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Multilayered shell finite element with interlaminar continuous shear
stresses: a refinement of the Reissner-Mindlin formulation
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SUMMARY

A finite element formulation for refined linear analysis of multilayered shell structures of moderate
thickness is presented. An underlying shell model is a direct extension of the first-order shear-
deformation theory of Reissner-Mindlin type. A refined theory with seven unknown kinematic fields is
developed: (i) by introducing an assumption of a zig-zag (i.e. layer-wise linear) variation of
displacement field through the thickness, and (ii) by assuming an independent transverse shear stress
fields in each layer in the framework of Reissner's mixed variational principle. The introduced
transverse shear stress unknowns are eliminated on the cross-section level. At this process, the
interlaminar equilibrium conditions (i.e. the interlaminar shear stress continuity conditions) are
imposed. As a result, the weak form of constitutive equations (the so-called weak form of
Hooke's law) is obtained for the transverse strains-transverse stress resultants relation. A finite
element approximation is based on the four-noded isoparametric element. To eliminate the shear locking
effect, the assumed strain variational concept is used. Performance of the derived finite element is
illustrated with some numerical examples. The results are compared with the exact three-dimensional
solutions, as well as with analytical and numerical solutions obtained by the classical, the first-order and
some representative refined models.
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1. INTRODUCTION

In the recent years, a considerable attention has been paid to the development of models that can
accurately describe a response of thicker multilayered anisotropic shells. Design of (moderately)
thick multilayered shell component namely requires an accurate prediction of local stress and
strain fields in order to locate regions where damage is likely to occur. As experienced by
three-dimensional (3D) elasticity solutions (e.g. References [1-3]), a variation of mechanical



properties in the thickness direction leads to the following phenomena: Displacement and trans-
verse stress fields are continuous through the thickness, but they have discontinuous derivatives
(with respect to the through-thickness co-ordinate) at layer interfaces. This is often called a
zig-zag form of displacements and an interlaminar continuity of transverse stresses (see e.g.
References [4, 5]).

Since 3D analytical solutions for multilayered structural problems are limited (mainly to linear
problems with simple geometry and specific stacking-sequences), a number of two-dimensional
plate and shell models have been developed during the last three decades. They may be roughly
grouped into the classical lamination theories (CLT), the first-order shear-deformation theories
(FSDT) and the refined or the higher-order shear-deformation theories (HSDT); as well as into
the layer-wise models (LWM) and the equivalent single-layer models (ESLM )—depending on
whether or not the number of the unknown variables is related to the number of constitutive
layers. Classical LWM were proposed e.g. by Srinivas [6], refined LWM models were developed
¢.g. by Reddy (7] and a mixed LWM was recently presented by Carrera [8]. Relevant ESLM
contributions were reported e.g. by Ren [9] and Murakami [10]. Overviews on the two-dimensional
modelling of multilayered structures may be found in review papers (see e.g. References [11-14]).
The main conclusions which emerge from those publications are: (i) For higher A/L ratio (h
is shell thickness and L is its representative span) and for higher lamina orthotropic ratio £y /Er
(EL and £y are longitudinal and transverse elastic moduli of the lamina, respectively) the CLT
analysis may be inadequate to predict the overall response of the laminate; FSDT analysis is
required for such cases. (ii) FSDT analysis cannot describe the above-mentioned zig-zag and the
interlaminar continuity effects; therefore refined models, such as HSDT, are required to predict the
local state of displacements and stresses. (iii) Accurate evaluations of transverse normal stresses
and related effects demand the use of LWM.

Many multilayered plate and shell finite elements have been proposed on the basis of classical
or refined models (see e.g. References [7, 15-17]). On the side of finite element formulations
based on ESLM, relevant contributions were given e.g. by Basar ef al [18] and Di and Ramm
[19] (who developed ESLM hybrid finite elements). LWM-based finite element formulations were
presented ¢.g. by Pinsky and Kim [20], Braun et al [21], Basar et al. [18] and Gruttmann et al.
[22], among others.

In this work we focus on the development of a relatively simple refined theory for multilayered
shell (and its efficient finite element implementation) which takes into account the above-mentioned
zig-zag and interlaminar continuity effects (also named CP-requirements in the terminology of
Carrera [4, 5]). The model may be regarded as a direct extension (vefinement) of the FSDT of
Reissner-Mindlin type. The attention is therefore restricted to the ESLM. The transverse normal
stress is not included into the theory. The obtained shell finite elements are denoted as RMZC
(Reissner-Mindlin zig-zag continuity).

The fundamental tool used in the present developments is the Reissner’s mixed variational
principle [23], which permits an assumption of two independent fields through the shell thick-
ness, namely the displacement field and the transverse shear stress field. The introduced shear
stress unknown variables are eliminated on the cross-section level. Displacement-based formu-
lation with seven degress-of-freedom per node is obtained, along with the weak form of the
transverse shear constitutive relations (the so-called weak form of Hooke’s law). The same ap-
proach was successfully used for plates in References [24, 25]. It should be noted, that the RMZC
formulation introduced only the transverse shear stresses in the framework of the Reissner’s vari-
ational principle. Therefore, there is no need for condensation of stress variables at the element



level as in Reference [19]. Transverse shear stresses are computed a priori, i.e. they are not
recovered at a post-processing level via an integration of the 3D indefinite equilibrium equa-
tions.

The paper is organized as follows: basic relations of the present refined shell model are presented
in Section 2; Section 3 defines mixed functional which is the governing equation for the finite
element approximation in Section 5; elimination of stress variables on the cross-section level,
enforcement of interlaminar shear stress continuity and derivation of the so-called weak form of
Hooke’s law is described in detail in Section 4; numerical examples are presented in Section 6
and the main conclusions are drawn in Section 7. -

2. BASIC MECHANICS OF THE MODEL

2.1. Geometry

Let us define a geometry of a multilayered shell, composed of Ny, layers of composite materials,
as

X=X° 4 T (1)

where X° is the middle surface of the shell and T is the shell-director (vector) field which is by
definition perpendicular to the middle surface. We define the domain of the through-thickness co-
ordinate & as &€ [—h/2,h/2]=[h",h"], where & is the (constant) shell thickness, and set the length
of the shell-director field to unity, i.e. ||T||=1. We further parameterize the shell middle surface
by two curvilinear co-ordinates, &' and &2, so that X° = ¢(¢',£%) and T="T(X(¢', &) =1(£', &).

2.2. Displacement field

To approximate the thickness variation of in-plane displacements, a zig-zag-shaped function is
added to the standard linear variation of displacements through the thickness (i.e. to the Reissner—
Mindlin-type of assumed displacements); see Figures 1, 2 and References [10, 24, 26].

The displacement field, u, has now the following form:

u=u’+ &w+ f(&)D (2)

where u® is the displacement field of the middle surface, w is the through-thickness displacement
field related to the rotation of T, f(&) is a layer-dependent zig-zag-shaped function which is at
layer K € [1, Niay] defined as

(1

fE) =135 3)
and D is the displacement field related to the wrinkling of the shell cross-sections. The domain
of & co-ordinate is Cx € [—hk/2,hx/2]=[hg., ¢), where kg is the thickness of the Kth laver,
Relation between the co-ordinates &x and ¢ is &= Ex + &X0, where EK0 is the value of £ at &k =0.

In what follows, we assume that layer 1 begins at {= — h/2.
Deformed position of the shell-director vector at a particular point of the middle surface may
be given as RT, where R is a matrix defining small (infinitesimal) rotation of vector T. Matrix
R does not include a rotation of T around its axis, and may be therefore defined only by two
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Figure 2. (a) Assumed displacements; and (b) transverse shear stress fields in the thickness direction.

rotational parameters, e.g. o and f. The definition of those two parameters depends upon the
chosen description for R (see e.g. Reference [27] for various possibilities). We may now write
the through-thickness displacement field related to the rotation of T as

w=R(e, /)T - T (4)



Since D defines the refined through-thickness part of displacements (see (b)), the following
constraint has to be satisfied at a particular point of the middle surface:

D-T=0 (5)

Due to restriction (5), only two components of vector D are independent. In this sense it is suitable
to define at a particular point of the middle surface an orthonormal local co-ordinate with base
vectors {E;}, which are oriented such that E; =T. Vectors E; and E; then lie on the tangent plane
to the middle surface at the considered point. Triad {E;} may be expressed with base vectors {e;}
of fixed (global) orthonormal co-ordinate system as E; =Qe;, where Q=[E;,Ez, E3];3x3) is an
orthogonal matrix. We denote the three components of vector D, related to the global co-ordinate
system, as D;. Similarly, we denote the three components of vector D, related to the local co-
ordinate system, as D; (see Figure 1). By noting that D; =0, and using standard transformation
relations, we have

D, =Q{~1}, Q=[E;, Ex]3x (6)
% D, 1,82 J(3%x2)

Note, that D; has a direction of E,, while D, has a direction of E,. With (b), (4) and (6) we
obtain seven unknown displacement degrees of freedom at each middle surface point. By collecting
them in a generalized displacement vector, we have

U= {u,ud, u, o, B, Dy, D, }" (7

where u® =ue;.

2.3. Transverse shear stress fields

A mixed variational principle, which is introduced below in Section 3.2, allows us to make an
assumption of independent transverse shear stress fields at each layer. In this work we assume
that the transverse shear stresses vary quadratically through the layers. We may then write (sce
Figure 2) for a layer K € [1, Nyy]

0% =0}"®Fo + REF) + o™ F ®)

where the superscripts top and bot refer to the top (at {x =h/2) and bottom (at g = — hg/2)
edges of the layer, respectively. R% are layer stress resultants defined as

h+

RS = f * o udéx ©)
A
while functions F;, i=0,1,2, have the following forms:
I Ar. B 301 -8%) I & . 3.
e ol gk TN TR e e e T 10
Fo ittt A 2hxy B a2 tak (9]

where co-ordinate {x is defined as {x = £x/(hk/2), therefore {x €[—1,1]. By introducing a vector
of unknown stress parameters, yx, and a vector of assumed transverse shear stresses, ok,

13, 23, 13, bof 23,bot _ T
i = {oL*®, 02" RE,RB, a ™, 2™}, ox={o¥.0k} (11)



Equation (8) may be rewritfen in more compact notation as

ok =E yx (12)
where
[0 F 0 F o0 _
E= {0 Fo 0 F 0 F, (13
For later use we integrate (13) through the thickness of a layer. From relations
) o it B hs -
/ " Fondéc =0, / " Py pdec "=, / Fipdéc "= (14)
Jug h i
it follows that the resulting matrix has a simple form
A . p=1 [0 01 0 0 0
L e [0 00100 (13)

The geometric quantity u is defined by dV =dS udé, where dV is a volume differential of the
shell and dS is an area differential of the middle surface. When p=1, a variation of metrics
through the thickness of a laminate is neglected.

2.4. Strain measures

The Green- Lagrange strain measures are defined as the difference of metric tensors of the deformed
and undeformed configurations at the same material point. Linear strain measures may be obtained
by evaluating the metric tensors (using (1) and (b)) and by further neglecting the non-linear terms.
For the present model we obiain the following expressions:

Eap = (X0, - ul + X - ul) + 380X, - wp+ X5 Wal + 1 /(X - D g+ XY D)
Eys = 3(X%,-w) + 1 /'(X0, - D) (16)
Eg3=10
where (o), denotes d(c)/0&", while 7 is d f(E)/dE; for layer K we have
Se=(-1F a7)
Equations (16) may be also written in a more compact form as
Exp = g + Ekap + [(E)cL (18)
2B =5 + ['7ls
Variations of strain measures (16) are
OE,p = 1(X, "5“,0,1 + x,u,s ! 5“1) + %'Lf[x?x - OW g + xﬂq S OW, |
+3(ENX, - 0D 5+ X% - 0D ,) (19)
OEyy = 3(XJ, - ow) + 1 (X%, - 6D)



where (see (4) and (6))

do 8D
5w=A{5ﬁ}, oD = Q{oD;} (20)

with A being a (3 x 2) matrix emerging from the variation of (4). By using the more compact
notation introduced in (18), they may read as

(5E,ﬁ = 58«3 -+ Eéx,ﬁ -+ f(f)éx;rﬁ

N @1
20E = 0y + [0,

2.5. Hooke's law for orthotropic lamina

In this section we work with standard constitutive relations for elastic orthotropic materials (see
e.g. Reference [28]). Let us introduce at a material point of layer K € [1, Niay] Cartesian co-ordinate
system x*. Orientation of xi is such that x§ =& + &, where £ is a constant. Three-dimensional
constitutive relations in these co-ordinates are o'/* =H:‘,‘§H'*E}J‘,f. Since E3; =E33 =0, see (16), the
stretch in the thickness direction is obtained by assuming that ¢*** = 6% = 0. Three-dimensional
constitutive relations may be then condensed as C"’“ * H"'“ * Hm“ L e Jij#33 ki #33 and
the stress—strain relations at a given material point may be written in the familiar form

J”‘* Cllll * C,Iﬁ’lzz.* 0 0 0 1 ETI
2% cC=E 0 0 0 E5,
a'2* b = > 0 0 2ET, (22)
13,%
a' 1313, *
g3 * Ck 0 2E)3
| symm. Cf(‘m‘* | 2E3;

Non-zero components of constitutive relations (22) are defined (for orthotropic material) by six
independent material parameters which are: two elastic moduli E;, E,, three shear moduli Gz, Gy3,
G»; and one Poisson’s ratio vj = vy E}/E>. (Poisson’s ratio is defined as vjp = E,,/E22 ) Their
explicit forms are

Ey c% _ Ey  aumsx_ VB
1 — v%ZEz/Ei > VK [ V%z‘EZ/El » VK 1-— \%zEg/El (23)

*
ClEIZ‘* — GIZ, CI3I3, P Gl.}; C2323,* e 623
K K K

Mi%
C: =

In the above notation the subscript 1 relates to the fibre direction (the direction of x7), the
subscript 2 relates to the direction transverse to the fibres (the direction of xz ) and the subscript 3
is associated with the through-thickness direction defined by co-ordinates x3, &k and £ In order
to integrate constitutive relations through the thickness of a laminate, these relations need to be
transformed to the shell curvilinear co-ordinates. Transformation of the fourth-order tensor from
the layer Cartesian co-ordinates xF to the shell curvilinear co-ordinates ¢, £ =¢ is performed in
the standard way as

CM = LTyCR ™  TuTpt, 1433kl #3%ma £33 0p £33 (24)

where T,,; = 0&/dx}. In view of the finite element implementation of the multilayered shell model,
the curvilinear shell co-ordinates &* ¢ may be locally replaced by Cartesian co-ordinate system



X (X1 =X. X =¥, X3 =2), such that ¢ = X;. In this case the transformation coefficients 7T); take
simple form. They may be presented as

cosfl —sinf 0
[Tni]l= |sin0 cosf 0O (25)
0 0 1

where 0 is an angle which rotates x| into ¥ when the positive axis of rotation is defined by

+X3. Once transformation (24) is performed, we obtain the following relations with respect to the
introduced local Cartesian co-ordinates X;:

o' Ey 13
, [2E;
o 5 =Cx{ Ep ¢, {:23} =Ck {ZEIL} (26)
a'? 2E, s

where

C}(l 1t C}\IZZ C}(] 12

c}?li} C]l(323
CK s Cizlz ci?l! , C;( = — (2?)
symm. Cyg~
symm. cH

Explicit expressions for Cx and Ci matrices may be found in standard textbooks on composite
laminates (sce e.g. Reference [28]).

3. GOVERNING EQUATIONS

Having defined strains, assumed stresses and lamina constitutive relations, we may proceed with
virtual work equation and mixed variational equation. The latter represents a starting point for a
finite element formulation that includes continuity of interlaminar shear stresses.

3.1, Virtual work equation. Stress resultants

Equilibrium of the composite shell may be enforced through the principle of virtual work:
Gint(U; 0U) — Gei(0U) =0, where Gip(U;6U) is the internal part of the virtual work, while
Gexi(0U) is the part due to the virtual work of external forces. Internal part of the virtual work
for the present composite shell model reads as

A+ ‘
Gin(U; 8U) = [ / 0[Sty + Eap + [Ny d dS
Js Jh—

h
+ /[ ™8y + f’éyé]pdédS (28)
S Jh—



where variations of strains are defined in (19), (21) and dS = [|X% xX%|| d£'d&? is an area element
of the middle surface. Equation (28) motivates definition of the following stress resultants:

h+

h+ - h+
vo— [T otuar w= [Catiuae oo= [ o uat
it h

i, j Al

-, h+- = h+
M = / G“‘Bf(f),udﬁ, Qua - / o_anfp d¢ (29)

where f:j(o)d622ﬁzl f;; (0)dék. Stresses c*# and ¢* are obtained layer-wise through con-

stitutive relations (26). Let us assume that the shell is loaded only on the top surface, S*, and on
the bottom surface, S—, by pressure loadings p* and p~, respectively. External part of the virtual
work may be then written as

Gext(0U)= | p*-duds* + / p - duds™ (30)
S-f-

where dS* = pu*dS, dS™ =p~dS and u* = |+, p~ = pu|,-. Using (b) in the above expression
gives

Gext(0U) = / (prut +pp)ouds
5

h h
+0 A+ ==
+/S(p L B )5wdS

+ [@* 1y + oD ds (1)
S
Equation (31) motivates definition of the following external forces and couples:

h h
F=p*u* +p~u~, M=p'out—p zu~, W=p'(-1)Vou’ +p (32)
It can be seen from (31) that forces related to the wrinkling of shell cross-sections appear in the
external part of the virtual work. Note, that the second and third integrals in (31) become zero if
the pressures act in the direction of middle surface normal. Extension of the above procedure to
include body forces and concentrate forces and couples is straightforward.

3.2. Mixed variational formulation

The starting point for the displacement-based shell finite element approximation is the two-dimen-
sional form of virtual work equation. However, in order to develop a finite element with inter-
laminar continuous shear stresses, we use mixed variational formulation, presented below in this
section. The stationary point of the Reissner’s variation theorem (as used for the present problem)



may be stated as
1(U, ag; U dag ) = / N3t dS + / M Sk, dS + [ ™ oic,ds
5 § JS
* Niay hig
4—](5}')1- Z[ oxpndly ) dS
s k=1.Jng

. ) My it
% / @[5 / ox Sl udéx |ds
Js k=1 Jhy

Mgy e )
+ ] [Z (0ax) (—[Ck1 "ok + 7+ fiv/ déx] ds
s &=t Jig
—/(Fﬁuo 4+ M-ow + W-0D)dS =0 (33)
b

where oy is a vector of assumed transverse shear stresses defined in (12}, 4 and 7/ are vectors
of transverse shear strains (see (16) and (18))

=0yl ¥ =0kl (34)

[C%17" is an inverse of constitutive matrix (27),, stress resultants N, M* and M*# are defined
in (29), éy, 877 and SU = [u’, ow, D] are variations of (34) and (7), respectively, while strain
variations. 0z,g, OK.p, 5r\{ﬁ, are given in (19) and (21). Equation (33) is a base for the finite
element formulation presented in Section 5. A procedure to express o with U, and thus transfer
mixed formulation (33) to the displacement-like, is provided in detail in Section 4.

3.3. Constitutive relations

In this section we analytically integrate lamina constitutive relations (see Section 2.5) through
the shell thickness to obtain relations between stress resultants and strains. Variation of metrics
through the thickness is neglected., i.e. it is assumed that u= 1. In accordance with (29) and (18),
we introduce the following two vectors of stress resultants and strains:

; ~1] ~21 -~ -~ ~
N = [N”.NEE,NH:MII_\MH,M'Z;Ql"',Q23;M |‘M2 ,jwlz;Qlf‘! ..j]‘:l!jx”

: (35)
e {’5I|v‘f:?.?a‘:ll;f‘~'|1.aKZZJ\'!’_’;?l3a723;K{pK{Z,K{;;?Ga}’}g]?mxn

which are related through matrix H as

N=He (36)



Using definition of stress resultants, (29), and layer constitutive relations, (26), we have

Co G 0px2y Fio  0Oapxz
C: 0ax2y  Fu  0Oaxy

H= Zy 02x3) Z, (37)
Fo2  Oaxz)
| Symim. 2 ] a3xi3)

where sub-matrices of H are defined as

Nisy hat 5 Ny "'; 7
Cr=Y%, Cx&ndéy, Z;= % k[ kY mdéy
k=1Jng; k=1Jn;

(38)

N]ny

it
=3 /;, k'L (& ndéx, J=0,1,2, I=0,1
=] K_

Cs, Z; and Fy; are (3x3), (2x2) and (3x3) matrices, respectively, while Cx and Cy are given
in (27). The following constants may be obtained by an integration of expressions (38)

(Co,C1,C2) "= '\f (;,K, (i) — (hg ) ()’ ;(&;)S)CK

K=1 2
_1 M
@2.2)'=' 5 (*“K.z(—l)f‘,i)cz
K=1 hg
Ny (-D¥r2 & (39)
(Fio.Fin.Fo2) 'S 3 (O’Tx’_;")cx
K=1

It must be noted, that the coefficients of H, given in (39), are valid only for the pure displacement
formulation. Since we work with mixed formulation (33), the Z; matrices change to

MI)‘
=]
(Z0,21,22) "= Kg] (Q%,Q, fxQk) (40)

where Q) and Q) are provided in Section 4 and in Appendix A.

4. ELIMINATION OF STRESS VARIABLES

The model based on mixed principle (33) has: (i) 7 displacement unknowns (see (7)) and (ii)
6 X Ny stress unknowns (see (11);). In order to preserve the advantages of displacement-like
formulation, the stress unknowns should be expressed in terms of the displacement ones. For plates,
such a procedure was developed by Carrera (see References [4, 24]), who recently reformulated



it in Reference [29] to make it more transparent for the finite element implementation. This

reformulated procedure is in this section (and in Appendix A) extended to shells.

4.1. Layer stress—displacement relations

By observing (33), it can be seen that we have to satisfy the following functional for each layer

K e[l, Nyl
g
F(U;d0k)= f (06x) [(U) + fxy/(U) — Sgogludéx =0
[

where vector ok is given in (11),, Sk is the compliance matrix

. Sis S C}{J]J C;(sza -1
Sk=[Ck)™' = = 5
symm. Sss symm. Cf(

while strain-displacement operators y and 7/ may be written as, see (18),

yis+ fxrh

v+ fxy) = { -
13+ fivhs

} = [bo + fxbJU

where U is given in (7), while by and by are

~ 10ax3) (x?ﬂTA 01x2) Onx3y Ouxa (x?l)T{j

(e L] hll:.‘“ ~
{0‘“‘3) (X5)'A 0('X3)](2x7) [0“’(3) Ocix2) (x-uz}TQ (2x7)

A and Q are defined in (20) and (6);. By using (12) and (43), we may rewrite (41) as

j (S {LE"(bo + f1b1)]U — ETS¢Exx b déx =0
hy

Expression (45) motivates definition of the following two matrices:

" 0px7)
HY = ( 4 ET,udéx) [bo + fxbi]= | bo + fgh

K 02x7) | 6x7)

@1

(42)

(43)

(44)

(45)

(46)



and

hg

H; = | E"s¢Epdé
[2Saahk  28ashk  Saa Sas Smhx  Sashk
15 15 10 10 30 30
28sshg  Sas Sss Sishg _ Ssshi
15 10 10 30 30
6w 6 Su S
Shy Shy 10 10
= 47
68 S5 Sy b
Shy 10 10
2844hy 284s5hy
15 15
28s5shg
Rlal 15  J(sx6)

Note, that (15) was used to obtain the final form of H} in (46). Finally, by using (45)—(47), the
functional (41) may be rewritten as

(92x) HEU — Hy 4] =0 (48)
From (48) it is possible to express layer stress parameters as functions of U.

4.2. Interlaminar shear stress continuity

We now use (48) for each layer K € [1, Mgy] to obtain the following relation for the cross-section
of multilayered shell:

ANy
{0Nys Oy 15+, 071 }T | HUU — (H?) Bl L | =0 (49)
i
where HC is a block diagonal matrix composed of matrices (47), i.e.
H° = Diag[H}, ,H, ..., HJ6r, x6Mu) (50)

while H is defined as a composition of matrices (46)

H'=[Hy, , ih,-lv"'ﬁﬂ?]g&h’h,x?) (51)

With (49), the stress unknowns at the multilayered (cross-section) level could be expressed. How-
ever, since there is no coupling between layers in (49), the result would be the same as when
using (48) for each layer.



4.3. Cross-section stress displacement relation

To enforce the continuity of the interlaminar shear stresses (i.e. the equilibrium conditions at layer
interfaces) we have to satisfy the following conditions:

oy =0k " if KE[1, Ny — 1]
o_:';i,bnt cns -G-.us.bol if E=1 (52)

a3, b —a3, s 0
o =g f K= Ny

where 730! and 73°P are applied stresses at the bottom and top surfaces of the shell, respectively.
In this work we assume, without loss of generality, that 33 =P = (, To take into account
(52), Equation (49) need to be modified (coupling between layers comes into the formulation).
This modification is provided in detail in Appendix A.

Modified fayer constitutive matrices may be obtained by the direct usage of (52) and (49) as
shown in Reference [24] for plates. However, it proved more convenient to find layer-dependent
matrices Q) and Qy, defined as

iy _
f ox udé =(Q%by + Qkb; )U=Q} y + Q}y’ (53)
.
Those two matrices are obtained by manipulation of (49). Details are provided in Appendix A.
Since we use O% and QL in (40) and in constitutive matrix H (instead of (39),, (38), and
(26),), we may regard Equations (49) and (53) as the weak form of Hooke’s law. Those two
equations enable treatment of mixed functional (33) in the manner of displacement like.

5. FINITE ELEMENT APPROXIMATION

In this section the finite element implementation of the above-described multilayered shell model
is briefly presented. An isoparametric four-noded element with local Cartesian co-ordinate systems,
introduced at middle surface integration points (see also Reference [20]), is used.

5.1. Interpolation of geometry and physical fields

The geometry of the shell and the displacement variables are interpolated with standard bi-linear
functions? N/(¢', &)= ;(1+E & X(1+E2&), where: (&} = —1,+1,+1,-1), (& =—1,-1,+1,+1)
for I given in the following order (/ =1,2,3,4); and ¢'€[—1,1], &2 €[—],1]. Finite element
approximation of the shell geometry over the finite element is given as

4 4
X'= Y N'(&,&X], T=3% N(&,&T, (54)
=l I=1
where X? defines the position of nodal middle surface point and T; is shell director at this

point. Description of shell geometry requires a knowledge of the position of shell director at
nodal points of the finite element mesh. In the present formulation the nodal shell director is

FIn this section and in Appendix B we will also use notation &' = ¢ and & = .



obtained by averaging the nodal normals of adjoining elements: first, the element nodal normal is
evaluated as

T§=(X) — X7) x (X} — X)) (55)

where /, J and K are given in the following order (I =1,2,3,4), (J =2,3,4,1), (K=4,1,2,3);
next, the averaged nodal normal of unit length is determined as
I N "f“,

- ¢ e
Na 7" A

T; (56)

where Nj is the number of adjoining elements at node /”. By using this approach some unavoid-

able discretization errors are introduced for curved geometries, however it seems that there is no

more convenient way to define shell directors of the finite element mesh for four-noded elements.
Displacements are interpolated over the element as

= i N(@E, ), w= f: N, &)w, D= i N(&, E)D; (57)
I=1 I=1 I=1

where the reduction of unknowns is given by discrete version of (20)

~ [&Dy)
am=a{ 2}, ami=g {70 (58)
B (6Dy);
Transverse shear field is interpolated over the element by the so-called assumed natural strain
(ANS) procedure [31]

3. 75) = 11 — 108758 + 111 + 2165.55)

(59)
.D B
O,78) = 511 — €103 v5™) + L1 + €108 95
Accordingly, the transverse shear stresses y,3 and ya{; are evaluated using kinematic relations only at
points A, B, C and D. However, since strains at those points are functions of nodal displacements,
the explicit evaluation of transverse shear strains at points A, B, C and E may be avoided in the
computational process.

5.2. Local co-ordinate systems

Two types of local Cartesian co-ordinate systems are needed in the present finite element approxi-
mation: (i) local co-ordinate systems at nodes of the finite element mesh and (ii) local co-ordinate
systems at finite element integration points. Both types are determined by an analogous procedure.
Base vectors associated to the nodal co-ordinate system at the mesh point ‘I’ are defined with the
following relations:

(E3) =T, Ei)xE)=T, (E)-(E)=0 (60)

Note, that positions of vectors (E;); and (E;),; are arbitrary, as long as they satisfy conditions
(60). Base vectors {E;} related to the co-ordinate system (X,7,Z) at element integration point
are defined analogously to (60) (see also Section 2.2). The introduced change of co-ordinates at



element integration points requires transformation for partial differentiation. It can be shown that
the shape function derivatives with respect to the local Cartesian co-ordinates can be obtained as

¢ on _
{N,’f}“ % ok _ lErX% Ez‘x?é] ‘ {’V} ©1)
=2 ol=
N,Iﬁ 3;: :;; E, 'xﬂm F"*'x,ﬂu N::r
oy 0y

5.3. Discrete form of mixed variational equation

By inserting the above interpolations, the results of derivations of Section 4 (and Appendix A) and
Equation (36) into the mixed functional (33), we get the following (displacement-like) discrete
version of (33):

Netem Netem
U [ (¥e)™HedSe— U [ (JU)'PdS.=0
e=1 J8&; e=1 JS§,

(62)

where vector & and matrix H are given in (35) and (37), respectively, d¢ is variation of &, and
P represents a vector of external forces P=[F,M, W], see (32). Note, that Zp, Z, and Z, sub-
matrices of H are defined by (40). Q% and Ok matrices of (40) are provided in (77). Explicit
expressions for de and ¢ are given in Appendix B.

6. NUMERICAL EXAMPLES

In this section three numerical examples are presented in order to illustrate the performance capa-
bilities of the described refined multilayered shell model and associated finite element formulation
based on the four-noded element. A compendium of acronyms, used to denote models chosen for
comparison with the present model, is given in Table I; the proposed formulation is denoted by
the acronym RMZC.

All the examples below relate to three-layered, cross ply laminated shells. The subscripts 1 and 2
are used to denote the direction of two orthogonal co-ordinates lying on the tangent plane to
the reference (middle) surface of the shell, while the subscript 3 denotes the co-ordinate in the
thickness direction. Since the finite element formulation is based on the four-noded element with
linear interpolation functions, the transverse shear stresses cannot be evaluated a posteriori via an
integration of three-dimensional equilibrium equations. Such an evaluation would require the use
of eight- or nine-noded elements. All the transverse shear stresses shown in this paper are therefore
obtained a priori, directly from the assumed shear stress model. Geometry for all three examples
is shown in Figure 3.

Example 6.1. Square and rectangular plate loaded by bi-sinusoidal transverse pressure.
Exact solution of this standard benchmark test was given by Pagano and Hatfield [32]. First
we consider a simply supported, three-layered, [0°/90°/0°] square plate with length a, loaded by



Table I. List of acronyms used to denote models; in alphabetic order.

Exact

CLT

D&R
EM3(2,1)
EM3(2,1)*
FSDT
F-J&T
F-K&K
L&S

HSDT
H-B&V
H.a-B&V
H.b-B&V
H-D&P
H-J&T
H-K&K
LM4(3,2,1)
LD4(3,2,1)
RMZC
Reddy-HSDT
RMZ

RMC

RM

RMs

RMp

Three-dimensional solutions

Classical lamination theory

Hybrid FE [19]

ESLM mixed [35]

ESLM mixed [35], discarding 0.

First-order shear deformation theory

FSDT by Jing and Tzeng [38]

FSDT by Kant and Khare [37]

Hybrid layer-wise FE [39]

Higher-order shear deformation theory

HSDT by Bhaskar and Varadan [26]

H-B&V with shear stresses computed by assumed models
H-B&V with shear stresses computed via an integration of 3D equilibrium equations
HSDT by Dennis and Palazotto [36]

HSDT by Jing and Tzeng [38]

HSDT by Kant and Khare [37]

Layer-wise mixed [8]

Layer-wise for displacement [8]

Present model, full implementation

HSDT by Reddy [40]

Present model without interlaminar shear stress continuity
Present model without zig-zag effects as in Reference [41]
Present FSDT case

Present RM case with shear correction factor y = 3
Present CLT analysis

@ NODAL POINTS

B SAMPLING POINTS FOR SHEAR

Figure 3. Four-noded shell finite element with assumed transverse shear strain fields.

bi-sinusoidal pressure §=gsin(nx/a)sin(ny/a) (origin of co-ordinates x and y is shown in
Figure 3). The plate thickness is k4, while the material characteristics are

E]_/ET = 25, GLT/ET = 0.5, GTT/ET = 0.2, VLT = 0.25 (63)



where, following usual notations, L is a direction of the fibres, T is the transverse direction and
vir is the major Poisson’s ratio. The thickness of 0° layers is h/4 and the thickness of 90° layer
is A/2. Following [32], the non-dimensional displacements and stresses

_ 100E+A* _ h?
3 =u3 a;l » (@n,o12)=(0n,012)— (64)
q qa

are introduced for the presentation of results.

One-quarter of the plate is discretized by 16 x 16 finite elements, restricting deformations to be
symmetric along the lines of the symmetry. Results are shown in Table II(a): the non-dimensional
transversal displacement 73 at (a/2,a/2,0) and non-dimensional stresses G;;,Gi2 at the closest
integration point to (a/2,a/2) and (0,0), respectively. The values are compared with the exact
solution and with the HSDT of Pandya and Kant [33] (which preserves the C%-continuity of
displacements but does not include the zig-zag effects, neither fulfills the interlaminar continuity).
Some differences between the results obtained by the present formulation and the results presented
by RMZC plate formulation [24] (see Table 6 in Reference [24]) may be due to the different ways
of elimination of shear locking effect (ANS concept in this work, selective integration in Reference
[24]) as well as to the different meshes used. It can be seen from Table Ii(a), that the RMZC
model considerably improves the FSDT analysis (RMs in Table II(a)). The CLT results (RMp in
Table 1I{(a)) are obtained by the simple penalty technique. It may be noted, that the use of shear
correction factor in FSDT analysis (RMs) leads to results with thickness-dependent accuracy (see
e.g. discussion of Noor and Peters [34]). It should be also noted, that the neglection of o33 stresses
makes the two-dimensional models unable to predict the unsymmetrical stress distribution in the
case of very thick plates.

A more comprehensive comparison of different laminated theories is provided in Table Iib. Finite
element and analytical closed-form solutions are compared to the exact solution for a rectangular
plate. Results of LWM and ESLM proposed by Carrera in References [8, 35] are also shown: LM
denotes mixed models with linear to the fourth-order variation of displacements and stresses in
each layer (suffix 1,2, 3,4, respectively); LD denotes the correspondent displacement formulation;
EM denotes the models that are an extension of the RMZC models (EM models discard o) since
they use higher-order polynomials for both displacements and transverse stresses. It can be seen
from Table Ilb, that the layer-wise mixed analysis leads to the best results. RMZC results are
very close to those obtained by Di and Ramm [19], who used hybrid formulations. Note, that the
transverse normal stress does not play an important role in this example. As shown in Reference
[35], this role increases by increasing thickness and/or transverse anisotropy. EM-3 case shows
that the extension of RMZC to higher-order diplacement field would lead to better results. On the
other hand, such an extension would introduce additional degrees of freedom and an increase of
computational costs. The small differences between RMZC and EM-1* results may be addressed
to the finite element approximation.

Example 6.2. Shell panel subjected to cylindrical bending.

Exact solution for the problem of simply supported cylindrical panel of infinite length, which
is loaded by sinusoidally distributed pressure, was given by Ren [2] (Figure 4). Geometric char-
acteristics of three-layered [90°/0°/90°] panel are: R/b=3/mn, where R is its radius and b is its
arc-length in the circumferential direction; 4 is the thickness of the shell and A/3 is the thickness
of each layer. Material characteristics are the same as those for plates, see (63). For 90° layer



fibres are parallel to the circumferential co-ordinate b. Sinusoidally distributed transverse pressure
g =qsin(3¢) = gsin(na/b), where ¢ €[0,n/3] and a € [0, 5], is applied on the top surface. Non-
dimensional displacements and stresses are for this case defined as

Bl IR o e W e (65)
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Due to the symmetry, one-half of the panel in the circumferential direction was discretized, taking
into account the symmetry conditions. The panel’s length is infinite, therefore a unit length may
be taken for the analysis. Only one element is used for discretization in that direction, while
different number of elements are used for discretization in the circumferential direction. Variations
of stresses G17,@23 and displacements i,,#; with respect to the number of used finite elements
(for one-half of the panel) are shown in Table III and Figure 5. Values are normalized with those
obtained by 48 x | mesh. (Exact values for @3, G2 and @ are 0.0787, 0.781 and —0.786,
respectively). The transverse displacement i3 and in-plane circumferential stress G, are taken
from the centre of the panel, i.e. at =5/2 or at a closest integration point. The circumferential
displacement i, and transverse shear G,3 are taken at a =0 or at a closest integration point. Value
of G»3 in Table III is at the middle surface, i.e. at £=0. Transverse shear stress &, is evaluated
at the middle surface. In Figure 5 the subscripts ¢ and b denote values at the top and bottom
surfaces of the panel, respectively. It can be seen from Figure 5 and Table III that all the values
increase monotonically with the number of elements and that the convergence for displacements
is slightly different from the convergence of stresses.

Table II(a). Square plate: Present versus exact solutions. Mesh is
16 x 16 finite elements for one quarter of a plate.

a/h 2 4 10 100
ity

Exact 5.1964 1.9368 0.7370 0.4347

HSDT [33] - 1.8744 0.7185 0.4346

RMZC 5.4081 1.9625 0.7373 0.4336

RMZ 5.1451 1.9034 0.7284 0.4335

RMs 5.0576 1.7073 0.6615 0.4327

RMp 0.4301 0.4302 0.4302 0.4302
an

Exact 1.3880 0.7299 0.5590 0.5390

—0.0795

HSDT [33] — 0.7163 0.5676 0.5442

RMZC 0.8742 0.6430 0.5469 0.5365

RMZ 0.8875 0.6394 0.5459 0.5365

RMs 0.3380 0.4041 0.4970 0.5360
a1z

Exact 0.0863 0.0467 0.0275 0.0214

—0.0673

HSDT [33] —— 0.0454 0.0273 0.0215

RMZC 0.0711 0.0449 0.0273 0.0213

RMZ 0.0690 0.0442 0.0271 0.0213

RMs 0.0354 0:0307 0.0240 0.0212




Table 1I(b). Rectangular plate b = 3a: Present versus other FEM, ana-
lytical ESLM and analytical LWM solutions for .

a/h 4 10 20 100
Exact 2.8200 0.919 0.6100 0.5080
FEM solutions

L&S 2.828 0.921 0.611 —
D&R 2.8370 0.920 0.6086 0.5061
RMZC 2.8371 0914 0.6061 0.5048

Analytical closed-form solutions
Layer-wise models

LM4 2.8211 0.9189 0.6095 0.5077
LM3 2.8216 0.9189 0.6095 0.5077
LM2 2.8250 0.9120 0.6096 0.5077
LMI 2.7296 0.9097 0.6076 0.5076
LD4 2.8211 0.9189 0.6095 0.5077
LD3 2.8151 0.9189 0.6095 0.5077
LD2 2.7983 0.9181 0.6095 0.5077
LDI 2.7209 0.8988 0.6040 0.5071
Equivalent single-layer models

EM3 2.8153 0.9181 0.6095 0.5077
EM2 2.7670 0.9055 0.6059 0.5075
EMI 2.8385 0.9150 0.6064 0.5051
EM3* 2.8325 0.9177 0.6073 0.5077
EM2* 2.7841 0.9042 0.6036 0.5075
EM1* = RMZC 2.8385 0.9150 0.6064 0.5051
Reddy-HSDT 2.6411 0.862 0.5937 0.5070
FSDT 2.0511 0.7504 0.5633 0.5033
CLT 0.503

In Table iV, a comparison with the exact and other analytical and two-dimensional finite element
solutions is made for i3 (for the mesh of 48 x 1 elements). Good performance of the present model
found for the plate case may be also confirmed for this example of pure cylindrical bending. In
particular, the results of the shell RMZC model are much closer to the exact ones than the results
of HSDT model of Dennis and Palazooto [36] or Kant and Khare [37] (Figure 6). On the other
hand, a superiority of layer-wise mixed models (M—p in Table IV) is shown for very thick shells
(see also Reference [8]). As shown in Figure 7, the predicted distribution of in-plane displacements
in the thickness directions is in good agreement with the analytical solution. The inefficiency of
FSDT analysis is evident from this figure. In Figure 8, values of the transverse shear stress,
evaluated a priori at layer interfaces, are compared to those obtained by Jing and Tzeng [38], who
integrated the 3D indefinite equilibrium equations. It may be observed that the present evaluation
of transverse stresses gives the same accuracy as that reported in Reference [38]. Exact as well
as layer-wise mixed results are also quoted in Figure 8.

Example 6.3. Cylindrical shell subjected to internal pressure.
Exact solution for this example was given by Varadan and Bhaskar [3]. Basic geometrical
characteristic of three-layered [90°/0°/90°] shell is a/R =4, where a is the length of the cylinder



Figure 4. Geometry of examples: (a) plate; (b) shell panel; (c) cylindrical shell.

and R, is its radius. Thickness of the shell is denoted by k. Layer thickness of each layer is
h/3. The cylinder is supported by shear diaphragms at both ends and it is subjected to transverse
pressure, g, harmonically distributed on the shell internal surface as

g=gsin ?cosw (66)

where x € [0,a] and 6 € [0,2n]. Material characteristics are the same as those for a plate, see (63).
For 0° layer fibres are parallel to the longitudinal co-ordinate x.

Due to the symmetry, only one-eighth of the cylinder (for 6 €[0,#/2] and x € [0,a/2]) is dis-
cretized by finite elements, restricting deformations to be symmetric at the lines of the symmetry.
Discretization in the longitudinal direction is done by 16 elements, while different number of
elements are used for the circumferential discretization. Boundary conditions at the end (i #0,
uy =uy =0, where u, is longitudinal displacement, u, is circumferential displacement and wu3 is
transverse displacement) are simulated by seven displacement degrees of freedom, i.e. by three
global displacements, two rotations and two refined displacements. The results are presented for



Table III. Stresses

and diplacement versus number of elements for a/h = 100.

Shell panel
2x1 4x1 8x1 16 x 1 32x1 48 x 1
ity 0.0675 0.0759 0.0780 0.0785 0.0786 0.0787
G2 0.6378 0.7425 0.7704 0.7775 0.7794 0.7797
G2 —0.6428 —0.7479 —0.7831 —0.7831 —0.7850 —~0.7853
G2 0.4992 0.5459 0.5690 0.5726 0.5735 0.5737
i 20.54 24.00 24.90 25.13 25.19 25.20
i 22.44 26.04 26.97 27.21 27.27 27.28
Cylindrical shell
4x 16 8x16 16 % 16 24 x 16 32x16 48 % 16
i3 0.2443 0.4050 0.4540 0.4635 0.4668 0.4690
i —1.028 ~1.142 —1.516 —1.534 —1.541 —1.545
ity —0.8398 —-1.003 —1.160 —1.170 -1.174 —1.177
iap —5.455 —10.44 -12.07 -12.39 —12.51 —12.59
it ~4.295 —8.853 -10.37 -10.67 -10.77 —10.85
i 0.0428 0.0436 0.0429 0.0424 0.0418
@ 1.980 1.955 1.896 1.859 1.815
G —0.0108 —-0.0196 —0.0223 —0.0236 —0.0248
1 —1.839 —2.954 —3.300 -3.367 -3.391 —-3.408

Mormalized Displacements and Stresses
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Figure 5. Shell panel with Ry/h=4. Stresses and displacements versus number of elements for RMZC
four-noded shell element. Values are normalized with respect to solutions obtained by 48 x 1 mesh.

the following non-dimensional quantities (Table V):
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Table TV. Shell panel: comparison of results for #s.

R/h 2 B 10 50 100
Exact 1.436 0.457 0.144 0.0808 0.0787
Analytical
LM2 1.436 0.4582 0.1440 0.0808 0.0787
H-J&T —_ 0.459 0.142 0.0802 0.0780
F-J&T — 0.342 0.120 0.0793 0.0780
CLT [2] 0.0799 0.0781 0.0777 0.0776 0.0776
FEM
H-D&P 1.141 0.382 0.128 0.0796 0.0781
F-K&K 1.1179 0.3367 0.1180 0.0779 0.0767
H-K&K 1.1670 0.3790 0.1273 0.0782 0.0766
RMZC 1.5600 0.4656 0.1430 0.0809 0.0787
RMZ 1.4763 0.4492 0.1400 0.0808 0.0787
RMC 1.3175 0.3625 0.1226 0.0800 0.0784
RM 1.1988 0.3359 0.1187 0.0798 0.0784
RMs 1.4175 0.3852 0.1260 0.0802 0.0785
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Figure 6. Cylindrical shell with Ry/h =4. Stresses and displacements versus number of elements for RMZC
four-noded shell element. Values are normalized with respect to solutions obtained by 48 x 16 mesh.

Variations of displacements and stresses with respect to the number of used finite elements are
shown in Table IIT and in Figure 6. It can be seen that the convergence for stresses is better
than for displacements, as expected. In Figure 6, the values are normalized with those obtained
by 48 x 16 mesh. The subscripts t and b denote values at the top and at the bottom surface of
the cylinder, respectively. Displacements u;,u; and w3 are taken at (x,6) equal to (0,0), (a/2,7/8)
and (a/2,n/2), respectively; stresses a);,022 and o1, are taken at the closest integration point to
(a/4,m/16); and stresses o3 are taken at the closest integration point to (a/2, 7/8). Comparison of
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Figure 7. Shell panel with R/h=4 (h = 2.5).
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Table V. Cylindrical shell: comparison of results for .

Mon-Dimensional Shear Stress

Figure

8. Shell panel
Transverse shear stress &3 (z =&).

with R/h=4 (h=25).

R/h 2 L) 10 50 100
Exact 10.11 4.009 1.223 0.5495 0.4715
Analytical

H-B&V — 3.923 1.210 - -
HSDTA [42] - 3.873 1.206 —_ 0.471
Lm2 10.114 4.009 1.223 0.5495 0.4715
FEM

HSDT [42] — 3.873 1.206 —_ 0.469
RMZC 10.996 4.003 1.207 0.5456 0.4683
RMZ 10.297 3.938 1.179 0.5444 0.4680
RMC 9.772 3.186 0.986 0.5362 0.4665
RM 8.878 2.926 0.941 0.5344 0.4660
RMs 10.541 3.409 1.025 0.5376 0.4668

RMZC results with the exact solution and some analytical and finite element results is made in
Table VI. Values for 11,07, and o1, in Tables III and VI are at the top surface of the shell (at
&=h/2), while values for o,; are at middle surface (at £ =0). Although there is a complex state
of membrane and bending deformations is the cylinder, the results obtained by RMZC shell model
are in good agreement with exact solutions and with results of representative HSDT model. In
Figure 9, values of the transverse shear stress, evaluated a priori at layer interfaces, are compared
to exact solution and to the results obtained by HSDT of Bhaskar and Varadan and by mixed

model of Carrera.



Table VI. Cylindrical shell: comparison of results for stresses and displacements.

Exact RMZC HSDTa [30] HDST [30]
afh =4
ip - —1.8094 —1.753 —1.753
iy —_— 0.8239 0.806 0.806
it 0.064 0.0596 0.061 0.064
G2 3.272 3.2207 3.339 3272
T2 0.054 0.0450 0.046 0.054
a/h=10
yp — —0.8135 —0.808 —0.808
Hy —_— 0.0968 0.103 0.102
e 0.037 0.0362 0.036 0.037
2 2.341 2.3738 2.361 2.347
G 0.019 0.0154 0.017 0.019
a/h=100
iip — —1.5430 - —1.541 —1.549
iy, - —1.1755 -1.172 —1.179
O 0.042 0.0420 0.043 0.042
G 1.753 1.8333 1.835 1.753
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Figure 9. Cylindrical shell with R/h=4 (h=2.5). Transverse shear stress 623 (z=¢).

7. CONCLUSIONS

In this work a model for refined linear analysis of multilayered shells of moderate thickness is
presented. The main features of the model can be briefly summarized as follows:

(i) To approximate displacement distribution across the thickness, the FSDT assumption of its
linear through-thickness variation is refined by adding a zig-zag-shaped C° function and
two additional displacements related to the wrinkling of the cross-section. The resulting
shell element has seven degrees of freedom per node.



(i) Reissner’s mixed variational principle is applied to fulfill the trasnverse shear stress conti-
nuity at the interfaces between two adjacent layers. Transverse shear stresses are assumed
to vary quadratically through each layer. The resulting layer-dependent stress parameters are
eliminated by variationally consistent procedure. As a result, a weak form of constitutive
relations (the so-called weak form of Hooke’s law) is obtained.

(iii) In contrast with the available fully mixed finite element formulations. the proposed RMZC
shell element does not require stress variables as nodal unknowns. Furthermore, when
compared to hybrid formulations, RMZC elements do not require an elimination of stress
variable at an element level.

Numerical examples show that the present approach leads to better solutions tor displacements
and stresses in comparison with other refined models which do not take into account continuity of
interlaminar stresses. In particular, results for moderately thick shells are in very good agreement
with exact 3D solutions and with hybrid FE formulations.

However, since the present model neglects transverse normal stress and related effects (as do the
other refined shell models which do not relate the number of degrees of freedom to the number of
layers), future work will be directed towards inclusion of complete 3D stress state. In this context,
the use of higher order displacement fields becomes essential to analyse thick, unsymmetrically
laminated shells.

APPENDIX A. AN EXAMPLE OF WEAK FORM OF HOOKE'S LAW

A.1. Modification of stress parameter vectors

Let us first modify vectors (11), in accordance with the interlaminar equilibrium conditions (52).
We get

5 {{"F"“‘ia”""",RkﬂRi’}T if K €[1, Ny 1]

= (Al)
{RP!R? }T if K :N!.ay
Collection of all 7k vectors gives
S AT
{XNh,,XNhy—h---le} {Az)
Now we modify Equation (49) in accordance with (A2). The result may be written as
EN‘B)‘
] T =T | g (o KNy =1
{Oxmw,éx;vhyu;,...,éx;} H U-—(H ) . =0 (AS)
7

Unknown stress parameters for all layers of the cross-section may be then obtained as (see (A3))
{Aiys D15+ 21} = (H) ' HU (A4)

Structure of H” and H" is discussed in detail in the next section.



A.2. Matrices (ﬁ“)" and H" for a three-layer case

In what follows, a procedure of getting (H°)~' and H* is explained in detail on example of
three-layered laminate. Let us first write Hf (see (47)) as

[ttlx  [Rlx  [hlk
[Rtlk [RRlx [Rblk (AS)
[btlx  [BRlkx  [BDIk |6y

where top, resultant and bottom values are given in the form of (2 X 2) matrices. Next, H° for
three layers is constructed as explained in Section 4.2. Reduced matrix H” is obtained: (i) by
eliminating the first 2 rows and the first 2 columns of (50); (ii) by eliminating the last 2 rows and
the last 2 columns of (50); (iii) by moving sub-matrices along the diagonal. These modifications
are done to satisfy conditions (52). For the three-layer case we end with

[[RR];  [Rb]s 0 0 0
[bR]; [bb]s 4[] [tR]2 [tb]2 0
He=| @ [Rbl,  [RRL  [Ri] 0 (A6)
0 (b}, [R [bbL+[tth [tR];
0 0 0 [Rt]; [RRT: [ 10510

All the sub-matrices in (A6) are of (2 x 2). Finally, HC is inverted. It proves convenient to write
inverted matrix as a collection of (2 x 2) matrices

A% [(H®E [A™R [H*E E™R]
[A®} (A"} [(A*B [H'T [H*}
(H)™'= |[AM3 (A3 [H™E EYE (HE (A7)
(A% (A" (A% [(HY) [HT)
HYE: %L (AZ0 (3% ™1 s

H* is obtained by imposing interlaminar conditions on H* (see (46) and Section 4.2). We get
matrix of the form

[bo + f/(&5) bi ]
0027

by + f'(¢2) by
02x7)

[ bo + f'(&1) by |

(A8)

(10x7)

Now, {73, %2, %1 }" may be expressed from (A4). Note, that in a general case (H°)~! is a quadratic
(n x n) matrix of dimensions n=4Nyy — 2, while H* is an (n x 7) matrix.



A.3. Transverse shear stress resultants

Let us use (71) to obtain vector of unknown stress parameters ¥, see (Al), of layer K € [1, Miay ).
By using (12) we may get ok, where matrix E in (12) has to be modified in accordance to the
number of stress parameters in vector 7x. By integration of ok through the layer thickness we get

--F!,'( Ity
/ ok pdly = ( Eﬂdfx) Z[HRR]K (bo + f'(ék-)b)U (A9)
by

Jhy 'hK

where E is modification of E defined in (13) (i.e. the columns related to non-appearing stress
parameters in 7k are dropped) and [H*®*]X. are sub-matrices of dimensions (2 x 2) coming from
(A7). By using the following notation:
M,
- ¥ [A™E., o= PIRACD CayS (A10)

K*=1

we can rewrite (A9) in the form of Equation (53):

By 713 ﬂ:-‘i
] ax;tdgﬁ:(aibwo}(b.m:o?f{ ' }+0;( '}»1 (All)
by 723 %3[

and thus relate stress resultants (obtained by through-thickness integration of continuous transverse
stresses) with transverse strains.

APPENDIX B. STRAIN-DISPLACEMENT FINITE ELEMENT MATRICES

Starting from (16) and (19), the following discrete strain—displacement operator relative to the
local Cartesian frame X, %,Z (see Section 5.2) is obtained

- Rl 2 3 4 -
Bm BF?! BHI BI'N

U, oU, B, B} B} B

" U, G ol o 1 2 4 4
:=B U 5e=B 5U, (° B=|B B B B (B1)

i1 2 .3 'y

Uy Uy B{ B,',f B{ Biq

- 2 2 4
B/ B/? B/ B/ 4 (13x28)
Vectors & and U are given in (35); and (7). The membrane part related to the node ‘7’ may be
expressed as

N (X iy Ouxz) Onx2
B;'H:: N (X )T O0ix2)y Oy (B2)
N!{XU )ﬁT ‘1‘N" (XPE)T Oix2)  Oix2) (3x7)



while the bending part (due to the linear distribution of displacements through the thickness)
related to the node ‘/” takes the form

01 %3y N’ (xg O)TA; 01 x2)
Bi: 0(])(3) %:(X )TA; O(IXZ) (B3)
0(1x3) (N,(x“ +N‘ XDA 0x2) 5
x

In accordance with the ANS approach, the transverse shear part (due to the linear distribution of
displacements through the thickness) of (B1) is

B B B} B
B, =[B;, B, B}, B}] = [ o o } (B4)
B; By By By (2x28)
where the following transformation (see (61)) is applied:
o¢ 5}3 lild 6rj
." s 7 ' T
xf afBJ Bsq’ Bsx anB anB (BS)
The transverse shear part of the operator in the direction of ¢ is
Bl = 11 — m)[—(Ta)" [ (X} )" At | O0ix2)J1x7)
BZ = (1 = n)[(Ta )T (XR )T A2 [ 0ax2)lax7)
=11+ MI(Te)" | (Xge) Az [ 0ax2))1x7)
Bl = (1 +m)[—(Tc)" | (Xg)"As | 02 Jaxn) (B6)
and in the direction of 5
=3(1- HI—(Tp)" | (XOD,.,)TAI [ 01 x2)](1x7)
B2, = (1 4+ O[—(Te)" | (X3,,) A2 | 01x2)J1x7)
B}, = 1(1+ O(Ts)" | (XL,,)"As | 0ax2lax7)
=11 = OUT)" | (XL,,)" A4 0ax2]ax7) (B7)
The ¢ and # derivatives of middle surface position vector at the points A, B, C, D are
=1x3-X), X%,=4X3-XD)
0 0 _ w0 0 0 B
xE,n — E(Xﬁ - xz), X-D n= 2(X4 X
while the position of shell director at the points A, B, C, D may be obtained as
Ta=3(T2+Ti), Tc=3(T3+Ts) ©£9)

Tg = 4(T3+T2), Tp=31i(T4+Th)



The bending part of the discrete strain-displacement operator which appears due to the zig-zag-
shaped function may be for the node ‘I’ expressed as

0.3y Opix2) NE(X% )'Q;
B! = 1003 Onxa) N5 (X75)'Q (B10)
Ocix3)  Opuxa (VX% + N (X%)NHQ, A%

The transverse shear part of the discrete strain-displacement operator which appears due to the
zig-zag-shaped function may be, in accordance with ANS approach, expressed as

1 nf.2 pf.3 pfd
Bsf Bs:“ Bsx' Bsf

il pfi2 pfi3 pfid
Bs_ﬁ Bsﬁ Bs}" st' (2x28)

B/ = [B/', B/, B/ B/**] = (B11)

where the same transformation as in (B5) is applied

fa_ O8opn Oy p oy D
B/; _—_;EB;; +oa Bl B/; = 758k +aﬁl}£,f (B12)

The zig-zag transverse shear part of the discrete strain-displacement operator in the direction of
¢ is

B;{,;" = 11 = m)[0x3) |0 x2) | (X2 )" Qi T x7)

B = L1 = m)[00x3) | 01x2) | X%, " Qalaxn)

B{;’} = 2(1+ M0 x3) | O1x2) | (xoc,;—)Téslux'n

B2 = 21+ 00 x3) | Oixay [ (XE )" Qul1x7)

while the zig-zag transverse shear part of the discrete strain-displacement operator in the direction
of n is

(B13)

Bl = 4(1 — O0x3) 1 0ix2) | (X8,)"Qulax7)
B/;* = 11 + )00 x3) | 012 | (X3,,)T Qa1 x7)
B/;® = 1(1 + Ol0ax3) | 01x2) | (XE,)TQsJ17)
B/ = 1(1 = O)00x3) |01 x2) | (X2,) " Qalix7y

Note, that By is a discrete version of by matrix and B{ is a discrete version of b; matrix in (44).

(B14)
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