ 27⊕ 27 ⊕ 78.

Za oba modela smo našli ustrezno rešitev enačb gibanja, ki zlomi E6 v grupo
Standardnega modela, uspešno smo izvedli razcep dublet-triplet, analizirali Yukawin
sektor, izračunali masne matrike nizkoenergijskih stanj in določili prispevke k
protonskemu razpadu dimenzije 5. Oba modela sta realistična, vsaj kar se tiče
analitičnih izrazov; numerično pričakujemo, da je model II bolj prediktiven, saj ima 2
Yukawini matriki, model I pa 3.

V naših modelih nismo preučevali podrobnosti drsenja sklopitvenih konstant.
Poenotenje sklopitvenih konstant smo privzeli na podlagi tega, da se tako model I
kot model II v nizkoenergijski limiti zreducirata na MSSM. Poleg tega se nevarnost
lahko skriva tudi v koeficientih drsenja β, ki sta za model I in II po vrsti enaka
−153 and −159, kar hitro vodi v Landauov pol nad energijami, ko so vse prostostne
stopnje prisotne (podobne težave so tudi v SO(10); minimalni supersimetrični model
ima npr. β = −109 [21, 22, 23]). Za podroben študij obeh vprašanj bi bil potreben
izračun mas vseh prostostnih stopenj v modelih; ustrezna razpršenost teh mas bi lahko
omilila problem Landauovega pola.

Model I in model II sta verjetno minimalna realistična modela v sklopu
renormalizabilnih supersimetričnih modelov E6. Z modeli, ki smo jih preučevali,
smo namreč dokaj sistematično postopali od manj k bolj kompliciranim, in omenjena
modela sta najpreprosteǰsa najdena realistična modela. Preprosteǰsa modela, ki ju
nismo preučevali, sta le 351⊕ 78⊕ 351 in 351′ ⊕ 78⊕ 351′, ki pa imata pomanjkljiv
Yukawin sektor. Preprosteǰsi od modelov I in II je tudi prototipni model: naivno
bi pričakovali, da je ta model minimalen, a presenetljivo spodleti pri razcepu dublet-
triplet. To je netrivialen rezultat, do katerega smo se dokopali šele s podrobno analizo
modela.

Za konec pa še enkrat poudarimo rezultate v Yukawinih sektorjih modela I in
modela II. Čeprav se mehanizma mešanja okusov v obeh modelih razlikujeta, pa so
zaključki podobni. Spekter lahkih delcev ustreza stanjem iz MSSM, kjer nevtrini dobijo
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maso prek gugalničnega mehanizma tipa I in tipa II. Ostali delci so težki, in sicer se
nahajajo na skali poenotenja; posebej je tu potrebno izpostaviti vektorske delce (kvarke
in leptone), za katere se v naših E6 modelih izkaže, da niso lahki.


