
Counting small patterns in networks

A dissertation presented
by

Tomaž Hočevar

to
The Faculty of Computer and Information Science

in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

in the subject of
Computer and Information Science

Ljubljana, 

APPROVAL

I hereby declare that this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by another
person nor material which to a substantial extent has been accepted for the award of any
other degree or diploma of the university or other institute of higher learning, except where

due acknowledgement has been made in the text.
— Tomaž Hočevar —

January 

The submission has been approved by

dr. Borut Robič
Professor of Computer and Information Science

examiner

dr. Gašper Fijavž
Professor of Mathematics

examiner

dr. Yuval Shavitt
Professor of Electrical Engineering

external examiner
Tel Aviv University

dr. Janez Demšar
Professor of Computer and Information Science

advisor

PREVIOUS PUBLICATION

I hereby declare that the research reported herein was previously published/submitted
for publication in peer reviewed journals or publicly presented at the following occa-
sions:

[] T. Hočevar and J. Demšar. A combinatorial approach to graphlet counting.
Bioinformatics, ():–, . doi: ./bioinformatics/btt

A pre-copyedited, author-produced version of an article accepted for publication in
Bioinformatics following peer review is included. The version of record Tomaž Hočevar,
Janez Demšar; A combinatorial approach to graphlet counting. Bioinformatics ;  ():
- is available online at
https://academic.oup.com/bioinformatics/article/30/4/559/205331/
A-combinatorial-approach-to-graphlet-counting.

[] T. Hočevar and J. Demšar. Computation of Graphlet Orbits for Nodes and Edges in
Sparse Graphs. Journal of Statistical Software, ():–, .
doi: ./jss.v.i

[] T. Hočevar and J. Demšar. Combinatorial algorithm for counting small induced graphs
and orbits. PLOS ONE, ():–, . doi: ./journal.pone.

I certify that I have obtained a written permission from the copyright owner(s) to
include the above published material(s) in my thesis. I certify that the above material
describes work completed during my registration as graduate student at the University
of Ljubljana.

http://dx.doi.org/10.1093/bioinformatics/btt717
https://academic.oup.com/bioinformatics/article/30/4/559/205331/A-combinatorial-approach-to-graphlet-counting
https://academic.oup.com/bioinformatics/article/30/4/559/205331/A-combinatorial-approach-to-graphlet-counting
http://dx.doi.org/10.18637/jss.v071.i10
http://dx.doi.org/10.1371/journal.pone.0171428

POVZETEK

Univerza v Ljubljani
Fakulteta za računalništvo in informatiko

Tomaž Hočevar
Štetje majhnih vzorcev v omrežjih

Omrežja pogosto uporabljamo za vizualizacijo in analizo relacij med pari entitet, ki
jih predstavimo z množico vozlišč, povezave med njimi pa predstavljajo relacije. Ena
izmed relacij v bioinformatiki, ki jo pogosto modeliramo z omrežji, so interakcije med
pari proteinov. Nedavne študije v zvezi z lokalno strukturo takih omrežij so uporabljale
majhne povezane vzorce s  ali  vozlišči, ki jim rečemo tudi grafki. Vozlišča grafkov
se običajno delijo v orbite glede na njihovo “vlogo” oz. simetrije. Kolikokrat neko
vozlišče v omrežju nastopa v vsaki izmed orbit, predstavlja neke vrste podpis lokalne
strukture v okolici vozlišča. Z zanašanjem na predpostavko, da je lokalna struktura
vozlišča povezana z njegovo funkcijo v omrežju, je raziskovalcem uspelo z uporabo
grafkov napovedati nove funkcije proteinov.

Glavna ovira pristopov na osnovi grafkov je običajno v času, ki ga zahteva štetje
grafkov. Ta omejitev je vedno bolj izrazita zaradi vedno večje količine razpoložljivih
podatkov. Disertacija se posveča izboljšavi obstoječih metod za štetje grafkov. Te na-
mreč delujejo na osnovi enostavnega izčrpnega naštevanja vseh grafkov v omrežju.

V disertaciji predstavljen algoritem Orca prešteje grafke, ne da bi jih naštel, kot to
počnejo ostale metode. Izkorišča povezave med frekvencami orbit za pripravo sistema
enačb, ki ga sestavi izredno učinkovito. Orca za štetje grafkov velikosti 𝑘 našteje zgolj
grafke velikosti 𝑘−1. Tako doseže pohitritev, ki je sorazmerna največji stopnji vozlišča v
omrežju. V praksi to pomeni, da prešteje grafke v večjih omrežjih proteinskih interakcij
 do -krat hitreje.

Algoritem Orca je bil v osnovi razvit za štetje grafkov in orbit vozlišč velikosti  in
. Pristop smo uspešno prilagodili tudi štetju orbit povezav z enakimi prihranki glede
časa izvajanja. Rešitev je možno posplošiti za štetje poljubno velikih grafkov. V ta
namen smo identificirali potrebne pogoje in dokazali, da jih je mogoče izpolniti tudi
v primeru štetja večjih grafkov.

i

ii Povzetek T. Hočevar

Disertacija se posveča tudi problemu generiranja naključnih omrežij s predpisano
porazdelitvijo grafkov. Ta problem predstavlja motivacijo za prilagoditev algoritma
Orca za uporabo v dinamičnih oz. spreminjajočih omrežjih, kjer lahko nastajajo no-
ve povezave ali pa obstoječe propadajo. Spremembe so lahko posledica postopka za
generiranje naključnega omrežja ali pa so del procesa, ki ga omrežje modelira. Gene-
rirana omrežja se zelo približajo želeni porazdelitvi grafkov. Poleg števila grafkov pa so
si podobna tudi po drugih merah lokalne strukture omrežij.

Razviti algoritem je pomembno orodje za analizo omrežij z grafki in predstavlja
pomemben korak k analizi večjih in gostejših omrežij. Kot najhitrejša metoda šte-
tja grafkov je tudi osnova nadaljnjega raziskovanja učinkovitih metod štetja vzorcev v
omrežjih.

Doktorska disertacija temelji na treh objavljenih znanstvenih člankih, ki skupaj s
poglavjem, ki vsebuje še neobjavljeno delo, tvorijo jedro disertacije.

Ključne besede: grafki, orbite, omrežje, graf, podgraf, vzorec, štetje

ABSTRACT

University of Ljubljana
Faculty of Computer and Information Science

Tomaž Hočevar
Counting small patterns in networks

Networks are an often employed tool that can help us visualize and analyze binary
relationships by representing the entities as a set of nodes and the relations between
them as edges in the network. One type of relations in the field of bioinformatics that is
often modeled by networks are interactions between pairs of proteins. Recent studies
have focused on analyzing the local structure of such networks by observing small
connected patterns consisting of  or  nodes, which are also known as graphlets. The
nodes of graphlets are further divided into orbits by their “roles” or symmetries. The
number of times a node from the network participates in each orbit forms a signature of
the node’s local network topology. Working under the assumption that the node’s local
topology is correlated with its function in the network, researchers have successfully
used graphlets to predict new protein functions.

The bottleneck of graphlet-based approaches is usually in the time required to count
them. This restriction is becoming even more pronounced with a growing amount
of available data. This dissertation focuses on improving existing graphlet counting
techniques that are based on simple exhaustive enumeration.

We present the algorithm Orca that counts graphlets and their orbits instead of
enumerating them. It exploits relations between orbit counts to construct a system of
equations that can be set up efficiently. Orca achieves this by enumerating (𝑘 − 1)-
node graphlets to count 𝑘-node graphlets, effectively obtaining a speed-up by a factor
proportional to the maximum degree of a node in the network. In practical terms,
it counts graphlets in larger protein-protein interaction networks about - times
faster.

Orca was designed for counting graphlets with  and  nodes. However, we adapt
the approach to counting edge-orbits in addition to the original node-orbits with the
same gains in run time. We also show that this approach can be generalized to graphlets

iii

iv Abstract T. Hočevar

of arbitrary size by identifying the necessary conditions and proving that these condi-
tions can be fulfilled even for larger graphlets.

Finally, we consider the problem of generating random graphs with prescribed graph-
let distributions. This motivated the adaptation of Orca for dynamic or changing net-
works, where edges can be added or removed. These changes can be a consequence of
the procedure for generating a random graph or can be inherent in the network and
the process it models. The generated graphs closely match the desired graphlet counts
and as a consequence approximate other structural measures as well.

The developed algorithm is a valuable tool for graphlet-based network analysis and a
significant stepping stone towards analyzing larger and denser networks. As the fastest
graphlet counting method it also presents a basis for further development of efficient
pattern counting methods in graphs.

This doctoral dissertation is based on three published papers that together with a
chapter containing some unpublished work form the core of the dissertation.

Key words: graphlets, orbits, network, graph, subgraph, pattern, counting

ACKNOWLEDGEMENTS

I would like to thank my parents who introduced me to programming and computer science
and my advisor for guiding me through the unpredictable waters of research and publish-
ing. I am also especially grateful to all my colleagues who were involved in algorithmic
discussions—related or unrelated to the topic of this dissertation but contributing to the
final result nevertheless.

— Tomaž Hočevar, Ljubljana, January .

v

CONTENTS

Povzetek i

Abstract iii

Acknowledgements v

 Introduction 
. Problem definition . 
. Areas of application . 
. Motivation . 
. Theoretical background . 
. Methodology . 
. Scientific contributions . 

 Overview 
. A combinatorial approach to graphlet counting 
. Computation of graphlet orbits for nodes and edges in sparse graphs 
. Combinatorial algorithm for counting small induced graphs and orbits 

 A combinatorial approach to graphlet counting 
. Abstract . 
. Introduction . 

.. Motivation . 
.. Related work . 

. Methods . 
.. Orbits in four-node graphlets 

vii

viii Contents T. Hočevar

.. Counting complete graphlets 
.. Orbits on five-node graphlets 

. Results and Discussion . 
. Conclusion . 
. Supplementary . 

.. Results on random networks 
.. Log-scale graphs . 

 Computation of graphlet orbits for nodes and edges in sparse graphs 
. Abstract . 
. Introduction . 
. Combinatorial approach to orbit counting 

.. Node orbits . 
.. Edge orbits . 
.. System of equations . 
.. Algorithm . 

. The orca package . 
.. Functions . 
.. Usage example on the Schools Wikipedia network 

. Conclusion . 
. Acknowledgments . 

 Combinatorial algorithm for counting small induced graphs and orbits 
. Abstract . 
. Introduction . 

.. Preliminaries . 
.. Related work . 
.. Outline of the proposed algorithm 
.. Original contributions . 

. Relations between orbit counts . 
.. Derivation of general relations between orbit counts 
.. Additional constraints on selection of y 
.. Equation for a cycle on  nodes 
.. System of equations . 

ix

.. Extension to edge orbits 
. Algorithm . 

.. Time- and space-complexity 
. Final remarks . 

 Graphlet counting in dynamic graphs 
. Generating random graphs . 
. Dynamic Orca . 

.. Overview of Orca . 
.. Dynamic operations . 
.. Maintaining graphlet counts 

. Experiments . 

 Conclusion 
. Influence . 
. Future work . 

A Razširjeni povzetek 
A. Uvod . 
A. Prispevki k znanosti . 
A. Orca . 
A. Večji grafki . 
A. Sprotno štetje in naključna omrežja 
A. Zaključek . 

B Graphlet equations 
B. Equations for node-orbit counts in -graphlets 
B. Equations for edge-orbit counts in -graphlets 
B. Equations for node-orbit counts in -graphlets 
B. Equations for edge-orbit counts in -graphlets 

Bibliography 



Introduction



  Introduction T. Hočevar

. Problem definition

Networks naturally arise in many different disciplines and are modeled as graphs.
Small patterns in these graphs can uncover the basic building blocks of networks and
help us understand the structure and properties of these networks. However, their
discovery and counting remain computationally intensive tasks. We can estimate the
pattern frequencies on random samples, yet in some applications we would prefer to
know their exact frequencies. This motivates the research of efficient methods for exact
pattern counting in sparse graphs.

We will refer to these small connected patterns that occur as induced subgraphs
in the network as graphlets []. For an even finer description, the nodes of graphlets
can be further divided into their automorphism orbits [] or roles of individual nodes.
Figure . illustrates all -node and -node graphlets along with their orbits. The
graphlet counting problem consists of computing the orbit distribution for every node
in the graph—how many times does a node in the graph participate in each of the
orbits? This gives us a topological signature of a node’s local neighbourhood.

Problem definition Given a simple graph 𝐺, we would like to compute every
node’s frequency distribution of orbits from graphlets with at most 𝑘 nodes that appear
as induced subgraphs in𝐺. Figure . illustrates the problem on a simple toy network.

Graphlet and orbit distributions can be viewed as generalizations of a node degree,
which corresponds to the first non-trivial graphlet consisting of two connected nodes.
We can extend the notion of orbits to edges and observe edge-orbits [] as defined
by edge-automorphisms of the patterns. The number of common neighbours of two
adjacent nodes is equivalent to the number of triangles spanning over a given edge.
This suggests that an edge-orbit distribution provides a generalization of the number
of common neighbours, which is an important feature in network analysis.

The graphlet counting problem differs from motif detection in networks [, ].
However, the term motif is sometimes also used in the same way as graphlet or pat-
tern and is not limited to the statistically too frequent patterns. We are interested in
frequencies of all patterns because the most infrequent ones might also be the most
important in a given area of application. For a similar reason we also focus on ex-
act computation although there have been several attempts at approximating graphlet
distributions [–].



. Areas of application

Network analysis with graphlet distributions has been so far used mainly in bioin-
formatics but is in no way limited to this area []. Protein-protein interaction (PPI)
networks have been the main subject of graphlet analysis. They have been used to find
random network models [] that fit real PPI networks, cluster proteins and predict new
protein properties [] and predict new genes related to cancer [] or aging [].

Graphlets can also assist in other analytic methods, such as global network align-
ment. GRAAL [] is an algorithm for aligning arbitrary networks based solely on
their topology, which employs a local topology similarity measure based on graphlet
degree vectors. The technique was used to show the large amount of shared network
topology between yeast and human PPI networks, which can be used to predict bio-
logical functions of aligned proteins or reconstruct phylogenetic trees. H-GRAAL []
aligns networks by reducing the problem to a weighted bipartite matching that can be
solved with Hungarian algorithm []. Finally, MI-GRAAL [] integrates multiple
sources of node similarity information, including the graphlet degree vectors.

. Motivation

There is a number of graphlet counting tools, which are used in bioinformatics. FAN-
MOD [] is a network motif detection tool based on sampling random subgraphs
and comparing their counts with those from random network models. Whelan []
developed GraphletCounter, which works as a Cytoscape [] plugin and merges
graphlet analysis with visual inspection of the network. GraphCrunch [, ] also
provides methods for further analysis and comparison of computed graphlet distribu-
tions. Rapid Graphlet Enumerator (RAGE) [] is one example of a faster graphlet
counting algorithm. Instead of counting the induced subgraphs directly, it recon-
structs them from counts of non-induced subgraphs. Unlike FANMOD and Graph-
Crunch, RAGE works only for up to four-node graphlets.

All previously mentioned methods rely on an exhaustive enumeration of graphlets.
Despite limiting the analysis to patterns on at most five nodes, this already presents
a significant problem on larger PPI networks. For example, an estimated run time
of GraphCrunch for counting graphlets of size five in human PPI network from the
BioGRID database [] is several months. One possibility is to exploit hardware op-
timizations [] which reduce the time by a constant factor, but we will need new

  Introduction T. Hočevar

algorithmic approaches with such fast growth of available data and size of networks.

. Theoretical background

A classic result by Itai and Rodeh [] refers to counting triangles in a graph. Raising
the graph’s adjacency matrix 𝐴 to the third power gives the number of paths of length
 between pairs of nodes. Elements 𝐴􏷢𝑥,𝑥 give the number of paths of length  that
start and finish in the node 𝑥, which equals twice the number of triangles that include
𝑥. The total number of triangles is then 􏷠

􏷥
∑𝑥∈𝐺𝐴􏷢𝑥,𝑥. Note that the same triangle

is counted twice for each of its three nodes. The time complexity of this procedure
equals that of multiplying two matrices. A natural extension of this result deals with
counting larger cliques of size 𝑘 in a graph. More precisely, can this be accomplished
faster than with an exhaustive enumeration which would require 𝑂(𝑛𝑘) time in dense
graphs? Nešetřil and Poljak [] showed that clique detection problem can indeed be
solved faster by reducing the original problem to detection of triangles in a graph with
𝑂(𝑛𝑘/􏷢) nodes. Since we can detect triangles faster than in 𝑂(𝑛􏷢) with fast matrix
multiplication algorithms [, ], we can also detect cliques of size 𝑘 faster than
𝑂(𝑛𝑘).

A different approach exploits the relations between the numbers of occurrences of
induced subgraphs in a graph. Kloks et al. [] presented a system of equations that
allows computing the number of occurrences of all six possible induced four-node
subgraphs if we know the count of any of them. The time complexity of setting up
the system equals the time complexity of multiplying two square matrices of size 𝑛.
Kowaluk et al. [] generalized the result by Kloks to counting subgraph patterns of
arbitrary size. Their solution depends on the size of the independent set in the pattern
graph and fast matrix multiplication techniques.

It is interesting to note that the problem of counting all induced patterns is equiv-
alent to counting all non-induced patterns. These counts are connected through a
simple system of equations. However, counting a single pattern is easier in some cases
of non-induced patterns. All induced patterns seem to be equally difficult to count
[], while non-induced patterns with large independent sets seem to present an easier
problem. For example, counting a star graph with 𝑘 nodes can be achieved simply by
summing 􏿴 deg(𝑥)

𝑘−􏷪 􏿷 over all nodes 𝑥.
How distinctive are graphlets as a signature for topological structure of networks?

A closely related problem is the Reconstruction conjecture [], which states that any



graph on at least three nodes is uniquely determined by the multiset of its vertex-
deleted subgraphs. The conjecture has been verified for graphs on up to  nodes by
McKay []. However, the frequency of small connected patterns (graphlets) does not
uniquely define the graph itself. Fig. . shows the smallest (in terms of the number
of nodes and edges) example of two such graphs. The graphs are not isomorphic: the
first one is planar while the second one contains 𝐾􏷢,􏷢 (a complete bipartite graph with
three nodes on each side), which is a known non-planar graph. However, they contain
the same number of all -node graphlets. For example, they both contain  edges
(graphlet ), no triangles (graphlet ),  star graphs 𝑆􏷣 (graphlet ), etc.

Figure .
An example of two noniso-
morphic graphs with equal
-node graphlet counts.

. Methodology

Existing methods consist of a simple exhaustive enumeration or rely on fast matrix
multiplication techniques. The former are becoming too slow on larger networks and
the latter are unsuitable on sparse networks that typically arise in practical applications.
Our research was focused on developing a new method that outperforms exhaustive
enumeration methods and is suitable for sparse networks.

We focus on developing a counting algorithm instead of trying to optimize enumer-
ation approaches. No matter how optimized such enumeration approach is to avoid
listing the same item several times, it still has to list each of them at least once. A
counting approach can improve upon such methods by observing some patterns and
by considering entire batches of items in a single operation, i.e. adding more than 
to the accumulated result in one operation.

A trivial example is that of counting even numbers in the range from 1 to 𝑛. Iterating
over all numbers in the range and checking whether a number is odd or even is clearly
a waste of time. The pattern is obvious: every other number is even, therefore there

  Introduction T. Hočevar

are ⌊𝑛/2⌋ of them. Things get slightly more complicated if we’re interested in numbers
divisible by  or . There are ⌊𝑛/2⌋ multiples of  and ⌊𝑛/3⌋ multiples of . But we
over-counted those that are divisible by  and , i.e. multiples of . Subtracting ⌊𝑛/6⌋
gives the correct answer. A generalization of this is the inclusion-exclusion principle.

Let’s move on to counting problems in graphs. Suppose we want to count the
number of triangles. One approach is to consider every edge in the graph and try to
count in how many triangles it occurs. We will obviously over-count the triangles.
However, the good news is that we will over-count them exactly three times. Every
triangle will be considered once for each of its three edge. How can we efficiently
count triangles spanning over a given edge in the graph without actually considering
all triangles? A short answer is: not in a simple way. This is exactly the number of
common neighbours of edge’s endpoints. By adding the degrees of the endpoints we
would consider all common neighbours but also the non-common ones. We would
obtain the number of triangles and the number of paths of length  that contain this
edge.

Constructing an expression to count exactly that one pattern, which we set out to
count, turns out to be rather difficult. Instead we change our approach to constructing
an entire system of such equations. As long as the number of these equations is large
enough and they are independent, we can solve the system to obtain the numbers we
want. Moreover, the system of equations must be efficient to set up.

. Scientific contributions

This section summarizes the principal scientific contributions. With each contribution
I list the dissertation sections where the topic is discussed and the references to the
publications of which I was the first author. The listed references were published in
internationally renowned scientific journals and were thus internationally reviewed
and discussed. All article were published in journals from the top half of the Science
Citation Index (SCI) by their Impact Factor in at least one field of research.

The following scientific contributions are presented in this dissertation:

An orbit counting algorithm for four-node and five-node graphlets

I developed an Orbit counting algorithm (Orca) for counting graphlets and or-
bits. The algorithm is capable of counting node- and edge-orbits of four- and
five-node graphlets. Its substantial advantage over existing graphlet counting



methods comes from a combinatorial approach to counting instead of enumer-
ating.

The contribution is covered by chapters  and  that contain reformated versions
of journal papers [] and [].

A general algorithm for counting node and edge orbits

I generalized the approach for generating equations required by the Orca al-
gorithm and proved that such equations can be derived for arbitrarily large
graphlets and are therefore not limited to sizes four and five.

The paper [] addressing this topic is included in chapter .

A dynamic orbit counting algorithm for changing networks

I adapted Orca for the dynamic setting with interleaved additions and removals
of edges and graphlet count queries on individual nodes. This dynamic algo-
rithm can be used to generate random networks with desired graphlet counts.

Chapter  contains our so far unpublished research results.



Overview



  Overview T. Hočevar

This chapter gives an overview of the published journal papers that comprise this dis-
sertation. The papers have been reformatted to fit the dissertation template and contain
some minor corrections that were suggested by the committee members.

Recent development of high-throughput experimental techniques for detecting pro-
tein interactions [, ] led to a rapid increase in the amount of available data and
establishment of large protein interaction databases [, ]. Consequently, there is
also an increasing need for more efficient algorithms for processing this data, which is
usually presented in the form of networks. One of the concepts used in connection
with PPI networks are graphlets. Counts of these small patterns have been used as a
signature of local network topology to predict protein functions [] and as a statistic
for many other applications. The first paper presents our algorithm Orca that addresses
this problem.

Graphlet analysis has been recently extended from the concept of node-orbits to
edge-orbits in an attempt to overcome the problem of node membership in several
functional groups simultaneously. By clustering edges instead of nodes (according
to their graphlet signatures) the authors of [] were able to identify new pathogen-
interacting proteins and hence new drug target candidates. The second paper ad-
dresses the problem of counting edge-orbits by employing a similar approach as the
one used in our initial algorithm Orca. We also present a graphlet counting library
for programming language R. In contrast with the first paper, this one focuses on the
implementation details that lead to observed speed-ups.

After improving node- and edge-orbit counting algorithms for - and -node graph-
lets we turn to the problem of computing orbits counts of larger graphlets. More
specifically, can the approach of our Orca algorithm be generalized to graphlets of
arbitrary size? This problem is of more theoretical interest because the number of
graphlets grows rapidly with their size (Table .). -dimensional node description
vectors would be quite sparse and not too informative for analyzing networks. Besides,
-node graphlets would cover most of the network anyway, contradicting the idea of
graphlet frequencies as a measure of local topology.

Some of our yet unpublished work on adapting the algorithm to a dynamic setting
of the problem and its use for generating graphs with desired graphlet frequencies is
presented in Chapter . Some networks exhibit dynamic properties where new connec-
tions are being added and old ones removed. Because each connection change affects
only its local neighbourhood, we can efficiently update algorithm’s internal structures.



Table .
Number of 𝑘-node graphlets. See also http://oeis.org/A001349.

𝑘         
graphlets         

We developed a dynamic version of Orca for counting -node graphlets. The algo-
rithm supports additions and removals of edges that can be interleaved with graphlet
counting queries for a specific node. The addition and removal operations efficiently
update the internal data structures. Queries can then use these values to set up the
system of equations and finally solve it to obtain the actual orbit counts.

The dynamic algorithm was developed with a specific application in mind—how
to generate a random graph that closely approximates given graphlet frequencies. Un-
fortunately, the developed dynamic version of Orca was not fast enough for our ap-
proach to generating random graphs and was optimized even further for maintaining
the graphlet counts in networks after every modification (addition or removal of an
edge).

. A combinatorial approach to graphlet counting

In this paper we present our graphlet counting algorithm Orca. We focus on the
practical use of the algorithm in bioinformatics for counting graphlets in PPI networks.

The algorithm exploits relations between orbit counts for efficient computation.
Systems of equations by Kloks [] and Kowaluk [] rely on fast matrix multiplication
techniques and are therefore not feasible on sparse networks. Our results show that
we can systematically design a different system of equations for four-node and five-
node graphlets with the purpose of efficient graphlet counting in sparse graphs. Our
system of equations also relates orbit counts as opposed to only graphlet counts. The
proposed system of equations is obtained through observing possible extensions of
smaller patterns with another node. To make use of these relations we have to select
and efficiently enumerate a single orbit while the other orbit counts can be computed
from the previously derived relations. For this, we focus on cliques because there are
very few of them in sparse networks and we can efficiently enumerate them with some
known enumeration algorithms [, ].

We evaluated our algorithm by comparing it with existing methods on PPI net-

http://oeis.org/A001349

  Overview T. Hočevar

works. The algorithm exhibits a speed-up proportional to the maximum degree of a
node in the graph, which coincides with the theoretical estimate of its time complex-
ity. It is - times faster on the larger PPI networks and as much as  times
faster on the largest human PPI network that we used in our experiments.

A reformated version of the paper [] is inserted as Chapter .

. Computation of graphlet orbits for nodes and edges in sparse
graphs

This paper presents a package orca for programming language R that is capable of
efficiently counting node-orbits and edge-orbits of -node and -node graphlets. Note
that we could reduce the problem of counting edge-orbits to counting node-orbits in
line graphs. However, the obtained line graphs would be much larger in terms of the
number of nodes in the network as well as in the size of the patterns.

We derive edge-orbit relations using a similar technique as for deriving node-orbit
relations. For every edge-orbit of a graphlet we are able to select a special node such
that we can list all patterns without this special node and for each of them count the
number of missing special nodes that exist in the host graph. In contrast to counting
node-orbits, this special node should not coincide with the endpoints of the edge.

We provide a system of equations that can be employed in a graphlet counting
algorithm and show how the obtained system translates to the implementation of the
algorithm. The expected speed of counting edge-orbits is the same as that for counting
node-orbits. The paper concludes with a demonstration of the use of the developed
package. The demo finds related concepts or entities in the Wikipedia for Schools
network.

A reformated version of the paper [] is inserted as Chapter .

. Combinatorial algorithm for counting small induced graphs
and orbits

After a successful development of Orca for -node and -node graphlets we generalized
our algorithm to counting orbits of graphlets of arbitrary size. Melckenbeeck et al. []
attempted to do the same but overlooked a crucial requirement that the system should
be efficient to build from a given network in order to offer the promised speed-up.
Their systems of equations, while correct, does not lead to an efficient algorithm.



We identified the necessary conditions for systematically constructing an efficient
system of equations relating the orbit counts. Next, we proved that we can indeed
construct equations satisfying these conditions for graphlets of arbitrary size. The paper
also contains an analysis of algorithm’s expected time complexity on random Erdos-
Renyi graphs.

A reformated version of the paper [] is inserted as Chapter .



A combinatorial approach to
graphlet counting



  A combinatorial approach to graphlet counting T. Hočevar

Bioinformatics

A combinatorial approach to graphlet counting

Tomaž Hočevar and Janez Demšar

Faculty of Computer and Information Science, University of Ljubljana,
SI- Ljubljana, Slovenia

. Abstract

Motivation: Small induced subgraphs called graphlets are emerging as a possible tool
for exploration of global and local structure of networks, and for analysis of roles of
individual nodes. One of the obstacles to their wider use is the computational com-
plexity of algorithms for their discovery and counting.
Results: We propose a new, combinatorial method for counting graphlets and orbit
signatures of network nodes. The algorithm builds a system of equations that connect
counts of orbits from graphlets with up to  nodes, which allows to compute all orbit
counts by enumerating just a single one. This reduces its practical time complexity in
sparse graphs by an order of magnitude as compared to the existing, pure enumeration-
based algorithms.
Availability: Source code is available freely at
http://www.biolab.si/supp/orca/orca.html
Contact: tomaz.hocevar@fri.uni-lj.si

. Introduction

Following the advent of high-throughput methods more than a decade ago, analysis
of complex network data has assumed the central role among computational methods

http://www.biolab.si/supp/orca/orca.html
tomaz.hocevar@fri.uni-lj.si



in bioinformatics. The huge size of such networks on one hand, and the computa-
tional intractability of the related methods on the other, have spawned a number of
innovative analytic approaches.

G
9

15

16

17

G
11

22

23

G
10

18

20

21

19

G
13

27

28

30

29

G
12

25

26

24

G
14

32

33

31

G
15

34

G
19

45

47

48

46

G
16

35

38

37

36

G
17

39

42

40

41

G
18

43

44

G
20

49

50

G
21

51

52

53

G
22

55

54

G
23

56

58

57

G
24

59
60

61

G
25

63

62

64

G
27

68

69

G
26

66

67
65

G
29

72

G
28

70

71

G
ra

p
h

le
ts

 o
n

 f
iv

e
n

o
d

es

G
0

0

G
ra

p
h

le
t

o
n

tw
o

 n
o

d
es

G
1

1

2

G
2

3

G
ra

p
h

le
ts

 o
n

th
re

e
n

o
d

es

G
6

10

11

9

G
7

12

13

G
8

14

G
3

4

5

G
4

6

7

G
5

8

G
ra

p
h

le
ts

 o
n

fo
u

r
n

o
d

es

Figure .
Graphlets with – nodes
and automorphism orbits.
Notation follows []. Col-
ors are chosen arbitrarily;
nodes of the same color
belong to the same orbit
within that graphlet, e.g.
both black nodes in 𝐺􏷪􏷭
belong to orbit .

Przulj et al. [] described an approach focused on small induced subgraphs called
graphlets. Due to combinatorial explosion, such analysis is usually limited to the 
graphlets with – nodes (Fig. .). The number of appearances of graphlets in the
network provides a description of the network’s structural properties. On a local level,
counting how many times a particular node participates in each kind of graphlet in-
duced in the network gives a topological signature of the node’s neighbourhood rep-
resented as a -dimensional vector.

For a finer description, the nodes of every graphlet are partitioned into orbits [],
which are equivalence classes under the action of its automorphism group. Two nodes
belong to the same orbit if they map to each other in some isomorphic projection
of the graphlet onto itself. Nodes of graphlets on – points are grouped into 
orbits shown by numbers and node colors in Figure .. For instance, the five nodes
from 𝐺􏷠􏷣 belong to three different orbits, marked with different colors and numbers;
the black (as well as the gray) nodes have symmetric positions in the graphlet and thus
belong to the same orbit ( for the black,  for the gray), and the white node belongs
to the orbit . By counting the number of times a node of a graph appears in each
orbit, the node can be described by a -dimensional vector of orbit counts, which
reflects its position with respect to the local structure and gives insight into its role in

  A combinatorial approach to graphlet counting T. Hočevar

the network.
Existing methods for counting the graphlets and orbits are based on direct enumer-

ation: in order to count them, they need to find all their embeddings in the network.
We propose a new method, Orbit Counting Algorithm (Orca), which reduces the
time complexity by an order of magnitude by computing the orbit counts using the
relations between them and directly enumerating only smaller graphlets.

.. Motivation

Graphlets are used for different kinds of analyses in bioinformatics. Milenković and
Przulj [] designed a method for comparing node neighbourhoods based on graphlets
and demonstrated that clusters of nodes in protein-protein interaction (PPI) networks,
obtained with their graphlet-based distance measure, share common protein proper-
ties. They showed how to use this approach to predict functions of proteins and their
memberships in protein complexes, subcellular compartments and tissue expressions.
Milenkovic et al. [] studied the relation between cancer genes and their network
topology. They examined several clustering methods based on a graphlet similarity
measure and found a difference between the PPI network structure around the cancer
and non-cancer genes. Around  of the predicted cancer gene candidates have in-
deed been validated in the literature. Similarly, cost functions for network alignment
that are based on graphlet degree vectors show superior results in comparison with
other state-of-the-art methods. In particular, Milenković et al. [] showed how align-
ment between the PPI networks of S. cerevisiae, D. melanogaster and C. eleganswith the
human PPI network can be used for identification of genes related to aging, which are
difficult to observe directly for humans due to our long lifespans. Milenković et al. []
also applied graphlets to estimate node’s topological centrality. Their graphlet degree
centrality measure is based on graphlet degree vectors and captures density and com-
plexity of a node’s extended neighbourhood. They showed that the genes participating
in key biological processes also reside in complex and dense parts of networks.

Hayes et al. [] argue that in order to understand the biological networks, we need
to find the mathematical models describing their structure, even though this may not
be of direct predictive use. Przulj et al. [] used graphlet distributions to show that
geometric graphs match the structure of protein-protein interaction (PPI) networks
better than Erdős-Rényi and scale-free graph models. Using a number of large PPI
networks, Hayes et al. [] further showed that while the network structure may be



unstable in regions with low edge density, high density regions are suitable for network
comparison using graphlet degree distributions.

Graphlets can also assist in other analytic methods, such as global network align-
ment. GRAAL [] is an algorithm for aligning arbitrary networks based solely on
their topology, which employs a local topology similarity measure based on graphlet
degree vectors. The technique was used to show the large amount of shared network
topology between yeast and human PPI networks, which can be used to predict bi-
ological functions of aligned proteins or reconstruct phylogenetic trees. H-GRAAL
[] aligns networks by reducing the problem to a weighted bipartite matching that
can be solved with Hungarian algorithm. Finally, MI-GRAAL [] integrates multiple
sources of node similarity information, including the graphlet degree vectors.

Solava et al. [] extended the use of graphlets by defining the orbits for graphlet edges
and demonstrated their use with a new clustering method that is not limited to locally
similar edges and allows some overlap between clusters. As a practical result, they
predicted new pathogen-interacting proteins from clusters in the human PPI network
that represent drug target candidates.

Graphlet analysis is therefore a useful tool for bioinformatics and with the increase
of available data there is also a growing need for fast graphlet counting tools.

.. Related work

We will denote the explored graph as 𝐺 = (𝑉, 𝐸). Let 𝑛 = |𝑉| and 𝑒 = |𝐸| be the
number of nodes and edges, and let 𝑑 denote the maximal node degree. Let 𝑁(𝑢)
denote the set of nodes adjacent to node 𝑢. In numbering the graphlets and orbits, we
follow Przulj []; we refer to the 𝑗-th graphlet and 𝑖-th orbit by𝐺𝑗 and𝑂𝑖, respectively.

Counting subgraphs is a computationally intensive task. Common approaches to
speed it up include sampling [–], exploiting pattern symmetries [] or using re-
configurable hardware accelerators based on FPGA chips [].

The method described in this paper is related to the approach developed by Kloks
et al. [], who constructed a system of equations that allows computing the number
of occurrences of all six induced four-node subgraphs by knowing the count of any
of them. The time complexity of setting up the system equals the time complexity of
multiplying two square matrices of size 𝑛. We extend this approach to counting how
many times each node participates in each orbit. Our method also works on five-node
graphlets and scales better on sparse graphs. Kowaluk et al. [] generalized the result

  A combinatorial approach to graphlet counting T. Hočevar

by Kloks et al. to count subgraph patterns of arbitrary size.
There are several programs for graphlet counting and motif detection that are used

in bioinformatics. FANMOD [] is a network motif detection tool based on sam-
pling random subgraphs and comparing their counts with those from random network
models. Besides implementing a novel sampling algorithm [] it also provides a full
enumeration procedure for graphlets on – nodes. Whelan and Sönmez [] de-
veloped GraphletCounter, which works as a Cytoscape plugin and merges graphlet
analysis with visual inspection of the network.

GraphCrunch [] is a tool for large network analysis. It includes a function for
computing orbit signatures of every graph node for graphlets of up to five nodes using
an enumeration procedure with correction for over-counting some of the graphlets.
A well-organized enumeration method imposes constraints that eliminate the need
for isomorphism testing except for distinguishing between a few different graphlets;
this is further accelerated by comparing the number of edges and individual node
degrees. GraphCrunch has been extended with a new method for topological network
alignment and with comparison of the networks with some additional mathematical
models []. The graphlet counting procedure in the new version remained essentially
the same.

Rapid Graphlet Enumerator (RAGE) [] takes a different approach to counting
four-node graphlets. Instead of counting the induced subgraphs directly, it recon-
structs them from counts of non-induced subgraphs. For computing the latter, it
uses specifically crafted methods for each of the  possible subgraphs (𝐺􏷢 to 𝐺􏷧 in
Fig. .). The time complexity of counting non-induced cycles and complete graphs
is𝑂(𝑒⋅𝑑+𝑒􏷡), while counting other subgraphs requires𝑂(𝑒⋅𝑑). Another bound, which
is also more suitable for comparison with our method, is𝑂(𝑒 ⋅ 𝑑􏷡) = 𝑂(𝑛 ⋅ 𝑑􏷢). Unlike
FANMOD and GraphCrunch, RAGE works only for up to four-node graphlets.

. Methods

Let 𝑥 represent a certain node of interest in graph 𝐺. Our task is to compute the
number of times, 𝑜𝑖, that 𝑥 appears in each orbit 𝑂𝑖 across all graphlets induced in
𝐺. We will present an approach based on a system of linear equations that relate the
orbit counts 𝑜𝑖. The rank of the system is smaller than the number of orbits by one,
so we can compute all values of 𝑜𝑖 from directly enumerating only a single one. The
algorithm allows to compute the orbits for all points 𝑥 in a graph in time that is smaller



than the existing, direct enumeration approaches by an order of magnitude.
We will first show how to construct a system of equations for four-node graphlets.

As for the single orbit that must be enumerated, we chose𝑂􏷠􏷣, which represents nodes
of the complete graph, 𝐾􏷣 (or 𝐺􏷧); we show an efficient way to enumerate it. The
approach used for four-node graphlets is less suitable for larger graphlets, so we present
a different technique for five-node graphlets.

.. Orbits in four-node graphlets

Right-hand sides of equations we are about to construct contain terms that are com-
puted from the graph 𝐺. Let 𝑐(𝑢, 𝑣) = |𝑁(𝑢)∩𝑁(𝑣)| denote the number of common
neighbours of nodes 𝑢 and 𝑣. Let 𝑝(𝑢, 𝑣) denote the number of paths on three nodes
that start at node 𝑢, continue with 𝑣 and end with some node 𝑡, which is not connected
to 𝑢. We can compute 𝑝(𝑢, 𝑣) as 𝑝(𝑢, 𝑣) = 𝑑𝑒𝑔(𝑣) − 1 − 𝑐(𝑢, 𝑣).

If some node 𝑥 participates in a 𝑘-node graphlet 𝐺𝑖, it also participates in some
(𝑘 − 1)-node graphlet 𝐺𝑗. This can be seen by removing one of the graphlet’s nodes
that are the farthest away from 𝑥. The subgraph induced by the remaining nodes is
connected (otherwise a whole component of the resulting graph would be farther from
𝑥), so it is isomorphic to some (𝑘 − 1)-node graphlet 𝐺𝑗.

We will use this observation in reverse: every four-node graphlet can be constructed
by adding a node to some three-node graphlet(s). To find the relations between counts
of orbits in four-node graphlets for a certain node 𝑥, we enumerate all three-node
graphlets touching the node and count their possible extensions with the fourth node.

An example is shown in Figure .. Nodes 𝑥, 𝑦 and 𝑧 induce graphlet 𝐺􏷠, a path
on three nodes; we will observe its extensions to four-node graphlets with the fourth
node, 𝑤, connected to 𝑦 and 𝑧 (dashed lines). The number of such nodes 𝑤 is 𝑐(𝑦, 𝑧).
In our example, there are 𝑐(𝑦, 𝑧) = 3 such nodes, which we marked by 𝑤􏷠, 𝑤􏷡 and
𝑤􏷢 (Fig. .(a)). The edge (𝑥, 𝑤) might exist in the graph 𝐺 (as in the case of 𝑤􏷢,
the dotted line) or not (as for 𝑤􏷠 and 𝑤􏷡). With no edge, nodes 𝑥, 𝑦, 𝑧 and 𝑤 form
a paw (𝐺􏷥) with 𝑥 in orbit 𝑂􏷨 (Fig. .(b)). With an edge between 𝑥 and 𝑤, they
form a diamond (𝐺􏷦) with 𝑥 in orbit 𝑂􏷠􏷡 (Fig. .(c)). Since all 𝑐(𝑦, 𝑧) nodes in
𝑁(𝑦) ∩ 𝑁(𝑧) must participate either in 𝐺􏷥 or 𝐺􏷦, which puts 𝑥 in 𝑂􏷨 or 𝑂􏷠􏷡, this
gives 𝑜􏷨 + 𝑜􏷠􏷡 = 𝑐(𝑦, 𝑧) for the particular triplet 𝑥, 𝑦 and 𝑧.

We sum this over all possible three-node paths starting at 𝑥. Summation must ac-
count for symmetries: each graphlet 𝐺􏷥 appearing in the graph is counted twice with

  A combinatorial approach to graphlet counting T. Hočevar

Figure .
Relation between orbits
𝑂􏷲 and 𝑂􏷪􏷫 . Solid lines
are edges in the three-node
graphlet being extended.
Dashed lines exist by
definition: 𝑤 (or 𝑤𝑖) are
the common neighbours of
𝑦 and 𝑧. Dotted lines are
optional edges that make
the resulting four-node
graphlet on 𝑥, 𝑦, 𝑧 and 𝑤𝑖
isomorphic to 𝐺􏷯 or 𝐺􏷰 .

x

y

z

w
1

w
2

w
3

c(y, z) = 3

(a)

x

y

z

w
10

10

11

9

G
6

(b)

x

y

z

w

12

12

13
13

G
7

(c)

roles of 𝑧 and 𝑤 reversed, and 𝐺􏷦 is counted twice with reversed roles of 𝑦 and 𝑤.
Accounting for this, we get

2𝑜􏷨 + 2𝑜􏷠􏷡 = 􏾜
𝑦,𝑧∶ 𝑥,𝑧∈𝑁(𝑦)
𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷪

𝑐(𝑦, 𝑧),

where ≅ denotes graph isomorphism (e.g., 𝐺[{𝑥, 𝑦, 𝑧}], a subgraph on nodes 𝑥, 𝑦, 𝑧, is
isomorphic to 𝐺􏷠, a path with three nodes).

For a different example, we will relate orbits 𝑂􏷥 and 𝑂􏷨. We will extend a path
on nodes 𝑥, 𝑦 and 𝑧 with another path that starts with nodes 𝑥 and 𝑦; we denoted
the number of such paths by 𝑝(𝑥, 𝑦) (Fig. .(a)). Depending on whether the new
node is adjacent to 𝑧, the extended graphlet is either a claw (𝐺􏷣, Fig. .(b)) or a paw
(𝐺􏷥, Fig. .(c)). After accounting for symmetries and subtracting  since 𝑝(𝑥, 𝑦) also
covers the case when 𝑤 = 𝑧, we get

2𝑜􏷥 + 2𝑜􏷨 = 􏾜
𝑦,𝑧∶ 𝑥,𝑧∈𝑁(𝑦)
𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷪

􏿴𝑝 􏿴𝑥, 𝑦􏿷 − 1􏿷 .

There are only two three-node graphlets and relatively few possible extensions. In-
vestigating all possibilities in a similar manner yields  linearly independent equations
with  variables that correspond to counts of  orbits in four-node graphlets (see the
Supplementary).

Right-hand sides depend on the graph 𝐺 and need to be computed for each point
𝑥. To accelerate their computation, we precompute values of 𝑐(𝑢, 𝑣) and 𝑝(𝑢, 𝑣). In all



x

y

z

w
1

w
2

w
3

p(x, y) - 1 = 4

w
4

(a)

6

G
4

x

y

z

w

6

7
6

(b)

G
6

x

y

zw

9

11

10
10

(c)

Figure .
Relation between orbits 𝑂􏷯
and 𝑂􏷲 . Edges are marked
like in Figure ..

equations, except for the last one, 𝑐(𝑢, 𝑣) is computed on pairs of nodes (𝑢, 𝑣) that are
connected; in 𝑝(𝑢, 𝑣), they are connected by the definition of 𝑝. It therefore suffices
to precompute 𝑐(𝑢, 𝑣) and 𝑝(𝑢, 𝑣) only for all pairs of adjacent nodes 𝑢 and 𝑣, which
requires𝑂(𝑒) space. The last equation, in which the new node closes a cycle, is treated
separately. Nodes 𝑥 and 𝑧 are not adjacent but we can pre-compute the number of
paths of length  that start at node 𝑥 and end at node 𝑦. This requires 𝑂(𝑛) space
for each point; since we compute orbits for one point at a time, this memory can be
recycled. Altogether, all lookups in the sums on the right-hand sides can be done in
constant time by sacrificing the memory of size𝑂(𝑒+𝑛) for precomputed values 𝑐(𝑥, 𝑦)
and 𝑝(𝑥, 𝑦).

The total time complexity for computing all orbits for all nodes is𝑂(𝑒⋅𝑑+𝑇􏷣), where
𝑂(𝑇􏷣) is the time needed to enumerate complete graphlets on four nodes. Below, we
describe an algorithm that does this in𝑂(𝑛⋅𝑑􏷢), yet the actual importance of this term
depends on the structure and density of the graph.

.. Counting complete graphlets

For every node we still have to determine the count of one of the  orbits. Since
graphs are usually sparse, a good candidate is the rare orbit , which represents the
nodes of the complete graphlet on four nodes 𝐺􏷧. Because of very few occurrences of
this graphlet and its symmetricity, we can efficiently restrict the enumeration.

A straightforward way to count the complete graphlets of size  that touch a given
node 𝑥􏷠 is to start with that node and in every step add a neighbour 𝑥𝑖 of the last added
node 𝑥𝑖−􏷠, while checking that the new node is also connected to all nodes before 𝑥𝑖,

  A combinatorial approach to graphlet counting T. Hočevar

Figure .
Enumerating 𝐺􏷱 by adding
one neighbour at a time
or by checking pairs of
neighbours. Dashed edges
are added by iterating
through neighbours, and
dotted edges are checked in
the last step.

x
1

x
2

x
3

x
4

(a)

x
1

x
2

x
3

x
4

(b)

𝑥𝑗<𝑖−􏷠. In this way, when we add 𝑥􏷣 as a neighbour of 𝑥􏷢 we have to check whether it is
connected to 𝑥􏷠 and 𝑥􏷡 (dotted lines in .(a)), which is unlikely, especially in sparse
graphs.

A better strategy is to find the common neighbours of 𝑥􏷠 and 𝑥􏷡, 𝑁(𝑥􏷠) ∩ 𝑁(𝑥􏷡),
which can be done in 𝑂(𝑑). We then choose pairs (𝑥􏷢, 𝑥􏷣) from this set and check
whether they are connected (Fig. .(b))). Candidates generated in this way have
to satisfy only one additional condition, as opposed to two in the straightforward
approach.

To avoid counting the same graphlet multiple times, we request that 𝑥􏷡 < 𝑥􏷢 < 𝑥􏷣
under some fixed arbitrary ordering of nodes. Although the theoretical time complex-
ity for finding all𝐺􏷧 that touch 𝑥 using this algorithm is the same for both approaches,
𝑂(𝑑􏷢), the latter is much faster on sparse graphs.

This method can be generalized for efficient counting of larger complete graphlets
in sparse graphs. In every step, we maintain a list of candidate nodes 𝐶𝑖 for 𝑥𝑖 that are
adjacent to all previously added nodes. We select one of these candidates and form a
new candidate set 𝐶𝑖+􏷠 consisting only of nodes in 𝐶𝑖 that are adjacent to the selected
node, 𝐶𝑖+􏷠 = 𝐶𝑖 ∩ 𝑁(𝑥𝑖) and 𝐶􏷠 = 𝑉 . The time complexity of finding all complete
𝑘-node graphlets that touch 𝑥 using this algorithm is 𝑂(𝑑𝑘−􏷠). Below, we use such
procedure to enumerate complete subgraphs on five nodes.

.. Orbits on five-node graphlets

For counting four-node graphlets, we constructed a list of equations by adding nodes to
three-node graphlets and observing the resulting four-node graphlets. Extending the
four-node graphlets to five-node graphlets would yield a huge number of equations
that are not linearly independent. We will use a different approach: for each orbit, we
choose some node 𝑦 from the corresponding graphlet and observe the graphlets and



59

x
1

x
2

x
3

x

y

G
24

(a)

65

x
1

x
2

x
3

x

y

G
26

(b)

68

x
1

x
2

x
3

x

y

G
27

(c)

70

x
1

x
2

x
3

x

y

G
28

(d)

Figure .
Computing orbit count
𝑜􏷮􏷲 ; figures show graphlets
for different edges between
𝑦 and other nodes, and the
orbits of 𝑥.

orbits in which the node of interest, 𝑥, appears if we add edges between 𝑦 and other
nodes in the graphlet.

Let 𝑥 be the node of interest, let 𝑦 be the node whose edges we observe and let 𝑥􏷠,
𝑥􏷡 and 𝑥􏷢 be the other three nodes in that graphlet.

Figure . illustrates counting of appearances of 𝑥 in 𝑂􏷤􏷨, which belongs to 𝐺􏷡􏷣
(Fig. .(a)). We will focus on the node marked by 𝑦, which is connected to the nodes
marked by 𝑥􏷠 and 𝑥􏷢. Note that removing 𝑦 reduces 𝐺􏷡􏷣 into a diamond, 𝐺􏷦, with 𝑥
in orbit 𝑂􏷠􏷡.

Now assume that we are computing orbits for a certain node 𝑥 and discover some
induced subgraph 𝐻 ≅ 𝐺􏷦 with 𝑥 in 𝑂􏷠􏷡. We assign labels 𝑥􏷠, 𝑥􏷡 and 𝑥􏷢 to the
remaining nodes as shown in the figure. Altogether, the graph 𝐺 contains 𝑐(𝑥􏷠, 𝑥􏷢)
common neighbours of 𝑥􏷠 and 𝑥􏷢 (similar to nodes marked with 𝑤 in Fig..(a)).
While all these nodes are – by definition of 𝑐(𝑥􏷠, 𝑥􏷢) – connected to 𝑥􏷠 and 𝑥􏷢, some
are also connected to 𝑥􏷡 or 𝑥, or both. Figure . shows all four possibilities, which
give graphlets 𝐺􏷡􏷣, 𝐺􏷡􏷥, 𝐺􏷡􏷦 and 𝐺􏷡􏷧 with 𝑥 in orbits , ,  and , respectively.
Therefore, 𝑜′􏷤􏷨 + 𝑜′􏷥􏷤 + 𝑜′􏷥􏷧 + 𝑜′􏷦􏷟 = 𝑐(𝑥􏷠, 𝑥􏷢) − 1, where 𝑜′𝑖 denote orbits of 𝑥 with
respect to 𝐻 .

For the relation between 𝑜􏷤􏷨, 𝑜􏷥􏷤, 𝑜􏷥􏷧 and 𝑜􏷦􏷟 for the entire graph, we sum this over
all possible induced 𝐺􏷦 with 𝑥 in 𝑂􏷠􏷡. After considering the symmetries that cause
counting the same graphlet multiple times with different assignments of 𝑦, 𝑥􏷠, 𝑥􏷡 and
𝑥􏷢, we get

𝑜􏷤􏷨 + 4𝑜􏷥􏷤 + 2𝑜􏷥􏷧 + 6𝑜􏷦􏷟 = 􏾜
𝑥􏷪 ,𝑥􏷫 ,𝑥􏷬 ∶

𝑥􏷪<𝑥􏷫∧𝑥􏷬∉𝑁(𝑥),
𝐺[{𝑥,𝑥􏷪 ,𝑥􏷫 ,𝑥􏷬}]≅𝐺􏷰

𝑐(𝑥􏷠, 𝑥􏷢) + 𝑐(𝑥􏷡, 𝑥􏷢) − 2.

  A combinatorial approach to graphlet counting T. Hočevar

Condition 𝑥􏷠 < 𝑥􏷡 (under some arbitrary ordering of nodes) is needed to consider each
graphlet𝐺􏷦 just once. The other two conditions put 𝑥 in𝑂􏷠􏷡. The second term in the
sum, 𝑐(𝑥􏷡, 𝑥􏷢), accounts for the case in which the roles of 𝑥􏷠 and 𝑥􏷡 are exchanged.

Using a similar construction for other orbits, except for 𝑂􏷦􏷡, gives  linear equa-
tions for  orbits (see the Supplementary). Like for four-node graphlets, we directly
enumerate the orbit 𝑂􏷦􏷡, which belongs to the complete graphlet. Equations are lin-
early independent due to the way in which they were constructed: each equation is
set up with one orbit in mind (e.g. 𝑂􏷤􏷨 in the above example) and the other orbits
that appear in the equation belong to graphlets with a larger number of edges (the ad-
ditional edges between 𝑦 and the other nodes, like the dotted edges in Fig. .(b-d)).
Additional nice consequence besides independence is that the system is easy to solve
since orbit counts can be computed from those belonging to graphlets with more edges
towards those with less.

When constructing the equations, we choose 𝑦 that allows for efficient computation
of the right-hand sides: we will ensure that the right-hand sides contain only the node
degrees and the numbers of common neighbours of pairs and of connected triplets
(𝑐(𝑢, 𝑣), 𝑐(𝑢, 𝑣, 𝑡)). This will allow us to precompute and store the values of 𝑐(𝑢, 𝑣) and
𝑐(𝑢, 𝑣, 𝑡) for all pairs and connected triplets in 𝐺 before computing the orbit counts
for individual nodes.

First, we choose the node 𝑦 so that the remaining nodes constitute a four-node
graphlet, i.e. removing 𝑦 does not break the graphlet into disconnected components,
which would require enumeration of disconnected subgraphs. Second, the node 𝑦 has
to have at most three edges to avoid the need to compute the number of common
neighbours of four points, 𝑐(𝑢, 𝑣, 𝑤, 𝑡). Besides, when 𝑦 has three neighbours, they
need to induce a connected subgraph.

A node 𝑦 that fulfils these criteria exists for all orbits except 𝑂􏷦􏷡. Precomputing
the values 𝑐(𝑢, 𝑣, 𝑡) for all connected triplets takes 𝑂(𝑒 ⋅ 𝑑􏷡) time, and storing them in
a hash table takes 𝑂(𝑒 ⋅ 𝑑) space. Computation of the right hand-sides also requires
enumerating all the four-nodes graphlets, which again has a complexity of 𝑂(𝑒 ⋅ 𝑑􏷡).

The total time required to compute all orbit counts for all 𝑥 ∈ 𝑉 is then𝑂(𝑒⋅𝑑􏷡+𝑇􏷤)
with 𝑂(𝑒 ⋅ 𝑑) space, where 𝑂(𝑇􏷤) is the time required to enumerate all complete -
node graphlets (𝐺􏷡􏷨). The algorithm thus has the same upper bound complexity as the
existing algorithms,𝑂(𝑛 ⋅ 𝑑􏷣). Experiments however show that the bound is not tight:
the contribution of the 𝑂(𝑇􏷤) is negligible over the range of sensible graph densities,



Table .
Statistics of benchmark real-world networks.

max.
network nodes edges degree
S. cerevisiae   
E. coli   
D. melanogaster   
Human   
Internet Autonomous Systems   

and the actual running times are smaller by an order of magnitude.
We could use the same technique to construct systems of equations for larger graph-

lets. Note however that we reduced the running times by imposing some conditions
to the selection of the node 𝑦. We have not researched whether such nodes also exist
for larger graphlets; although theoretically interesting, this may be of little practical
use in the context of bioinformatics.

. Results and Discussion

We compared the speed of Orca with RAGE, GraphCrunch and FANMOD. We ran
all experiments on a modest desktop computer (Intel Core , . GHz). We have not
experimented with parallel execution; all four algorithms allow for trivial distribution
of work on multiple cores, so the benefits of parallelization should be the same for all.

We compared the performance of methods on the three largest species-specific PPI
networks from the July  update of the Database of Interacting Proteins [] and
the human PPI network from the BioGRID [] .. release. The sizes of individ-
ual datasets are presented in Table ..

All algorithms except the significantly slower FANMOD counted orbits for four-
node graphlets in the smaller graphs in a few seconds (Table .). Five-node graphlets
present a more difficult task: running GraphCrunch on the S. cerevisiae PPI network
took more than  minutes (as compared to . seconds for four-node graphlets). FAN-
MOD was almost  times slower while Orca finished the same task  times faster,
in . seconds. RAGE is limited to four-node graphlets. We got similar results for the
other two networks.

In the larger Human network, Orca counted the four-node graphlets  and 

  A combinatorial approach to graphlet counting T. Hočevar

Table .
Comparison of algorithms on real-world networks. We aborted the algorithms that took more than a day.

four-node graphlets
network FANMOD GraphCrunch RAGE Orca
S. cerevisiae  s . s . s < . s
E. coli  s . s . s < . s
D. melanogaster  s . s . s < . s
Human /  min . min . s
Internet Autonomous Systems  min  min . min . s

five-node graphlets
network FANMOD GraphCrunch Orca
S. cerevisiae  min . min . s
E. coli  min . min . s
D. melanogaster  min . min . s
Human / /  min
Internet Autonomous Systems / /  min

times faster than Rage and GraphCrunch, respectively; we aborted FANMOD after
 hours. Orca was also the only algorithm capable of counting five-node graphlets in
a human PPI network in less than a day.

For comparison with RAGE, we included a test network of Internet Autonomous
Systems that was used as the benchmark for RAGE []. FANMOD required over
 hours, GraphCrunch finished in  minutes, RAGE in  minutes and Orca in .
seconds. Orca finished the computation for five-node graphlets in  minutes, while
the other two algorithms were stopped after  hours.

The time that Orca needs for counting orbits in five-node graphlets are compa-
rable to those that GraphCrunch needs for four-node graphlets. This is consistent
with the way the two algorithms are constructed: GraphCrunch enumerates four-node
graphlets to count them, while Orca enumerates them to count five-node graphlets.
As expected, the time needed for enumeration of complete five-node graphlets is neg-
ligible at these network densities.

http://www.netdimes.org/PublicData/csv/ASEdges_.csv.gz



􏷟 􏷠􏷟􏷟 􏷡􏷟􏷟􏷟

􏷠􏷟

􏷡􏷟

􏷢􏷟

edges [thousands]

tim
e

[s
ec

on
ds

]

Erdős-Rényi

􏷟 􏷠􏷟􏷟 􏷡􏷟􏷟􏷟

􏷡􏷟

􏷣􏷟

edges [thousands]

Geometric

􏷟 􏷠􏷟􏷟 􏷡􏷟􏷟􏷟

􏷡􏷟

􏷣􏷟

edges [thousands]

Barabási-Albert

GraphCrunch
RAGE
Orca

Figure .
Comparison of times
needed for counting orbits
in four-node graphlets in
random networks. Graphs
are cut off at one minute;
results of experiments in
which the methods were
allowed to run for up to
one hour are available in
the supplementary.

􏷠􏷟 􏷡􏷟 􏷢􏷟 􏷣􏷟􏷟

􏷡􏷟

􏷣􏷟

􏷥􏷟

edges [thousands]

tim
e

[s
ec

on
ds

]

Erdős-Rényi

􏷠􏷟 􏷡􏷟 􏷢􏷟􏷟

􏷡􏷟

􏷣􏷟

􏷥􏷟

edges [thousands]

Geometric

􏷟 􏷠􏷟 􏷡􏷟􏷟

􏷡􏷟

􏷣􏷟

􏷥􏷟

edges [thousands]

Barabási-Albert

GraphCrunch
Orca

Figure .
Comparison of times
needed for counting orbits
in five-node graphlets in
random networks

For more insight into time complexities of the compared algorithms, we tested them
on synthetic data using three different random network models – Erdős-Rényi, geo-
metric and Barabási-Albert random graphs. Erdős-Rényi graphs are constructed by
randomly connecting 𝑒 pairs of nodes. We generated geometric graphs by randomly
placing nodes in a -dimensional unit cube and connecting the 𝑒 closest pairs; geo-
metric graphs show largest resemblance to protein interaction networks []. Barabási-
Albert preferential attachment model generates scale-free networks that exhibit hubs
and individual highly connected nodes.

We explored the performance of GraphCrunch, RAGE and Orca at different net-
work densities. FANMOD was not included as it consistently finished previous tests

  A combinatorial approach to graphlet counting T. Hočevar

far behind GraphCrunch. All graphs had  nodes; for each method, we increased
the graph density until the method needed more than a minute to complete the test.
The corresponding graphs were relatively dense, containing up to  of all possible
edges for test with four-node graphlets and around  for five-node graphlets.

RAGE counted the four-node graphlets slightly faster than GraphCrunch but they
were both significantly outperformed by Orca (Fig. . and Tables .–. in the sup-
plementary). We observed similar results when counting five-node graphlets (Fig. .).
Orca achieved the highest gain in comparison with other methods on Barabási-Albert
models, in which hubs present a large obstacle for GraphCrunch and RAGE. This
makes Orca more suitable for real-world networks, which often display the small-world
property and contain hubs.

. Conclusion

Graphlet-based network analysis is useful for various tasks in bioinformatics, such as
alignment of PPI networks and prediction of protein functions based on topological
similarities. Past studies used these approaches to, for instance, identify genes related
to cancer [] and to aging [].

We presented a new algorithm for counting graphlet orbits that is based on derived
relations between orbit counts. To count the orbits for 𝑘-node graphlets, it enumerates
(𝑘 − 1)-node graphlets and a single 𝑘-node graphlet. Empirical results confirm that
this decreases the time complexity by an order of magnitude in comparison with other
known methods. In practical terms, the algorithm counts orbits in large PPI networks
- times faster than other state-of-the-art algorithms.



. Supplementary

.. Results on random networks

Counting -node graphlets

Table .
Results of counting -node graphlets in random ER networks [s]. Missing values indicate running times over  hour.

edges [thousands]
         

GraphCrunch . . . . . .    /
RAGE . . . . . .   / /
Orca . . . . . . . . . .

Table .
Results of counting -node graphlets in random GEO networks [s]. Missing values indicate running times over  hour.

edges [thousands]
        

GraphCrunch . . . . .    /
RAGE . . . . .   / /
Orca . . . . . . . . .

Table .
Results of counting -node graphlets in random BA networks [s]. Missing values indicate running times over  hour.

edges [thousands]
        

GraphCrunch . . . . .    /
RAGE . . . . .   / /
Orca . . . . . . . . .

  A combinatorial approach to graphlet counting T. Hočevar

Counting -node graphlets

Table .
Results of counting -node graphlets in random ER networks [s].

edges [thousands]
          

GraphCrunch . . . . . .     
Orca . . . . . . . . . . .

Table .
Results of counting -node graphlets in random GEO networks [s].

edges [thousands]
         

GraphCrunch . . . . . .    
Orca . . . . . . . . . .

Table .
Results of counting -node graphlets in random BA networks [s].

edges [thousands]
      

GraphCrunch . . . .   
Orca . . . . . . .



.. Log-scale graphs

􏷠􏷟 􏷠􏷟􏷟

􏷟.􏷠
􏷠

􏷠􏷟

edges [thousands]

tim
e

[s
ec

on
ds

]

Erdős-Rényi

􏷠􏷟 􏷠􏷟􏷟

􏷟.􏷠
􏷠

􏷠􏷟

edges [thousands]

Geometric

􏷠􏷟 􏷠􏷟􏷟

􏷟.􏷠

􏷠

􏷠􏷟

edges [thousands]

Barabási-Albert

GraphCrunch
RAGE
Orca

Figure .
Log-scale comparison of
times needed for count-
ing orbits of four-node
graphlets in random net-
works.

􏷠 􏷠􏷟
􏷟.􏷠

􏷠

􏷠􏷟

edges [thousands]

tim
e

[s
ec

on
ds

]

Erdős-Rényi

􏷠 􏷠􏷟
􏷟.􏷠

􏷠

􏷠􏷟

edges [thousands]

Geometric

􏷠 􏷠􏷟
􏷟.􏷠

􏷠

􏷠􏷟

edges [thousands]

Barabási-Albert

GraphCrunch
Orca

Figure .
Log-scale comparison of
times needed for count-
ing orbits of five-node
graphlets in random net-
works.



Computation of graphlet orbits
for nodes and edges in sparse

graphs



  Computation of graphlet orbits for nodes and edges in sparse graphs T. Hočevar

Journal of Statistical Software

Computation of Graphlet Orbits for Nodes and Edges in
Sparse Graphs

Tomaž Hočevar, Janez Demšar

University of Ljubljana

. Abstract

Graphlet analysis is a useful tool for describing local network topology around indi-
vidual nodes or edges. A node or an edge can be described by a vector containing the
counts of different kinds of graphlets (small induced subgraphs) in which it appears, or
the “roles” (orbits) it has within these graphlets. We implemented an R package with
functions for fast computation of such counts on sparse graphs. Instead of enumerat-
ing all induced graphlets, our algorithm is based on the derived relations between the
counts, which decreases the time complexity by an order of magnitude in comparison
with past approaches.
Keywords: network analysis, graphlets, data mining, bioinformatics

. Introduction

Analysis of networks plays a prominent role in many areas of science and business, from
genetic and protein networks in bioinformatics to social networks in mining user data.
Describing the roles of individual nodes and edges, clustering them, and predicting
their future development requires observing their locally defined properties. One of
the methods – used particularly in bioinformatics – is based on counting graphlets and
graphlet orbits.



G0

0

G1

1

2

G2

3

G9

15

16

17

G11

22

23

G10

18

20

21

19

G13

27

28

30
29

G12

25

26

24

G14

32

33

31

G15

34

G19

45

47

48

46

G16

35

38

37

36

G17

39

42

40

41

G18

43

44

G20

49

50

G21

51

52

53

G22

55

54

G23

57

58

56

G24

59
60

61

G25

63

62
64

G27

68

69

G26

66

67
65

G29

72

G28

70

71

G6

10

11

9

G7

12

13

G8

14

G3

4

5

G4

6

7

G5

8

(a) Node orbits.

G1

0

G2

1

G6

7
8

6

G7

10
9

G8

G9

12
13

G11

17

G10

14
16

15

G13

21
22

24
23

G12

20

19

18

G14

26
27

25

G15

28

G19

41

G16

29

30
31

G17

32

34

35

33

49

51

50

38

40

39

G18

36

37

G20

42

G21

43

4645

44

G22

48
47

G23 G24

60

52

53

55

G25

57

62

56

58

G27

63
64

G26

61

59

G29

67

G28

65
66

G3

2
3

G4

4

G5

5

11

54

(b) Edge orbits.

Figure .
Graphlets with – nodes
with enumeration of or-
bits. Node colors and line
shapes, which are chosen
arbitrarily, correspond to
orbits within each graphlet.
Node orbits are enumer-
ated as in []; edge orbit
numbers are enumerated
by increasing orbits of the
corresponding node pairs.

Graphlets are small connected simple graphs []. There are  different graphlets with
two to four nodes and  graphlets with up to five nodes. In graphlet-based network
analysis, we examine induced graphlets within the network: for each node, we count

  Computation of graphlet orbits for nodes and edges in sparse graphs T. Hočevar

the number of times the node is contained in an induced graphlet of each kind, which
gives a - or -dimensional vector description of the local topology surrounding the
observed node. One of the vector components represents, for instance, the number of
times the node is included in an induced star on five nodes.

Furthermore, we can group nodes of each graphlet into orbits [] with respect to
the graphlet automorphisms (Figure .(a)). Orbits define the “roles” of the nodes
within the graphlet. For instance, in a star on five nodes (𝐺􏷠􏷠), one node represents
the center and the remaining four nodes are the leaves; the nodes of the star thus form
two different orbits (numbered  and , respectively). Instead of counting only the
number of appearances of induced stars that touch an observed node in the network,
we can count how many times the node represents the center of such star (i.e., the node
is connected to four nodes that are not connected to each other) and how many times
it has the role of a leaf (it is connected to a node that is connected to another three
nodes that are disconnected from each other and from the observed node). This gives
a finer description of the node’s vicinity with a -dimensional vector for four-node
graphlets and a -dimensional vector for five node graphlets.

Similar can be done for edges []: there are  edge orbits for graphlets with –
 nodes, which allow for a characterization of an edge with a -dimensional vector
(Figure .(b)).

Figure . gives an illustration for a small network. Figure .(a) shows the network,
and figures .(b), .(c) and .(d) show all four-node subgraphs that include node
𝐶; node 𝐶 appears in orbits ,  and . Table .(e) shows all orbit counts for node
𝐶, including those belonging to two- and tree-node subgraphs. Table .(f) shows
the orbit counts for all nodes and orbits. The vector (row) corresponding to node 𝐶 is
quite different from others (e.g., counts for orbits , , ), which indicates its special
place in the graph. Signatures of 𝐴 and 𝐵, on the other hand, are the same since the
two nodes map to each other in an automorphism of the graph.

The straightforward computation of orbit counts by enumeration takes 𝑂(𝑛𝑑𝑘−􏷠)
time, where 𝑛 is the number of nodes (typically thousands or tens of thousands), 𝑑
is the maximal node degree (usually up to one hundred), and 𝑘 is the graphlet size
( or ). We have recently presented a combinatorial approach for counting orbits of
nodes [] in time that is, for practical purposes, proportional to 𝑛𝑑𝑘−􏷡. Using this

In general, two nodes will have the same signature for 𝑘 node graphlets if their local neighborhood of up
to 𝑘 − 􏷠 edges is the same.



CB

A

D

FE

(a) Example network.

C D

FE

CB

FE

C

A

FE

(b) Subgraphs with node 𝐶 in orbit .

C

A

D

E

CB D

E

(c) Subgraphs with node 𝐶 in orbit .

CB

A

E

CB

A

D

(d) Subgraphs with node𝐶 in orbit .

Orbit Count
  The count of orbit  equals the degree of the node
  The terminal node of a path on three nodes ({𝐶, 𝐸, 𝐹})
  The middle node of a path on three nodes

({𝐴, 𝐶,𝐷}, {𝐴, 𝐶, 𝐸}, {𝐵, 𝐶,𝐷}, {𝐵, 𝐶, 𝐸}, {𝐷, 𝐶, 𝐸})
  Triangle ({𝐴, 𝐵, 𝐶})
  The inner node of a path on four nodes (Fig. b)
  The central node of a -edge star (Fig. c)
  The central node of the 𝐿􏷬,􏷪 lollipop graph (Fig. d)

(e) Non-zero orbit counts for node 𝐶.

Orbit               
𝐴               
𝐵               
𝐶               
𝐷               
𝐸               
𝐹               

(f) Orbit counts for all nodes.
Figure .
Illustration of orbit counts
for a simple network.

  Computation of graphlet orbits for nodes and edges in sparse graphs T. Hočevar

technique, the common-size networks from proteomics can be analyzed in a reasonable
time of a few hours on a common desktop computer. In this paper, we provide the first
complete description of the algorithm, including its novel extension to counting edge
orbits (Section ), and then document the corresponding R package together with two
usage examples (Section ).

The notation used throughout the paper is summarized in Table ..

Table .
Notation used in the paper.

𝐺 = (𝑉, 𝐸) the observed graph with nodes 𝑉 and edges 𝐸
𝑛 number of nodes in the graph
𝑒 number of edges
𝑑 maximal node degree
𝑘 graphlet size
𝑂𝑖 node orbit 𝑖

𝑜𝑖(𝑥) (or 𝑜𝑖) the number of times that node 𝑥 appears in orbit 𝑂𝑖;
we use 𝑜𝑖 to reduce the clutter where possible

𝐸𝑖 edge orbit 𝑖
𝑒𝑖(𝑝) (or 𝑒𝑖) the number of times that edge 𝑝 appears in orbit 𝐸𝑖

𝑁(𝑥􏷠, 𝑥􏷡, … 𝑥𝑖) the set of common neighbours of nodes 𝑥􏷠, 𝑥􏷡, …, 𝑥𝑖
𝑐(𝑥􏷠, 𝑥􏷡, … 𝑥𝑖) the number of common neighbours of nodes 𝑥􏷠, 𝑥􏷡, …, 𝑥𝑖

𝐺[{𝑥􏷠, 𝑥􏷡, … 𝑥𝑖}] a subgraph of 𝐺 on nodes 𝑥􏷠, 𝑥􏷡, …, 𝑥𝑖
≅ symbol ≅ denotes graph isomorphism

. Combinatorial approach to orbit counting

Let 𝐺 = (𝑉, 𝐸) be a simple graph with 𝑛 vertices (𝑉) and 𝑒 edges (𝐸). We assume
that the graph is sparse (𝑒 = 𝑂(𝑛)). We will denote graphlets as 𝐺𝑖 and node orbits
as 𝑂𝑖. We follow the enumeration by Przulj [] (see Figure .(a)), in which the orbit
numbers are assigned somewhat arbitrarily but with the constraint that the indices of
orbits belonging to the graphlets with fewer edges are smaller than those belonging
to the graphlets with more edges. We will use 𝐸𝑖 to denote edge orbits, which we
enumerate as shown in Figure .(b). Here we decided to ignore the pre-existing



enumeration by Solava et al. [] and define a more consistent one in which the edge
orbits are ordered by the orbits of the corresponding nodes.

The task is to count the number of times a node 𝑥 appears in each orbit 𝑂𝑖, or the
number of times an edge 𝑝 appears in orbit 𝐸𝑖. We will denote the two numbers by
𝑜𝑖(𝑥) and 𝑒𝑖(𝑝); where possible, we will omit 𝑥 or 𝑝 and write only 𝑜𝑖 and 𝑒𝑖. The
algorithm computes the counts for all graph nodes (or edges). Computation for just a
few nodes can be done faster using a brute force approach (exhaustive enumeration).

Past approaches – such as that in GraphCrunch [] and RAGE (Rapid graphlet
enumerator) [] – are based on exhaustive enumeration of induced subgraphs. Their
theoretical and empirical complexity of enumerating graphlets of size 𝑘 is 𝑂(𝑛𝑑𝑘−􏷠),
where 𝑑 is the maximal node degree in the graph. Our approach builds on the work
of Kloks et al. [], who constructed a system of equations for counting induced sub-
graphs with four-nodes, and Kowaluk et al. [], who generalized it for larger sub-
graphs. We use a similar principle to count orbits; besides, our approach scales better
for sparse graphs. In comparison with enumeration-based algorithms, the combina-
torial approach decreases the practical time complexity by the factor of 𝑑 by directly
enumerating only the graphlets of size 𝑘 − 1 and using them to compute the counts
for graphlets of size 𝑘.

.. Node orbits

We shall demonstrate the basic idea with an example.
Let 𝑥 be a node in the graph 𝐺. 𝑜􏷣􏷤(𝑥) represents the number of times 𝑥 appears in

orbit 𝑂􏷣􏷤, that is, the number of ways in which 𝐺􏷠􏷨 can be embedded in 𝐺 so that 𝑥
is in orbit 𝑂􏷣􏷤. To reduce the clutter, we shall omit 𝑥 and denote this by 𝑜􏷣􏷤. Counts
𝑜􏷤􏷥, 𝑜􏷥􏷡 and 𝑜􏷥􏷤 are defined similarly. We will show that the following relation holds
for any 𝑥:

𝑜􏷣􏷤 + 3𝑜􏷤􏷥 + 2𝑜􏷥􏷡 + 2𝑜􏷥􏷤 = 􏾜
𝑢,𝑣,𝑡∶ 𝐺[{𝑥,𝑢,𝑣,𝑡}]≅𝐺􏷲
𝑣<𝑡 ∧ 𝑣,𝑡∉𝑁(𝑥)

(𝑐 (𝑣, 𝑡) − 1) , (.)

where 𝑢, 𝑣 and 𝑡 are triplets of nodes that fulfil certain conditions (details are ex-
plained below) and 𝑐(𝑣, 𝑡) is the number of common neighbours of 𝑣 and 𝑡. The

Recent versions of GraphCrunch also already include a part of our approach described here.

  Computation of graphlet orbits for nodes and edges in sparse graphs T. Hočevar

Figure .
Derivation of the relation
between 𝑜􏷭􏷮 , 𝑜􏷮􏷯 , 𝑜􏷯􏷫 and
𝑜􏷯􏷮 . Solid lines belong to
graphlet 𝐺􏷯 , dashed lines
represent the required
edges (as described in
Section ..) and dotted
lines represent additional
edges whose presence or
absence determines the
orbit of the node 𝑥. Gray
lines represent edges to
other nodes of 𝐺.

x

u

v

9

t

(a) 𝐺􏷯

x

u

v

w

t

45

(b) 𝐺􏷪􏷲

56

w

x

u

v t

(c) 𝐺􏷫􏷬

62

w

x
u

v
t

(d) 𝐺􏷫􏷮

65

w

x

u v

t

(e) 𝐺􏷫􏷯

left-hand side of the equation is a linear combination of orbit counts that we wish to
compute and the right-hand side is a statistics that is easy to obtain.

Equation . can be constructed as follows. Let the subgraph on some nodes 𝑥,
𝑢, 𝑣 and 𝑡 be isomorphic to 𝐺􏷥 with 𝑥 in 𝑂􏷨 (Figure .(a)). Now we observe the
possible extensions of 𝐺[{𝑥, 𝑢, 𝑣, 𝑡}] with a node 𝑤 ∈ 𝑉 that is attached to 𝑣 and 𝑡.
For each such 𝑤 ∈ 𝑁(𝑣, 𝑡), the subgraph on 𝑥, 𝑢, 𝑣, 𝑡, 𝑤 is isomorphic

to 𝐺􏷠􏷨, if 𝑤 is not connected to 𝑥 and 𝑢 (Fig. .(b)), or

to 𝐺􏷡􏷢, if 𝑤 is connected to 𝑢, but not to 𝑥 (Fig. .(c)), or

to 𝐺􏷡􏷤, if 𝑤 is connected to 𝑥, but not to 𝑢 (Fig. .(d)), or

to 𝐺􏷡􏷥, if 𝑤 is connected to 𝑥 and 𝑢 (Fig. .(e)).

This puts 𝑥 in orbits 𝑂􏷣􏷤, 𝑂􏷤􏷥, 𝑂􏷥􏷡 or 𝑂􏷥􏷤, respectively. Therefore,

𝑜′􏷣􏷤 + 𝑜′􏷤􏷥 + 𝑜′􏷥􏷡 + 𝑜′􏷥􏷤 = |𝑁(𝑣, 𝑡)| − 1 = 𝑐(𝑣, 𝑡) − 1, (.)

where 𝑜′𝑖 represent orbit counts considering only these particular nodes (and annota-
tions) 𝑢, 𝑣, 𝑡, and all common neighbours of 𝑣 and 𝑡, 𝑁(𝑣, 𝑡). The term −1 is needed
since one of the members of 𝑁(𝑣, 𝑡) is also 𝑢.

Equation . relates the total orbit counts 𝑜􏷣􏷤, 𝑜􏷤􏷥, 𝑜􏷥􏷡 and 𝑜􏷥􏷤 for a fixed node 𝑥.
We construct it by summing the right-hand side of (.), 𝑐(𝑣, 𝑡) − 1, over all triplets

This description is intended to present the reasoning behind the relations, while the actual construction
was slightly different in order to obtain a useful system of equations. Details are given in Section ...



{𝑢, 𝑣, 𝑡} ⊆ 𝑉 such that 𝐺[{𝑥, 𝑢, 𝑣, 𝑡}] ≅ 𝐺􏷨 and 𝑣, 𝑡 ∉ 𝑁(𝑥) (to put 𝑥 in 𝑂􏷨 within
this subgraph) and with 𝑣 < 𝑡 under some arbitrary ordering of nodes, that is,

􏾜
𝑢,𝑣,𝑡∶ 𝐺[{𝑥,𝑢,𝑣,𝑡}]≅𝐺􏷲
𝑣<𝑡 ∧ 𝑣,𝑡∉𝑁(𝑥)

(𝑐(𝑣, 𝑡) − 1) . (.)

Despite the condition 𝑣 < 𝑡, some subgraphs are counted multiple times.

Each subgraph with 𝑥 in𝑂􏷤􏷥 (𝐺[{𝑥, 𝑢, 𝑣, 𝑡, 𝑤}] ≅ 𝐺􏷡􏷢, Figure .(c)) is counted
thrice: the nodes 𝑥 and 𝑢 are fixed while 𝑣, 𝑡 and𝑤 are exchanging their roles in
three possible permutations (the condition 𝑣 < 𝑡 prohibits the other three out
of the six possible permutations).

If 𝑥 belongs to 𝑂􏷥􏷡 (𝐺[{𝑥, 𝑢, 𝑣, 𝑡, 𝑤}] ≅ 𝐺􏷡􏷤, Figure .(d)), the subgraph on
quintuplet {𝑥, 𝑢, 𝑣, 𝑡, 𝑤} is counted twice, with exchanged roles of 𝑢 and 𝑤; the
nodes 𝑣 and 𝑡 are fixed due to 𝑣 < 𝑡.

The configuration in which 𝑥 is in 𝑂􏷥􏷤 (𝐺[{𝑥, 𝑢, 𝑣, 𝑡, 𝑤}] ≅ 𝐺􏷡􏷥, Figure .(e))
is similar to that of 𝑂􏷥􏷡.

The configuration for 𝑥 in 𝑂􏷣􏷤 (𝐺[{𝑥, 𝑢, 𝑣, 𝑡, 𝑤}] ≅ 𝐺􏷠􏷨, Figure .(b)) is
unique: for quintuplet {𝑥, 𝑢, 𝑣, 𝑡, 𝑤} in 𝑥 ∈ 𝑂􏷣􏷤, the conditions 𝑣 < 𝑡 and
𝑣, 𝑡 ∉ 𝑁(𝑥) allow for only one possible annotation of the nodes.

After accounting for these multiple counts of the same orbit when summing (.)
over all applicable triplets 𝑢, 𝑣, 𝑡 (as in (.)), we get Equation .. To evaluate such
equations we need to precompute values 𝑐(𝑣, 𝑡) and sum them over four-node induced
subgraphs of the network. Both of these steps require an enumeration of all four-node
induced subgraphs, which is the bottleneck of the method. Because every enumer-
ated four-node subgraph will contribute to the sum on the right side of one or more
equations, we can optimize the code and avoid explicitly checking the summation con-
ditions in the equations because they are already included in the enumeration process
(see the code snippet in Section .. for illustration).

Certain relations involve more complicated symmetries, for instance

𝑜􏷢􏷦+2𝑜􏷥􏷧+2𝑜􏷥􏷣+2𝑜􏷥􏷢+4𝑜􏷥􏷡+𝑜􏷤􏷢+𝑜􏷤􏷠+4𝑜􏷣􏷨 = 􏾜
𝑢,𝑣,𝑡∶ 𝐺[{𝑥,𝑢,𝑣,𝑡}]≅𝐺􏷮
𝑢<𝑣 ∧ 𝑢,𝑣∈𝑁(𝑥)

(𝑐(𝑢) + 𝑐(𝑣) − 4) .

(.)

  Computation of graphlet orbits for nodes and edges in sparse graphs T. Hočevar

Figure .
Derivation of the relation
between 𝑒􏷭􏷬 , 𝑒􏷮􏷯 and
𝑒􏷯􏷬 . Solid lines belong to
graphlet 𝐺􏷮 , dashed lines
represent the required
edges (since 𝑤 is defined
to span over the edge
(𝑢, 𝑣)) and dotted lines
represent additional edges
whose presence or absence
determines the orbit of
the edge (𝑥, 𝑦). Gray lines
represent edges to other
nodes of 𝐺.

5

x

u

y

v

(a) 𝐺􏷮

43

x

u

y

v
w

(b) 𝐺􏷪􏷲

w

56

x

u

y

v
w

56

x

u

y

v

(c) 𝐺􏷫􏷬 with (𝑥, 𝑤) and (𝑦, 𝑤)

w

63

x

u

y

v

(d) 𝐺􏷫􏷮

The sum runs over all induced subgraphs in 𝐺 that put node 𝑥 in orbit 𝑂􏷧 in 𝐺􏷤.
Nodes 𝑢 and 𝑣 are its neighbours and 𝑡 is the node opposite of 𝑥 in 𝐺􏷤. We obtain
the same graphlet if we attach a new node 𝑤 either to 𝑢 or to 𝑣, and there are 𝑐(𝑢) − 2
and 𝑐(𝑣) − 2 such possibilities. There are also three optional edges (to 𝑥, 𝑦 and 𝑢 or 𝑣),
which decide the orbit of 𝑥 in the extended graphlet; the resulting orbit can be 𝑂􏷢􏷦,
𝑂􏷥􏷧, 𝑂􏷥􏷣, 𝑂􏷥􏷢, 𝑂􏷥􏷡, 𝑂􏷤􏷢, 𝑂􏷤􏷠 or 𝑂􏷣􏷨.

.. Edge orbits

Relations for edge orbits are derived in the same way. For instance, let (𝑥, 𝑦) represent
an edge of a square (graphlet 𝐺􏷤). Let us label the remaining two nodes with 𝑢 ∈
𝑁(𝑥)\{𝑦} and 𝑣 ∈ 𝑁(𝑦)\{𝑥} (Figure .(a)). Extending this pattern with a node𝑤 that
spans over the edge (𝑢, 𝑣) leads to three possible graphlets and hence three different
edge orbits of the edge (𝑥, 𝑦) (Figure . (b-d)).

Orbit 𝐸􏷤􏷥 arises when 𝑤 is adjacent to either 𝑥 or 𝑦, while the other two orbits, 𝐸􏷣􏷢
and 𝐸􏷥􏷢 can only arise in one way. Hence the relation between the orbits is

𝑒􏷣􏷢 + 2𝑒􏷤􏷥 + 𝑒􏷥􏷢 = 􏾜
𝑢,𝑣∶ 𝐺[{𝑥,𝑦,𝑢,𝑣}]≅𝐺􏷮

(𝑥,𝑦)∈𝐸 ∧ 𝑢∈𝑁(𝑥) ∧ 𝑣∈𝑁(𝑦)

𝑐(𝑢, 𝑣). (.)

.. System of equations

We constructed the equations similar to those above to relate each orbit with orbits
from graphlets with a larger number of edges. Complete lists of equations are provided
in the appendices.



For instance, Equation . was constructed specifically to relate 𝑜􏷣􏷤 with higher
orbits. The actual construction of equation goes in the opposite direction from that
presented in the introductory example. We started with the graphlet 𝐺􏷠􏷨, to which
the orbit 𝑂􏷣􏷤 belongs and picked one of the nodes (labelled 𝑤 in the above case). We
assumed that 𝑤 is adjacent to 𝑣 and 𝑡, and examined the graphlets in which 𝑤may be
also adjacent to 𝑢 and/or 𝑥. This ensures that the equation that is set up with 𝑂􏷣􏷤 in
mind relates𝑂􏷣􏷤 with orbits with higher indices since these graphlets have more edges
than 𝐺􏷠􏷨. As a consequence, the resulting system of equations is triangular, and thus
independent and also easy to solve by going backwards from the higher orbits (starting
with 𝑂􏷠􏷣 or 𝑂􏷦􏷡, which belong to complete graphs) towards lower orbits.

We impose several constraints on selection of 𝑤. Node 𝑤 can not coincide with 𝑥,
or with 𝑥 or 𝑦 when computing orbits of edge (𝑥, 𝑦). We further require that removal
of 𝑤 does not break the remaining nodes into disconnected subgraphs. Node 𝑤 must
have at most 𝑘 − 2 neighbours; when it does have 𝑘 − 2 neighbours, they must be
connected. This allows for more time- and space-efficient computations of orbits, as
described in Section ... Existence of such nodes for each orbit of four- and five-
node graphlets can be proven by exhaustive search, with exception of 𝐺􏷤, which is
handled as a special case.

All equations have the following general form:

𝑎􏷠𝑜𝑖􏷪 + 𝑎􏷡𝑜𝑖􏷫 + ... + 𝑎𝑡𝑜𝑖𝑡 = 􏾜
𝑆∶𝐺[𝑆]≅𝐺𝑗

𝑥∈𝑆 ∧ 􏸂􏸎􏸍􏸃(𝑆)

(𝑐(𝑆􏷠) + 𝑐(𝑆􏷡) + … + 𝑐(𝑆𝑢) + 𝐶) , (.)

where cond(𝑆) is a set of conditions that constrain the embedding of𝐺[𝑆] into𝐺 and
assign labels to nodes. For instance, in Equation ., condition 𝑣, 𝑡 ∉ 𝑁(𝑥) assigns the
labels 𝑣 and 𝑡 to the nodes in orbit𝑂􏷠􏷟 and 𝑣 < 𝑡 ensures that the same quadruplet of
nodes is not counted twice.

The sum runs over subgraphs 𝐺[𝑆] isomorphic to some graphlet 𝐺𝑗 on 𝑘−1 nodes,
that is, over some three-node graphlet when computing the orbits in four-node graph-
lets, or over some four-node graphlet when computing orbits in five-node graphlets.
The subgraph must include 𝑥, and the conditions in the sum put 𝑥 into some fixed
orbit. Additional conditions may impose ordering on the remaining nodes of the
graphlet to decrease the number of symmetries.

The terms in the sum are the number of common neighbours of some subsets of

  Computation of graphlet orbits for nodes and edges in sparse graphs T. Hočevar

nodes in the subgraph (𝑆𝑘 ⊂ 𝑆). The number of such terms is between  and .
The size of 𝑆𝑘 is also between –, that is, the terms refer to node degrees and to the
number of common neighbours of pairs and triplets of nodes. The criteria for the
choice of node 𝑤, which are described above, ensure that these terms can be efficiently
computed using some precomputed data as described in the following section.

The left-hand side is a fixed linear combination of orbits to which the node 𝑥 evolves
after extending 𝐺𝑗 with another node connected to one of subsets 𝑆𝑘. The coefficients
reflect the symmetries in the graphlets with regard to node assignments.

We prepared a system of  equations that relate the  node orbits of four-node
graphlets, and a system of  equations that relate the  node orbits of the five-node
graphlets. Likewise, we have constructed  equations that relate the  edge orbits
for four-node graphlets and  equations for  edge orbits on five-node graphlets.
By selecting different nodes 𝑤, we have empirically verified that it is impossible to
construct a full-rank system using our approach and the constraints we put on 𝑤.

Due to the rank’s deficiency, one of the orbits must be enumerated directly. The
most suitable candidates are the orbits belonging to complete graphlets (𝑂􏷠􏷣 and 𝑂􏷦􏷡
for nodes, and 𝐸􏷠􏷡 and 𝐸􏷥􏷧 for edges). First, this allows for a straightforward com-
putation of the orbits since the system is triangular so that lower orbits are computed
from the higher. Second, since we assume that the graphs are sparse, we can efficiently
compute these orbits by using an enumeration method similar to the Bron-Kerbosch
maximal clique enumeration algorithm [].

.. Algorithm

The algorithm consists of precomputation of some data, followed by computation of
orbit counts for each node or edge.

. Precomputation:

Count the complete graphlets touched by each node or edge.

Count the common neighbours of every pair and of every three vertices
that form a connected graph.

. For each node or edge:

Compute the right-hand sides by enumeration of 𝑘 − 1 node graphs using
the precomputed data above.



Solve the system of linear equations.

Our implementation of the algorithm represents the graph with adjacency and in-
cidence lists, which are appropriate for sparse graphs. If the graph has less than 
nodes, we also construct an adjacency matrix. The matrix, which uses  bit per edge
and takes at most around  MB, allows us to check for existence of edges between
any given pair of nodes in constant time. Without it, the time complexity of the
lookup for an edge between two nodes is proportional to the logarithm of the number
of neighbours of the node with smaller degree.

In the following, we will describe each step in more detail.

. Precomputation:

For each node, count the number of complete graphlets in which the node
or edge participates. We build cliques of size 𝑘 from cliques of size 𝑘−1 by
maintaining a set of candidate nodes that are adjacent to all nodes in the
smaller clique. This procedure is similar to the Bron-Kerbosch algorithm
with the difference that we are not interested in maximal cliques but in all
cliques of a given size.

Although the theoretical upper bound of the time complexity of this step
is 𝑂(𝑒𝑑𝑘−􏷡), where 𝑑 is the maximal node degree, the actual contribution
of this step to the total running time is negligible since complete subgraphs
(cliques) in sparse networks are rare.

Compute and store the number of common neighbours for each pair of
adjacent vertices. This takes 𝑂(𝑒𝑑) time and 𝑂(𝑒) space. For computing
the orbits in five-node graphlet, we also compute the number of paths of
length  between each pair of nodes for which such a path exists, and the
number of common neighbours for all triplets of connected nodes. This
takes 𝑂(𝑒𝑑􏷡) time and 𝑂(𝑒𝑑) space.

. For each node or edge:

Compute the right-hand sides of the system of the linear equations. Its
general form is shown in Equation .. For four-node graphlets, the sums
run over three-node paths or triangles in which the node appears. For five-
node graphlets, they run over four-node graphlets that the node touches.

  Computation of graphlet orbits for nodes and edges in sparse graphs T. Hočevar

Right-hand sides of equations that sum over the same graphlet can be
computed simultaneously. The following code chunk illustrates the com-
putation of the right-hand sides of equations for orbits ,  and  for
an edge (𝑥, 𝑦),

𝑒􏷠􏷢 + 2𝑒􏷡􏷡 + 2𝑒􏷡􏷧 + 𝑒􏷢􏷠+
𝑒􏷣􏷟 + 2𝑒􏷣􏷣 + 2𝑒􏷤􏷣 = 􏾜

𝑎,𝑏∶ 𝐺[{𝑥,𝑦,𝑎,𝑏}]≅𝐺􏷬
𝑎∈𝑁(𝑥) ∧ 𝑏∈𝑁(𝑦)

(𝑐(𝑎) + 𝑐(𝑏) − 2),

2𝑒􏷠􏷥 + 2𝑒􏷡􏷟 + 2𝑒􏷡􏷡 + 𝑒􏷢􏷠+
2𝑒􏷣􏷟 + 𝑒􏷣􏷣 + 2𝑒􏷤􏷣 = 􏾜

𝑎,𝑏∶ 𝐺[{𝑥,𝑦,𝑎,𝑏}]≅𝐺􏷬
𝑎∈𝑁(𝑥) ∧ 𝑏∈𝑁(𝑦)

(𝑐(𝑥) + 𝑐(𝑦) − 4),

𝑒􏷡􏷟 + 𝑒􏷣􏷟 + 𝑒􏷤􏷣 = 􏾜
𝑎,𝑏∶ 𝐺[{𝑥,𝑦,𝑎,𝑏}]≅𝐺􏷬
𝑎∈𝑁(𝑥) ∧ 𝑏∈𝑁(𝑦)

𝑐(𝑥, 𝑦).

The code for computation of the right-hand sides is as follows.

for (int nx = 0; nx < deg[x]; nx++) {

int const &a = adj[x][nx];

if (a == y || adjacent(y, a))

continue;

for (int ny = 0; ny < deg[y]; ny++) {

int const &b = adj[y][ny];

if (b == x || adjacent(x,b) || adjacent(a,b))

continue;

EORBIT(3)++;

f_13 += (deg[a] - 1) + (deg[b] - 1);

f_16 += (deg[x] - 2) + (deg[y] - 2);

f_20 += tri[xy];

}

}

Here, deg[x] and deg[y] are degrees of nodes 𝑥 and 𝑦, and adj[x] and
adj[y] are arrays with indices of their neighbours. Function adjacent(u,



t) checks whether nodes 𝑢 and 𝑡 are adjacent (with a time complexity
𝑂(1) or 𝑂(log 𝑑), depending on whether we construct an adjacency ma-
trix or not) and tri[xy] is the number of triangles spanning over the edge
between 𝑥 and 𝑦. Variables f_13, f_16 and f_20 contain the right-hand
sides of equations for 𝑂􏷠􏷢, 𝑂􏷠􏷥 and 𝑂􏷡􏷟.

The if-clauses check that the edge belongs to 𝐸􏷢 and impose additional
constraints as needed. The computation is sped up by using the pre-
computed data from the first two steps. In the above case, the right-hand
sides of equations for orbits ,  and  are (𝑐(𝑎) − 1) + (𝑐(𝑏) − 1),
(𝑐(𝑥) − 2) + (𝑐(𝑦) − 2) and 𝑐(𝑥, 𝑦), respectively. The former two are trivial
to compute from the graph, and the latter is precomputed in the second
step above.

Note that the orbits for 𝑘 − 1-node graphlets (as the orbit , above) are
computed directly.

The time complexity of this step is 𝑂(𝑒𝑑𝑘−􏷢).

Solve the system of equations to obtain orbit counts. Since the system
is triangular and the coefficients are fixed, this does not require decom-
posing or inverting a matrix; the orbits are computed in order, from the
higher towards the lower indices, starting with the orbit belonging to the
complete graphlet, as for instance, in the following code snippet from the
computation of edge orbits.

EORBIT(67) = C5[e];

EORBIT(66) = (f_66 - 6 * EORBIT(67)) / 2;

EORBIT(65) = (f_65 - 6 * EORBIT(67));

EORBIT(64) = (f_64 - 2 * EORBIT(66));

EORBIT(63) = (f_63 - 2 * EORBIT(65)) / 2;

EORBIT(62) = (f_62 - 2 * EORBIT(66) - 3 * EORBIT(67));

EORBIT(61) = (f_61 - 2 * EORBIT(65) - 4 * EORBIT(66)

- 12 * EORBIT(67));

EORBIT(60) = (f_60 - 1 * EORBIT(65) - 3 * EORBIT(67));

The system of equations is also rather sparse, with each equation having
at most (but usually much less than) eight variables. These nice properties

  Computation of graphlet orbits for nodes and edges in sparse graphs T. Hočevar

– sparse triangular shape – do not make the algorithm faster since the
coefficients are fixed. Even a more general matrix could be inverted in
advance and hard-coded into the program. The advantage of triangularity,
besides the interpretability of the program, is the numerical accuracy since
the entire computation stays in the realm of whole numbers.

The system is solved once for each node (or edge), so the time complexity
is 𝑂(𝑛) (𝑂(𝑒) for edge-orbits).

The total time complexity for all four steps is 𝑂(𝑒𝑑𝑘−􏷡 + 𝑒𝑑𝑘−􏷢 + 𝑒𝑑𝑘−􏷢 + 𝑛) for
nodes and 𝑂(𝑒𝑑𝑘−􏷡 + 𝑒𝑑𝑘−􏷢 + 𝑒𝑑𝑘−􏷢 + 𝑒) for edges. The theoretical complexity is thus
𝑂(𝑒𝑑𝑘−􏷡), which is the same as for direct enumeration algorithms. Since large net-
works are typically sparse, the actual contribution of the first term, which comes from
enumerating the cliques with 𝑘 nodes, is negligible in practice. Empirical measure-
ments indeed show that the time complexity is proportional to 𝑒𝑑𝑘−􏷢, that is, 𝑂(𝑒𝑑)
for four-node graphlets and 𝑂(𝑒𝑑􏷡) for five-node graphlets.

. The orca package

Package orca (Orbit counter) is written mostly in C++, with coercion and wrapper func-
tions in R. The package requires R version . or higher. Due to using the C++ stan-
dard , which is not available on all platforms, CRAN only hosts the package for R
3.1. Packages for R 2.15 and binaries for OS X and MS Windows are available on the
supplement page (http://www.biolab.si/supp/Rorca/).

.. Functions

The package provides four functions: count4 and count5 count the node orbits of
graphlets on up to four and up to five nodes, and ecount4 and ecount5 count the
edge orbits. All functions accept a single argument, a graph stored in

a graph object from the graph package;

an 𝑒 × 2 edge matrix in which each row contains a pair of nodes given by one-
based integer indices; or

The implementation of the library for R uses -bit integers internally, but returns a matrix of double
precision numbers since some orbit counts for larger graphs do not fit into -bit integers used in R.

http://www.biolab.si/supp/Rorca/



Figure .
Karate club network.

a data frame in the same format.

Functions return a numeric matrix with rows corresponding to graph nodes or
edges, and the columns corresponding to orbits, with column  corresponding to orbit
, column  to orbit  and so forth.

We will show the package usage on the Karate club network [], which is included
in the package. The network is visualized in Figure ..

R> library("orca")

R> data("karate")

R> dim(karate)

[1] 78 2

R> max(karate)

[1] 34

The network has  edges (the number of rows of the matrix) and  nodes (the
maximal node index in the matrix).

In the paper we adhere to the traditional numbering of orbits, which starts with , to avoid confusion. In
practice, the numbering seldom matters since we typically observe the differences between orbit signatures of
nodes and edges, in which we consider the whole vectors and not individual orbits.

  Computation of graphlet orbits for nodes and edges in sparse graphs T. Hočevar

The result of count4, which counts node orbits for graphlets with up to four nodes,
has  rows (the number of nodes) and  columns (the number of orbits).

R> orbits <- count4(karate)

R> dim(orbits)

[1] 34 15

The first four orbits correspond to three-node graphlets. Here are the orbit counts
of four-node graphlets for the first four nodes.

R> orbits[1:4, 5:15]

O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14

[1,] 81 197 13 352 10 6 34 171 2 30 7

[2,] 73 56 33 32 6 8 80 27 2 18 7

[3,] 72 179 84 54 20 17 75 51 6 8 7

[4,] 49 11 56 1 0 5 81 5 4 7 7

Note that for such small networks a visualization reveals more than orbit counts.
Orbit counts become useful on large networks, which are difficult to plot out.

.. Usage example on the Schools Wikipedia network

Thiel and Berthold [] argue that in exploring networks we are not necessarily inter-
ested in nodes that are closely positioned to the query node (spatial similarity), but
also in nodes that have a similar neighborhood structure (structural similarity). They
proposed activation spreading signature as a topological description of the local neig-
bourhood of graph vertices and demonstrate its use on the Schools Wikipedia network.
We conducted a similar experiment by using orbit counts instead of activation spread-
ing for the signature.

We downloaded the  edition of Schools Wikipedia and extracted the network
of internal links. We computed the orbits for four-node graphlets and found the

http://schools-wikipedia.org/
The network is available for download at http://www.biolab.si/supp/Rorca/.

http://schools-wikipedia.org/
http://www.biolab.si/supp/Rorca/



nearest neighbours (in terms of Euclidean distances between orbit counts) for a few
nodes.

Computation of orbits for -node graphlets takes . seconds on a desktop com-
puter. In comparison, GraphCrunch as currently the fastest pure enumeration ap-
proach takes . minutes. Computation of -node orbits takes  minutes; Graph-
Crunch needs  hours. This represents a speed-up by a factor of about .

R> library("orca")
R> library("FNN")

R> nodes <- scan("schools-wiki-nodes.txt", what = "", sep = "\n")
R> edges <- read.table("schools-wiki-edges.txt")

R> orbits <- count4(edges)
R> nn <- get.knn(orbits, k = 10)
R> neighbours <- nn$nn.index
R> distances <- nn$nn.dist

R> check <- c("Canada", "Germany", "Isaac Newton",
+ "Albert Einstein", "Mahatma Gandhi", "Mahabharata")
R> node_indices <- match(check, nodes)
R> for (i in 1:length(check)) {
+ cat("\n\n", check[i], ": ", sep = "")
+ s <- mapply(function(x, y) sprintf("%s (%i)", x, y),
+ nodes[neighbours[node_indices[i],]],
+ round(distances[node_indices[i],] / 1000))
+ cat(s, sep = ", ")
+ }

After the nodes are described by orbit counts, we find the ten most similar nodes
(as defined by Euclidean distance, for the sake of simplicity) to several selected nodes.
Results, together with distances divided by , are provided below.

The results for Canada and Germany are impressive. The two nodes have similar
orbit counts – and thus similar role in the local network topology – as nodes Japan,
Italy, Russia and other nodes representing countries, cities and regions. This would
indicate that it is possible to recognize the nodes corresponding to countries based on
the local network structure represented by orbit counts.

Newer versions of GraphCrunch also already include some parts of the algorithm described here.

  Computation of graphlet orbits for nodes and edges in sparse graphs T. Hočevar

The node orbits – and thus the structure of the network around them – for Isaac
Newton and Albert Einstein are also similar to those of other nodes related to physics.
The inclusion of World War II in the nodes similar to Germany, and the Church of
England with Isaac Newtonmay, however, be just an instance of the Texas sharpshooter
phenomenon. Results for Mahatma Gandhi and Mahabharata are considerably less
satisfactory as these two nodes are connected to unrelated nodes.

Canada: Japan (3548), Italy (4224), Russia (6962), Africa (15546),
Spain (15963), London (18186), Australia (18356), Latin (19360),
China (20146), 19th century (26147)

Germany: India (3384), World War II (7343), China (16753),
Australia (18652), London (19340), Italy (32870), Europe (35056),
Canada (36875), Japan (40001), Russia (43656)

Isaac Newton: Temperature (252), Church of England (297), Jupiter (420),
University of Cambridge (432), Planet (441), Science (518),
Albert Einstein (519), Evolution (545), Elephant (548), Insect (597)

Albert Einstein: Science (165), Climate change (249),
Charles Darwin (267), Jupiter (332), Celsius (366),
United Kingdom of Great Britain and Ireland (415),
Church of England (435), United States Congress (452), Black Sea (471),
Civilization (501)

Mahatma Gandhi: Oil refinery (97), Friedrich Engels (98),
Oil shale (100), Impressionism (103), Rugby league (103),
Tropic of Cancer (111), Reggae (111),
Non-governmental organization (125), John Maynard Keynes (128),
John Stuart Mill (135)

Mahabharata: Feather (38), Shiva (38), Guitar (62), John Vanbrugh (66),
Fever (66), Introduction to evolution (68), Henry IV of England (69),
Microscope (69), René Descartes (71), 1754 (72)

Exploring why the topology around the nodes is similar in one case and not in
another is beyond the scope of this paper. While this example provides an alternative
take at the problem explored by Thiel and Berthold [], graphlet analysis is most often

We speculate that nodes that represent entities of the same kind, such as countries, are connected, thus



used in bioinformatics, where orbit counts are assumed to reflect the roles of genes or
proteins in the observed networks. An interested reader may find further examples in
the cited works of Pržulj and Milenković.

. Conclusion

We presented a new package orca for computing the graphlet orbit counts for nodes
and edges. This paper provides the first complete description of the underlying algo-
rithm, which runs much faster than the previous approaches; a more detailed compar-
ison is available in []. The novel contribution of the paper is also the generalization
of the method to counting the orbits for edges. The package is available on the CRAN
repository under the GPL- license.

. Acknowledgments

This work has been funded by the Slovenian research agency grants J- and P-
.

the local topology is similar because the nodes are actually close to each other. Yet this does not explain why
the method fails for Mahatma Gandhi and Mahabharata for which it found some very similar but unrelated
neighbours. A better explanation might require investigating how this network has been constructed.



Combinatorial algorithm for
counting small induced graphs

and orbits



  Combinatorial algorithm for counting small induced graphs and orbits T. Hočevar

PLOS ONE

Combinatorial Algorithm for Counting Small Induced
Graphs and Orbits

Tomaž Hočevar, Janez Demšar

Faculty of Computer and Information Science, University of Ljubljana,
Ljubljana, Slovenia

. Abstract

Graphlet analysis is an approach to network analysis that is particularly popular in
bioinformatics. We show how to set up a system of linear equations that relate the
orbit counts and can be used in an algorithm that is significantly faster than the existing
approaches based on direct enumeration of graphlets. The approach presented in this
paper presents a generalization of the currently fastest method for counting -node
graphlets in bioinformatics. The algorithm requires existence of a vertex with certain
properties; we show that such vertex exists for graphlets of arbitrary size, except for
complete graphs and a cycle with four nodes, which are treated separately. Empirical
analysis of running time agrees with the theoretical results.

. Introduction

Analysis of networks plays a prominent role in various fields, from learning patterns
[] and predicting new links in social networks [, ], inferring gene functions
from protein-protein interaction networks [] in bioinformatics, to predicting various
properties of chemical compounds (mutagenicity, boiling point, anti-cancer activity)
[] from their molecular structure in chemoinformatics. Many methods rely on the



concept of node similarity, which is typically defined in a local sense, e.g. two nodes
are similar if they share a large number of neighbours. Such definitions are insufficient
for detecting the role of the node. A typical social structure includes hubs, followers,
adversaries and intermediaries between groups. While local similarity definitions treat
the hub and its adjacent nodes as similar, a role-based similarity would consider the
hubs as similar disregarding their distance in the graph.

A popular approach in bioinformatics extracts the node’s local topology by counting
the small connected induced subgraphs (called graphlets) [], which the node touches,
and, when a more detailed picture is required, the node’s position (orbit) [] in those
graphs. See the following paragraphs for a more formal definition. Fig . illustrates
all four-node graphlets and orbits of their nodes. Most applications of graphlet and
orbit counts are based on the assumption that the node’s local network topology is
somehow related to the functionality or some other property of the observed node in
the network. Therefore, we can assume that nodes with similar signatures will have
similar observed properties. This is the foundation for methods such as clustering of
nodes, inference of certain node’s properties etc. The nodes often correspond to pro-
teins in the protein-protein interaction networks. However, the networks can model
an arbitrary process. With the development of new technologies, these networks are
becoming larger, which motivates the development of efficient subgraph counting al-
gorithms.

Figure .
Four-node graphlets (𝒢􏷭).
Vertices marked by the
same color belong to
the same orbit within a
graphlet.

Let 𝒢𝑘 be a set of all non-isomorphic connected simple graphs (graphlets) on 𝑘
nodes, and let 𝐺 ∈ 𝒢𝑘. The orbit of a vertex 𝑣 ∈ 𝐺 is a set of all vertices 𝑎(𝑣),
𝑎 ∈ 𝐴𝑢𝑡(𝐺). Let 𝒪𝑘 be a set of orbits for all 𝑣 ∈ 𝐺 and for all 𝐺 ∈ 𝒢𝑘. Pržulj []
numbered the  graphs in 𝒢􏷡, 𝒢􏷢, 𝒢􏷣 and 𝒢􏷤 and the corresponding  orbits; we
will use her enumeration in the examples in this paper.

Let𝐻 = (𝑉, 𝐸) be the host graph (network) and let 𝑥 ∈ 𝐻 . Vertex 𝑥 participates in

  Combinatorial algorithm for counting small induced graphs and orbits T. Hočevar

a number of subgraphs 𝐺 ∈ 𝒢𝑘 induced in 𝐻 , in which it appears in different orbits
𝑂𝑖 ∈ 𝒪𝑘. Let 𝑜𝑖 be the number of times 𝑥 appears in orbit 𝑂𝑖 in induced subgraphs
from 𝒢𝑘.

An example is shown in Fig .. The orbit count 𝑜􏷠􏷦 of vertex 𝑥 is  since 𝑥 appears
in nine paths 𝐺􏷨 as the central vertex (note that the paths must be induced). Other
orbit counts for𝐺􏷨, 𝑜􏷠􏷤 and 𝑜􏷠􏷥, are  and , respectively: 𝑥 does not appear as the end
vertex (𝑂􏷠􏷤) of 𝐺􏷨 in 𝐻 , but it appears four times in the role of the node between the
center and the end (𝑂􏷠􏷥). For a few more examples, 𝑜􏷣􏷣 = 1, 𝑜􏷣􏷦 = 4, and 𝑜􏷤􏷨 = 2;
all other orbit counts of -node graphlets are .

Figure .
A host graph 𝐻 and graphs
𝐺􏷲 , 𝐺􏷪􏷱 , 𝐺􏷪􏷲 and 𝐺􏷫􏷭 from
𝒢􏷮 . Graphs and orbits are
numbered as in [].

The orbit count distribution is a |𝒪𝑘|-dimensional vector of 𝑜𝑖 for all 𝑂𝑖 ∈ 𝒪𝑘. The
orbit count distribution represents a signature of the node: it contains a description
of the node’s neighborhood and the node’s position (“role”) within it. As such, this
distribution is a useful feature vector for various network analysis tasks.

We will describe an algorithm for computation of orbit count distributions for all
vertices 𝑥 ∈ 𝑉 for subgraphs of arbitrary size 𝑘. The efficient implementation of
the algorithm requires setting up a system of equations that relate subgraph nodes
with specific properties; we will prove that such nodes exist for all 𝑘 ≥ 3 except for
complete graphs and the cycle on  nodes, which can be treated specifically. We will
show – both theoretically as well as empirically – that the algorithm’s time complexity
on sparse graphs is lower by an order of magnitude in comparison with enumeration-
based approaches.



.. Preliminaries

Referring to graphlets, orbits, neighbours, etc., requires some notation which we sum-
marize in Table . and use throughout this paper.

Table .
Notation.

𝐻 = (𝑉, 𝐸) host graph within which we count the graphlets and orbits
𝑛 number of nodes of 𝐻 ; 𝑛 = |𝑉|
𝑒 number of 𝐻 ’s edges; 𝑒 = |𝐸|
𝑑(𝑣) degree of node 𝑣
𝑑 maximal node degree in 𝐻 ; 𝑑 = 􏸌􏸀􏸗𝑣∈𝑉 𝑑(𝑣)
𝑁(𝑣) set of neighbours of vertex 𝑣 ∈ 𝑉
𝑁(𝑣􏷪, 𝑣􏷫, … , 𝑣𝑗) set of common neighbours of 𝑣􏷪, 𝑣􏷫, …, 𝑣𝑗;

𝑁(𝑣􏷪, 𝑣􏷫, … , 𝑣𝑗) = 𝑁(𝑣􏷪) ∩ 𝑁(𝑣􏷫) ∩ … ∩ 𝑁(𝑣𝑗)
𝑁(𝒮) common neighbours of nodes in the set 𝒮 ⊂ 𝑉 ;

𝑁(𝒮) = ∩𝑣∈𝒮 𝑁(𝑣)
𝑐(𝑣), 𝑐(𝑣􏷪, 𝑣􏷫, … , 𝑣𝑗),
𝑐(𝒮)

number of common neighbours of vertex 𝑣, of vertices
𝑣􏷪, 𝑣􏷫, … , 𝑣𝑗, and of vertices from set 𝒮 , respectively; that is,
𝑐(𝑣) = |𝑁(𝑣)|, 𝑐(𝑣􏷪, 𝑣􏷫, … , 𝑣𝑗) = |𝑁(𝑣􏷪, 𝑣􏷫, … , 𝑣𝑗)|, 𝑐(𝒮) =
|𝑁(𝒮)|

𝒢𝑘 set of all graphlets with 𝑘 nodes
𝐺𝑎 graphlet 𝑎, according to some enumeration
𝑂𝑖 orbit 𝑖, according to some enumeration
𝑜𝑖(𝑣), 𝑜𝑖 the number of times the node 𝑣 appears in an induced sub-

graph in orbit 𝑖; since 𝑣 will be obvious, we will use the shorter
notation 𝑜𝑖

𝑚(𝑖) index of the graphlet containing the orbit 𝑂𝑖, e.g. 𝑚(􏷠􏷥) = 􏷨

Let 𝐾 = (𝑉𝐾 , 𝐸𝐾) be a subgraph of 𝐽 = (𝑉𝐽 , 𝐸𝐽), and let 𝑣 ∈ 𝑉𝐾 . We will denote
𝐽 ’s vertex that corresponds to 𝑣 by 𝑣𝐽 . If there are multiple isomorphic embeddings of
𝐾 in 𝐽 , 𝑣𝐽 refers to one of them. Similarly, if 𝑆 ⊆ 𝑉𝐾 , then the corresponding vertices
in 𝐽 are denoted by 𝑆𝐽 .

.. Related work

The most basic case of counting induced patterns in graphs is that of counting triangles.
Itai and Rodeh [] showed that this can be done faster than by exhaustive enumera-

  Combinatorial algorithm for counting small induced graphs and orbits T. Hočevar

tion in𝑂(𝑛􏷢) time. Raising the graph’s adjacency matrix𝐴 to the third power gives the
number of walks of length  between pairs of nodes. Element𝐴􏷢𝑥,𝑥 represents the num-
ber of walks of length  that start and finish in the node 𝑥, which corresponds to the
number of triangles that include 𝑥. The total number of triangles is then 􏷠

􏷥
∑𝑥∈𝐺𝐴􏷢𝑥,𝑥.

Note that the same triangle is counted twice for each of its three nodes. The time com-
plexity of this procedure equals that of multiplying two matrices, which is faster than
exhaustive enumeration of triangles in dense graphs. A natural extension of this result
is to larger cliques. Nešetřil and Poljak [] studied the problem of detecting a clique
of size 𝑘 in a graph with 𝑛 nodes. They showed that this problem can be solved faster
than with the straight-forward 𝑂(𝑛𝑘) solution. Their approach reduces the original
problem to detection of triangles in a graph with 𝑂(𝑛𝑘/􏷢) nodes. Since we can detect
triangles faster than in 𝑂(𝑛􏷢) with fast matrix multiplication algorithms, we can also
detect cliques of size 𝑘 faster than 𝑂(𝑛𝑘).

Counting all non-induced subgraphs is as hard as counting all induced subgraphs
because they are connected through a system of linear equations. Despite this it is
sometimes beneficial to compute induced counts from non-induced ones. Rapid
Graphlet Enumerator (RAGE) [] takes this approach for counting four-node graph-
lets. Instead of counting induced subgraphs directly, it reconstructs them from counts
of non-induced subgraphs. For computing the latter, it uses specifically crafted meth-
ods for each of the  possible subgraphs (𝑃􏷣, claw, 𝐶􏷣, paw, diamond, and 𝐾􏷣). The
time complexity of counting non-induced cycles and complete graphs is𝑂(𝑒 ⋅ 𝑑 + 𝑒􏷡),
while counting other subgraphs runs in 𝑂(𝑒 ⋅ 𝑑). However, the run-time of counting
cycles and cliques in real-world networks is usually much lower.

Some approaches exploit the relations between the numbers of occurrences of in-
duced subgraphs in a graph. Kloks et al. [] showed how to construct a system of
equations that allows computing the number of occurrences of all six possible induced
four-node subgraphs if we know the count of any of them. The time complexity of
setting up the system equals the time complexity of multiplying two square matrices
of size 𝑛. Kowaluk et al. [] generalized the result by Kloks to counting subgraph pat-
terns of arbitrary size. Their solution depends on the size of the independent set in the
pattern graph and relies on fast matrix multiplication techniques. They also provide an
analysis of their approach on sparse graphs, where they avoid matrix multiplications
and derive the time bounds in terms of the number of edges in the graph.

Floderus et al. [] researched whether some induced subgraphs are easier to count



than others as is the case with non-induced subgraphs. For example, we can count
non-induced stars with 𝑘 nodes,∑𝑥∈𝑉 􏿴

𝑐(𝑥)
𝑘−􏷪 􏿷, in linear time. They conjectured that all

induced subgraphs are equally hard to count. They showed that the time complexity
in terms of the size of G for counting any pattern graph 𝐻 on 𝑘 nodes in graph 𝐺 is
at least as high as counting independent sets on 𝑘 nodes in terms of the size of 𝐺.

Vassilevska and Williams [] studied the problem of finding and counting individ-
ual non-induced subgraphs. Their results depend on the size 𝑠 of the independent set
in the pattern graph and rely on efficient computations of matrix permanents and not
on fast matrix multiplication techniques like some other approaches. If we restrict the
problem to counting small patterns and therefore treat 𝑘 and 𝑠 as small constants, their
approach counts a non-induced pattern in 𝑂(𝑛𝑘−𝑠+􏷡) time. This is an improvement
over a simple enumeration when 𝑠 ≥ 3. Kowaluk et al. [] also improved on the
result of Vassilevska and Williams when 𝑠 = 2. Alon et al. [] developed algorithms
for counting non-induced cycles with  to  nodes in 𝑂(𝑛𝜔), where 𝜔 represents the
infimum of exponents over all matrix multiplication algorithms.

Alon et al. [] introduced the color-coding technique for finding simple paths and
cycles in graphs. Their technique is applicable not just to paths and cycles but also to
other patterns with bounded treewidth. The authors of [] used such color-coding
approach to approximate a ‘treelet’ distribution (frequency of non-induced trees) for
trees with up to  nodes.

Recently, Melckenbeeck et al. [] published a paper that describes how to gener-
ate systems of equations similar to those used in the ORCA algorithm [] for arbi-
trarily large graphlets. However, the resulting equations do not satisfy the require-
ments needed for an efficient counting algorithm. Consider for example the equation
𝑜􏷤􏷟 + 𝑜􏷤􏷤 = ∑𝑃􏷰(𝑥,𝑎,𝑏,𝑐)(𝑐(𝑎, 𝑏, 𝑐) − 1). There can be as many as 𝑂(𝑒𝑑􏷡) sets of nodes
{𝑎, 𝑏, 𝑐}with a nonzero number of common neighbours, which makes the computation
of common neighbours the limiting factor in terms of space and time requirements.
The method we present in this paper and the related proofs show how to avoid this
issue and construct an efficient algorithm for arbitraty graphlet sizes.

.. Outline of the proposed algorithm

We will derive a system of linear equations that relate the orbit counts of a fixed node
for graphlets with 𝑘 vertices. The coefficients on the left-hand sides reflect the sym-
metries in the graphlets and do not depend on the host graph, so they are derived in

  Combinatorial algorithm for counting small induced graphs and orbits T. Hočevar

advance. The right-hand sides are computed as sums over graphlets with 𝑘−1 vertices
induced in the host graph 𝐻 , and the sums include terms that represent the number
of common neighbours of certain vertices in the embeddings of graphlets in 𝐻 .

The resulting system of equations will be triangular and have a rank of |𝒪𝑘| − 1. We
can efficiently enumerate the complete graphlet, after which the system of equations
for the remaining orbit counts can be solved using integer arithmetic, thus avoiding
any numerical errors.

.. Original contributions

We already presented the original idea of the algorithm in a recent article in Bioinfor-
matics [], in which we focused on its use in genetics and avoided formal descriptions
and analysis. In this paper we

. present the algorithm more formally;

. describe a general method for derivation of the system of equations relating the
orbit counts;

. generalize it to induced subgraphs of arbitrary size; in particular, we prove that
the system of equations with the properties required for the efficient implemen-
tation of the algorithm exists for any 𝑘 ≥ 4;

. provide worst time-complexity analysis and the analysis of the expected time
complexity on random graphs;

. empirically explore the efficiency of the orbit counting algorithm and compare
it with the theoretical results.

The remainder of the paper is composed of two parts. In the next section we show
a technique for building the system of equations with desired properties, and in the
following section we present an algorithm based on them and analyze its time- and
space-complexity.

. Relations between orbit counts

We will show how to construct linear relations between a chosen orbit count 𝑜𝑖 and
some orbits belonging to graphlets with a larger number of edges. We will illustrate



the procedure on figures showing the derivation of the following Equation . that
relates the count for orbit  and counts for orbits ,  and .

𝑜􏷤􏷨 + 4𝑜􏷥􏷤 + 2𝑜􏷥􏷧 + 6𝑜􏷦􏷟 = 􏾜
𝑥􏷪 ,𝑥􏷫 ,𝑥􏷬 ∶

𝑥􏷪<𝑥􏷫∧𝑥􏷬∉𝑁(𝑥),
𝐻[{𝑥,𝑥􏷪 ,𝑥􏷫 ,𝑥􏷬}]≅𝐺􏷰

[(𝑐(𝑥􏷠, 𝑥􏷢) − 1) + (𝑐(𝑥􏷡, 𝑥􏷢) − 1)] (.)

.. Derivation of general relations between orbit counts

Let orbit𝑂𝑖 appear in a connected simple 𝑘-node graphlet𝐺𝑎 = (𝑉𝐺, 𝐸𝐺) (𝑎 = 𝑚(𝑖)).
We denote the 𝐺𝑎’s node that is in orbit 𝑂𝑖 by 𝑥; if there are multiple such nodes,
we pick one. Next, we choose a node 𝑦 ≠ 𝑥, such that 𝐺′ = 𝐺𝑎 ⧵ {𝑦} is still a
connected graph; we will impose additional constraints on 𝑦 later to ensure an efficient
implementation of the algorithm. According to our notation, 𝑥𝐺′ is the node in 𝐺′
that corresponds to 𝑥 in 𝐺𝑎; let 𝑂𝑚 be its orbit. We label the remaining 𝑘 − 2 nodes
with 𝑥􏷠, 𝑥􏷡, ..., 𝑥𝑘−􏷡 (Fig. .).

Figure .
Reducing the 𝑘-node
graphlet 𝐺𝑎 to a 𝑘 − 􏷪 node
graphlet 𝐺′ .

Fig. . illustrates reducing the 𝑘-node graphlet 𝐺𝑎 to a 𝑘 − 1 node graphlet 𝐺′. 𝑂􏷤􏷨
appears in𝐺𝑎 = 𝐺􏷡􏷣; the node in𝑂􏷤􏷨 is labelled 𝑥. Removal of node 𝑦 results in𝐺′ = 𝐺􏷦.
The node in 𝐺′ that corresponds to 𝑥, 𝑥𝐺′ , belongs to 𝑂􏷠􏷡. We assigned labels 𝑥􏷠, 𝑥􏷡 and
𝑥􏷢 to the remaining nodes of 𝐺′. Embeddings of 𝐺𝑎 and 𝐺′ in 𝐻 are referred to as 𝐺𝐻𝑎
and 𝐺′𝐻 , respectively. The nodes corresponding to 𝑥 and 𝑦 are marked by 𝑥𝐻 and 𝑦𝐻 .

We now go in the opposite direction: starting with 𝐺′, we consider its possible
extensions to 𝐺𝑎. Let 𝐸 ⊂ 𝑉𝐺′ be a set of nodes such that adding a new vertex 𝑦

  Combinatorial algorithm for counting small induced graphs and orbits T. Hočevar

connected to all vertices in 𝐸 yields 𝐺𝑎 with 𝑥 in orbit 𝑂𝑖 (Fig. .). Let ℰ be a set of
all such subsets 𝐸.

Figure .
Extensions of the 𝑘 − 􏷪-
node graphlet 𝐺′ to 𝐺𝑎 .

Fig. . shows extensions of the 𝑘 − 1-node graphlet 𝐺′ to 𝐺𝑎. 𝐺􏷦 can be extended to
𝐺􏷡􏷣 by attaching 𝑦 to either 𝑥􏷠 and 𝑥􏷢 or to 𝑥􏷡 and 𝑥􏷢, hence ℰ = {{𝑥􏷠, 𝑥􏷢}, {𝑥􏷡, 𝑥􏷢}}.
With respect to (.), 𝑥􏷠 and 𝑥􏷢 (as well as 𝑥􏷡 and 𝑥􏷢) have one common neighbour in
𝐺′, so 𝑐(𝐸𝐺′) = 1 and∑𝐸∈ℰ 􏿴𝑐(𝐸𝐻) − 𝑐(𝐸𝐺

′)􏿷 = (𝑐(𝑥􏷠, 𝑥􏷢) − 1)+ (𝑐(𝑥􏷡, 𝑥􏷢) − 1). The
right side in (.) sums this over all unique occurrences of 𝐺′ = 𝐺􏷦 with 𝑥 in 𝑂􏷠􏷡 within
𝐻 .

Let 𝐺′𝐻 be some particular occurrence of 𝐺′ in 𝐻 . To count 𝑜𝑖 for the node 𝑥𝐻
(the node in𝐻 to which 𝑥maps), we need to explore the extensions of 𝐺′𝐻 to 𝐺𝐻𝑎 . A
necessary (but insufficient) condition to put 𝑥𝐻 into 𝑂𝑖 is that the additional node 𝑦
is a common neighbour of all vertices 𝐸𝐻 for one of 𝐸𝐻 ∈ ℰℋ (with respect to the
particular occurrence of 𝐺′ in 𝐻). There are at most

􏾜
𝐸∈ℰ

􏿴𝑐(𝐸𝐻) − 𝑐(𝐸𝐺′)􏿷 (.)

candidate nodes 𝑦; 𝑐(𝐸𝐺′) represents the number of neighbours of 𝐸 that are already
in 𝐺′ (i.e. 𝑥𝑖) and cannot be mapped to 𝑦. Equation (.) represents the term in the
sum in the right side of the relation. To compute the total orbit count 𝑜𝑖 for 𝑥, we
sum (.) over all occurences of 𝐺′ in 𝐻 (Fig. .).

Condition 𝑦 ∈ 𝑁(𝐸𝐻) (for some 𝐸𝐻 ∈ ℰ 𝐻) is not sufficient. Node 𝑦 can also be
connected to any of the other 𝑘 − 1 − |𝐸| (𝐸 ∈ ℰ) nodes in 𝐺′𝐻 , resulting in 2𝑘−􏷠−|𝐸|
possible graphlets and orbits for 𝑥. The counts for these orbits are summed on the left
side of the relation (Fig. .).
Dashed lines in Fig. . represent edges required by condition 𝑦 ∈ 𝑁(𝑥􏷠, 𝑥􏷢). Dotted

lines represent possible extra edges that make the resulting induced graph isomorphic to
𝐺􏷡􏷥, 𝐺􏷥􏷧 or𝐺􏷦􏷟 instead of𝐺􏷡􏷣, with 𝑥 in orbits 𝑜􏷥􏷤, 𝑜􏷥􏷧 or 𝑜􏷦􏷟 instead of 𝑜􏷤􏷨; these orbits
appear on the left-hand side of (.).



Figure .
Extended graphlets with
extra edges.

While adding the orbit counts on the left-hand side, we need to account for the over-
counts, that is, the number of times that (.) counts the same occurrence of 𝐺∗ =
𝐺𝑚(𝑝) (the graphlet containing the orbit 𝑝) within 𝐻 . 𝐺∗ is obtained by extending 𝐺′
with 𝑦 ∈ 𝑁(𝐸). The coefficients on the left-hand side thus equals the number of ways
in which 𝐺′ can be extended to 𝐺∗ with a fixed node 𝑥 (Fig .).

Figure .
Symmetries and coeffi-
cients.

The coefficient at 𝑜􏷦􏷟 in . is  because each induced embedding of𝐺∗ = 𝐺𝑚(􏷦􏷟) = 𝐺􏷡􏷧
in 𝐻 is counted six times. First, there are three different choices for 𝑦 (the white node),
therefore each embedding of 𝐺􏷡􏷧 results in three corresponding appearances of graphlet 𝐺􏷦
(solid edges) with 𝑥 in orbit 𝑂􏷠􏷡. For each occurrence, both extensions (dashed edges) lead
to 𝑥 in orbit 𝑂􏷦􏷟.

In general, we have to consider all induced occurrences of 𝐺′ in 𝐺∗ (with a fixed
point 𝑥), which is the same as considering nodes 𝑧 ∈ 𝑉𝐺∗ whose removal results in 𝐺′
with 𝑥𝐺′ in orbit𝑂𝑝. For every such case we increase the coefficient by the number of
extensions 𝐸 ∈ ℰ such that node 𝑧 is connected to the extension nodes, i.e. 𝑁(𝑧) ⊇
𝐸𝐺∗ .

The general procedure for relating the orbit count 𝑜𝑖 with counts of orbits with
higher indices is outlined in Algorithm .

  Combinatorial algorithm for counting small induced graphs and orbits T. Hočevar

Algorithm 
Derive an equation for orbit 𝑂𝑖 .

function equation(𝑂𝑖)
𝐺𝑎 ← 𝐺𝑚(𝑖) ▷ Let 𝐺𝑎 be the graphlet that contains 𝑂𝑖
𝑥 ∈ 𝑂𝑖 ▷ and 𝑥 one of the nodes in 𝑂𝑖.
𝑦 ← selecty(𝑥) ▷ Alg.  - Pick node 𝑦 such that 𝑦 ≠ 𝑥
𝐺′ ← 𝐺𝑎 ⧵ 𝑦 ▷ and 𝐺′ is a connected graph.

𝑟 ← ∑
𝐺′𝐻 ∶ 𝑥𝐻∈𝑂𝑖

(Equation .) ▷ The right side of equation sums over.

▷ all occurrences of 𝐺′ in the host graph.

for 𝑝 ∈ 𝒪 do ▷ Construct left side of the equation.
𝐺∗ = 𝐺𝑚(𝑝) ▷ Graphlet containing orbit 𝑂𝑝.
𝑓𝑝 ← 0 ▷ Overcount coefficient of orbit 𝑂𝑝.
for 𝑧 ∈ 𝐺∗ ∶ (𝐺∗ ⧵ 𝑧) ≅ 𝐺′ do ▷ Is 𝑧 in the same orbit as 𝑦

▷ given a fixed point 𝑥?
𝑓𝑝 ← 𝑓𝑝 + |{𝐸 ∈ ℰ ∶ 𝑁(𝑧) ⊇ 𝐸}| ▷ By how many extensions?

end for
end for
𝑙 ← ∑𝑝 𝑓𝑝 ⋅ 𝑜𝑝 ▷ Left side is a weighted sum of orbit counts.

return equation 𝑙 = 𝑟
end function

.. Additional constraints on selection of y

In the preceding derivation, the only limitation on selection of vertex 𝑦 was that the
remaining graphlet is still connected. Different choices of 𝑦 yield different equations.
With the coefficients independent of the host graph and known in advance, the time
consuming part of using these equations to calculate orbit counts is the computation
of the right-hand side terms. To speed it up, we impose some additional constraints
on the choice of the node 𝑦: the restraints will be such that the right-hand sides will
contain only the counts 𝑐(𝑆) in which either |𝑆| < 𝑘 − 2, or equal |𝑆| = 𝑘 − 2 with the



nodes in 𝑆 forming a connected subgraph of 𝐺𝑘. This will allow pre-calculation and
caching of all 𝑐(𝑆) needed for computation of right-hand sides.

For efficient precomputation, vertex 𝑦 ≠ 𝑥 must meet the following criteria:

C. 𝑑(𝑦) ≤ 𝑘 − 2,

C. 𝐺 ⧵ {𝑦} is a connected graph,

C. if 𝑑(𝑦) = 𝑘 − 2, the neighbours of 𝑦 induce a connected graph,

where 𝑑(𝑦) represents the degree of 𝑦.

Theorem : A vertex that meets criteria C, C and C exists in any graphlet with
𝑘 ≥ 4 vertices and all possible 𝑥, except for complete graphlets (all vertices violate
the first condition) and for the cycle on four points, 𝐶􏷣 (all vertices violate the last
condition).

Let 𝐿𝑖 represent the set of vertices at a distance 𝑖 from 𝑥 (see Fig .). Let ℓ𝑖 be the
vertex in 𝐿𝑖 with the smallest degree. Let 𝐿𝑢 be the last non-empty set, and, accord-
ingly, ℓ𝑢 the vertex with the smallest degree among the vertices farthest from 𝑥. We
will show that ℓ𝑢 fulfils the conditions in most cases, except in some for which we can
use ℓ𝑢−􏷠.

Algorithm 
Selection of node 𝑦.

function selecty(𝑥)
𝑢 ← distance to the furthest node from 𝑥
𝐿𝑢, 𝐿𝑢−􏷠 ← set of nodes at distance 𝑢 and 𝑢 − 1, respectively
ℓ𝑢, ℓ𝑢−􏷠 ← lowest degree node from 𝐿𝑢 and 𝐿𝑢−􏷠, respectively
if ℓ𝑢 satisfies the criteria then

𝑦 ← ℓ𝑢
else

𝑦 ← ℓ𝑢−􏷠
end if
return 𝑦

end function

  Combinatorial algorithm for counting small induced graphs and orbits T. Hočevar

Figure .
Illustrations of different
cases.

In Fig. . the node at the bottom level 𝐿􏷟 represents node 𝑥. The selected node 𝑦 is colored
black and its neighbours are indicated with a gray color. (a) 𝑢 = 1. (b) 𝑢 = 2∧ |𝐿􏷡| > 1.
(c) 𝑢 = 2 ∧ |𝐿􏷡| = 1 ∧ 𝑘 = 4. (d) 𝑢 = 2 ∧ |𝐿􏷡| = 1 ∧ 𝑘 ≥ 5 ∧ 𝑑(ℓ􏷠) = 𝑘 − 1. (e)
𝑢 = 2∧|𝐿􏷡| = 1∧𝑘 ≥ 5∧𝑑(ℓ􏷠) < 𝑘−2. (f) 𝑢 = 2∧|𝐿􏷡| = 1∧𝑘 ≥ 5∧𝑑(ℓ􏷠) = 𝑘−2.

Each node 𝑣 ∈ 𝐿𝑖 (𝑖 > 0) has at least one neighbour in 𝐿𝑖−􏷠, since the first node
in every shortest path from 𝑣 to 𝑥 belongs to 𝐿𝑖−􏷠. Consequently, all 𝐿𝑖 for 𝑖 ≤ 𝑢 are
non-empty. Note also that vertices from 𝐿𝑖 are adjacent only to vertices 𝐿𝑖−􏷠, 𝐿𝑖, and
𝐿𝑖+􏷠 since any edge from 𝐿𝑖 to 𝐿𝑗 with 𝑗 < 𝑖 − 1 would imply a shorter path from the
node in 𝐿𝑖 to 𝑥.

Lemma : A vertex 𝑣 ∈ 𝐿𝑖 can have a degree of at most 𝑘 − 𝑖.

The vertex 𝑣 is not adjacent to any vertex in 𝐿𝑗, where 0 ≤ 𝑗 < 𝑖 − 1. Since 𝐿𝑗 are
non-empty, there are at least 𝑖 − 1 non-adjacent vertices to 𝑣, so the degree of 𝑣 is at
most 𝑘 − 1 − (𝑖 − 1) = 𝑘 − 𝑖.

As a consequence, if 𝑑(ℓ𝑢) = 𝑘 − 2, then 𝑢 ≤ 2.

Lemma : If 𝑑(𝑣) = 𝑘 − 2 and 𝑣 ∈ 𝐿􏷡, then 𝑣 is adjacent to all vertices except 𝑥.

A vertex in 𝐿􏷡 is not adjacent to 𝑥 by definition of 𝐿􏷡, and there are no loops, so to
have a degree of 𝑘 − 2 it must be adjacent to all other vertices.



Lemma : If G is not a complete graph, then 𝑑(ℓ𝑢) ≤ 𝑘 − 2

For 𝑢 > 1, the lemma follows directly from Lemma , so we only need to prove it
for 𝑢 = 1. For contrapositive, assume that 𝑑(ℓ􏷠) = 𝑘 − 1. Since ℓ􏷠 has the smallest
degree in 𝐿􏷠, all vertices in 𝐿􏷠 have a degree of 𝑘 − 1. Furthermore, 𝑥 has degree 𝑘 − 1
since all vertices in 𝐿􏷠 are adjacent to it by definition of 𝐿􏷠. Hence, 𝐺 is a complete
graph.

The last lemma ensures that the farthest vertex with the lowest degree, ℓ𝑢, fulfills
the first condition. It also fulfills the second one: all vertices are connected to 𝑥 with
the shortest paths of lengths at most 𝑢, which cannot include ℓ𝑢, thus the removal of
ℓ𝑢 keeps them connected (at least) via 𝑥.

We will prove that ℓ𝑢 also fulfills the third condition, except for one special case
(𝑑(ℓ𝑢) = 𝑘 − 2 and 𝑢 = 2 and |𝐿􏷡| = 1 and 𝑘 ≥ 5 and 𝑑(ℓ􏷠) ≤ 𝑘 − 2), in which we
choose another suitable vertex. We will consider six different cases, which are (except
for the trivial first case) illustrated in Fig ..

. 𝑑(ℓ𝑢) < 𝑘 − 2: Condition (C) does not apply.

. 𝑑(ℓ𝑢) = 𝑘 − 2 and 𝑢 = 1: Since all vertices except 𝑥 are in 𝐿􏷠, they are adjacent to
𝑥 (Fig .a). 𝑥 itself is among the neighbours of ℓ􏷠, hence neighbours of ℓ􏷠 are
connected through 𝑥.

. 𝑑(ℓ𝑢) = 𝑘 − 2 and 𝑢 = 2 and |𝐿􏷡| > 1: Since ℓ􏷡 is the vertex with the smallest de-
gree in 𝐿􏷡, all vertices in 𝐿􏷡 must have a degree of 𝑘 − 2 and are adjacent to all
vertices except 𝑥 by Lemma  (Fig .b). The neighbour set of ℓ􏷡 is 𝐿􏷠∪𝐿􏷡 ⧵ℓ􏷡.
Since |𝐿􏷡| > 1, there exists a vertex 𝑣 ∈ 𝐿􏷡 s.t. 𝑣 ≠ ℓ􏷡. 𝑣 is adjacent to all nodes
from 𝐿􏷡 ∪ 𝐿􏷠, therefore 𝐿􏷠 ∪ 𝐿􏷡 ⧵ ℓ􏷡 is connected.

. 𝑑(ℓ𝑢) = 𝑘 − 2 and 𝑢 = 2 and |𝐿􏷡| = 1 and 𝑘 = 4: 𝐿􏷠 contains two vertices; both are
adjacent to 𝑥 by definition of 𝐿􏷠 and to ℓ􏷡 since 𝑑(ℓ􏷡) = 𝑘 − 2 = 2. ℓ􏷡 is not
adjacent to 𝑥 by definition of 𝐿􏷡. This leaves only two possible graphs, the cy-
cle 𝐶􏷣 and a diamond (Fig .c). For the former, the vertex with the required
properties does not exist. For the diamond, ℓ𝑢 fulfills all three conditions.

. 𝑑(ℓ𝑢) = 𝑘 − 2 and 𝑢 = 2 and |𝐿􏷡| = 1 and 𝑘 ≥ 5 and 𝑑(ℓ􏷠) = 𝑘 − 1: The neighbour
set of ℓ􏷡 is the entire 𝐿􏷠 (Fig .d). Since the smallest degree in 𝐿􏷠 is 𝑘 − 1, 𝐿􏷠
is a complete graph and therefore connected.

  Combinatorial algorithm for counting small induced graphs and orbits T. Hočevar

. 𝑑(ℓ𝑢) = 𝑘 − 2 and 𝑢 = 2 and |𝐿􏷡| = 1 and 𝑘 ≥ 5 and 𝑑(ℓ􏷠) ≤ 𝑘 − 2:
The graph consists of 𝐿􏷟 = {𝑥}, 𝐿􏷡 = {ℓ􏷡}, and of 𝐿􏷠 with at least  vertices
since 𝑘 ≥ 5 (Fig .e). All nodes in 𝐿􏷠 are adjacent to 𝑥 by definition of 𝐿􏷠 and
to ℓ􏷡 by Lemma  since we assume 𝑑(ℓ􏷡) = 𝑘 − 2.

In this case, ℓ𝑢 does not always fulfil the conditions, so we choose the lowest
degree vertex from 𝐿􏷠, ℓ􏷠. It fulfils the condition (i) by assumptions of this
special case. As for condition (ii), the graph 𝐺 ⧵ ℓ􏷠 is still connected since all
points in 𝐿􏷠 are adjacent to 𝑥. Since |𝐿􏷠| ≥ 3 and 𝑑(ℓ𝑢) = 𝑑(ℓ􏷡) = 𝑘 − 2,
vertices 𝑥 and ℓ􏷡 are connected through the remaining vertices in 𝐿􏷠 ⧵ ℓ􏷠.

Condition (iii) needs to be verified just for the case when 𝑑(ℓ􏷠) = 𝑘−2 (Fig .f).
The neighbours of ℓ􏷠 include 𝑥, ℓ􏷡 and all vertices from 𝐿􏷠 except one. Since
|𝐿􏷠| ≥ 3, 𝐿􏷠 must include at least one other neighbour of ℓ􏷠, which thus con-
nects 𝑥 and ℓ𝑢.

We have covered all possible cases: the degree of ℓ𝑢 cannot exceed 𝑘 − 2 due to
Lemma  (assuming the graph is not complete), and when 𝑑(ℓ𝑢) = 𝑘 − 2, 𝑢 cannot
exceed  due to Lemma .

We have proven that the vertex with the smallest degree in 𝐿𝑢, ℓ𝑢, fulfills the given
conditions in all cases except when 𝑑(ℓ𝑢) = 𝑘 − 2 and 𝑢 = 2 and |𝐿􏷡| = 1 and 𝑘 ≥ 5
and 𝑑(ℓ􏷠) ≤ 𝑘 − 2. In the latter case, the conditions are fulfilled by ℓ􏷠. Complete
graphlets and 𝐶􏷣 are handled differently.

.. Equation for a cycle on  nodes

A cycle on  nodes, 𝐶􏷣, is treated separately since there is no suitable node 𝑦 with the
required properties. For 𝐶􏷣 (𝑂􏷧) we choose one of the nodes adjacent to 𝑥 for the role
of 𝑦, resulting in

2𝑜􏷧 + 2𝑜􏷠􏷡 = 􏾜
𝑥􏷪 ,𝑥􏷫 ∶

𝑥,𝑥􏷫∈𝑁(𝑥􏷪),
𝐻[{𝑥,𝑥􏷪 ,𝑥􏷫}]≅𝐺􏷪

[𝑐(𝑥, 𝑥􏷡) − 1] . (.)

Note that this choice violates the third condition that the neighbours of 𝑦 should
induce a connected graph. The equation . contains a term on the right side that
corresponds to the number of common neighbours of node 𝑥 and some other node 𝑥􏷡



at distance  from 𝑥. The algorithm stores precomputed values for all such pairs 𝑥 and
𝑥􏷡, which would require 𝑂(𝑛𝑑􏷡) space and increase the algorithm’s space complexity.
However, we can still handle this case without consequences for the time and space
complexity. We achieve this by reusing 𝑂(𝑛) space and recomputing the number of
common neighbours every time the algorithm starts a computation of orbit counts
for a different node of interest 𝑥. This optimization is necessary to keep the space
requirement at 𝑂(𝑛𝑑) for counting four-node graphlets and does not impact the time
complexity.

.. System of equations

In the constructed system of equations, each orbit is related to orbits from graphlets
with higher number of edges. This yields a triangular system of equations: we have
one equation for every orbit 𝑂 and these equations include as terms only the orbit 𝑂
and other orbits belonging to graphlets with a larger number of edges (e.g., the orbit
 in (.) is related to orbits ,  and ).

The system has 𝒪𝑘 − 1 linear equations for 𝒪𝑘 orbit counts. To solve it, one or-
bit count must be enumerated directly. The networks that we encounter in practical
applications are usually sparse, which makes the complete graphlet (clique) a good
candidate. Because of its rarity and symmetricity, we can efficiently restrict the enu-
meration.

Enumerating the orbit in the graph with the largest number of edges also simplifies
solving the given triangular system of equations.

.. Extension to edge orbits

Edge orbits (Fig .) can be defined in a similar way as node orbits. We can use the
same approach for setting up the corresponding system of equations. Since the system
does not refer to a single 𝑥 but to an edge (𝑥𝑎, 𝑥𝑏), the selected node 𝑦must not coincide
with either of these endpoints. We can set 𝑥 = 𝑥𝑎 and show that we can always choose
a node 𝑦 ≠ 𝑥𝑏 with the required properties.

Since 𝑥𝑏 is always in 𝐿􏷠, we have to analyze only the cases where we choose 𝑦 from
𝐿􏷠. This happens in cases , , and  from the proof in section about additional
constraints on y. We need to check that there at least two suitable vertices for 𝑦, so if
one of them is 𝑥𝑏, the other is chosen as 𝑦.

  Combinatorial algorithm for counting small induced graphs and orbits T. Hočevar

Figure .
Edge orbits in four-node
graphlets. Different styles
of lines within a graphlet
indicate edge orbits.

. 𝑑(ℓ𝑢) < 𝑘 − 2: We need to consider only the case when 𝑢 = 1. Since 𝑑(ℓ𝑢) < 𝑘−2,
all vertices in 𝐿􏷠 satisfy condition (i). The remaining graph is connected through
𝑥 (condition (ii)), and condition (iii) does not apply.

. 𝑑(ℓ𝑢) = 𝑘 − 2 and 𝑢 = 1: Recall that the graph is not complete. Since all vertices
in 𝐿􏷠 are connected to 𝑥, there must be at least one pair in 𝐿􏷠 that is not con-
nected and thus has a degree of 𝑘 − 2. These two vertices satisfy condition (i).
Conditions (ii) and (iii) again hold since all vertices are connected through 𝑥.

. 𝑑(ℓ𝑢) = 𝑘 − 2 and 𝑢 = 2 and |𝐿􏷡| = 1 and 𝑘 ≥ 5 and 𝑑(ℓ􏷠) ≤ 𝑘 − 2:
Since the vertex in 𝐿􏷡 has a degree of 𝑘 − 2, it is connected to all vertices in
𝐿􏷠; nodes in 𝐿􏷠 are connected to 𝑥. The nodes in 𝐿􏷠 do not induce a complete
graph (𝑑(ℓ􏷠) ≤ 𝑘−2), so there must again exist a disconnected pair in 𝐿􏷠, which
satisfies all conditions like in above case .

For 𝐶􏷣, one of the nodes in 𝐿􏷠 is 𝑥𝑏 and the other is 𝑦.

. Algorithm

Coefficients on the left-hand side of the relations are related to symmetry properties of
the graphlets and not to the host graph 𝐻 . The terms on the right sides of equations
depend on the host graph𝐻 . Their computation requires enumeration of all graphlets
of size 𝑘 − 1 and adding up their possible extensions.

The first step is pre-computation and storing of 𝑐(𝒮) for all subsets 𝑆 with up to
𝑘 − 3 vertices and for all connected subsets of 𝑘 − 2 vertices. These conditions match
the criteria for selection of 𝑦, so the precomputed values 𝑐(𝒮) represent the terms in
the sum on the right-hand sides of equations.

This is followed by direct enumeration of cliques with 𝑘 vertices. This enumeration
does not have to be extremely fast, but just fast enough not to dominate the time



complexity of the entire graphlet counting algorithm. For this purpose we can employ
some of the approaches to listing cliques [, ].

Following this precomputation, the next two steps are repeated for each vertex 𝑥 ∈
𝑉 .

Computation of sums on the right-hand sides of equations. Computation is implemented
as enumeration of (𝑘 − 1)-node graphlets touching 𝑥, as specified by the con-
ditions under the sums. For each graphlet, the terms in the sum consist of the
counts 𝑐(𝒮) precomputed in the previous step.

For 𝑘 ≤ 5, the number of graphlets with 𝑘 − 1 nodes is small, so it is feasi-
ble to design efficient individual procedures for enumerating them. Because
the graphlets are small, these procedures involve early pruning of non-viable
candidates and completely avoiding any isomorphism testing. Medium-sized
graphlets (𝑘 = 5 or 6) require graphlet recognition of enumerated connected
subgraphs, however these patterns can be efficiently distinguished with the use
of some trivial invariants such as a degree sequence. Enumeration of larger graphlets
would benefit from efficient methods for isomorphism testing.

Solving the system of equations. The system is triangular, with each equation relating
one orbit to those with larger number of edges, Since the count for the high-
est orbit, which belongs to the clique, is computed by direct enumeration, the
system can be solved by decreasing orbit indices.

All orbit counts, coefficients and free terms are integers, thus the computation
is numerically stable.

.. Time- and space-complexity

We will analyze the worst-case complexity and the expected complexity on random
Erdős-Rényi graphs, followed by empirical verification.

Worst-case complexity

We will evaluate the worst-case time complexity of the algorithm in terms of the num-
ber of nodes (𝑛) and the maximum degree of a node (𝑑) in the host graph. We treat
the size of the graphlets, 𝑘, as a constant. We assume that the graph is stored as a
list of adjacent nodes together with a hash table for checking whether two nodes are
connected in constant time. The algorithm consists of four steps.

  Combinatorial algorithm for counting small induced graphs and orbits T. Hočevar

Precomputation of common neighbours. We need to precompute the number of com-
mon neighbours of sets of 𝑘 − 3 or fewer nodes and of connected sets of 𝑘 − 2
nodes to efficiently construct right sides of our equations. To achieve this we
enumerate all subsets of 𝑘 − 2 or fewer neighbours for every node. This results
in time complexity 𝑂(𝑛𝑑𝑘−􏷡). Storing the number of common neighbours of
sets of at most 𝑘−3 nodes with the above method requires𝑂(𝑛𝑑𝑘−􏷢) space. Be-
cause we request that in the case of 𝑘−2 nodes, these nodes induce a connected
subgraph, we can limit their number to the number of (𝑘 − 2)-node induced
connected subgraphs, which is also 𝑂(𝑛𝑑𝑘−􏷢).

Enumeration of cliques. We will refer to the time complexity of counting 𝑘-node cliques
in this step as 𝑂(𝑇𝑘). A worst-case time complexity is 𝑂(𝑛𝑑𝑘−􏷠) and requires
constant space. However, this enumeration can be implemented very efficiently
in practical applications on sparse networks that contain few cliques.

Enumerating all (𝑘 − 1)-node graphlets and counting their extensions. This step computes
the right sides of the system of equations. It requires constant space, since the
space is reused for each vertex, and runs in 𝑂(𝑛𝑑𝑘−􏷡) time needed for enumer-
ation of 𝑘 − 1-node graphlets.

Solving the system of equations. Solving the system requires constant time and space.

Overall, the algorithm has a𝑂(𝑛𝑑𝑘−􏷡+𝑇𝑘) time complexity while requiring𝑂(𝑛𝑑𝑘−􏷢)
space. In the worst case, the time complexity is the same as that of a simple exhaustive
enumeration method, 𝑂(𝑇𝑘) = 𝑂(𝑛𝑑𝑘−􏷠). However, the term 𝑇𝑘 is much smaller in
practice.

Expected time complexity in random graphs

Although the worst-case time complexity of the algorithm is equal to that of brute-
force graphlet enumeration, the actual performance on real-world networks and on
random graphs is much better. We analyzed the expected time complexity on random
Erdős-Rényi graphs with 𝑛 nodes and edge probability 𝑝. Throughout this analysis
we will assume that 𝑛𝑝 > 1, otherwise the graph is likely to have more than one
component which can be processed independently.

The precomputation consists of iterating over central nodes, enumerating all sets of
𝑡 ≤ 𝑘 − 2 neighbours and incrementing the number of common neighbours of the



leaf nodes. The 𝑡 nodes have to be connected to the central node, which happens with
probability 𝑝𝑡. The expected time complexity of this step is𝑂(𝑛∑𝑘−􏷡

𝑡=􏷠 𝑛𝑡𝑝𝑡). Assuming
𝑛𝑝 > 1, we can simplify it to 𝑂(𝑛𝑘−􏷠𝑝𝑘−􏷡).

In the second step, the algorithm enumerates all subgraphs with 𝑘 − 1 nodes. It
does so incrementally by first enumerating smaller connected subgraphs of size 𝑡 and
extending them to larger connected subgraphs. The expected time complexity is there-
fore proportional to the expected number of connected subgraphs with 𝑡 ≤ 𝑘 − 1
nodes. We need to estimate the probability that a set of 𝑡 nodes induces a connected
subgraph. We can view the process of building every such subgraph by consecutively
attaching a new node to at least one of the existing nodes. This of course will over-
estimate the number of connected subgraphs by some constant because every such
subgraph can be built in several different orders of attaching nodes. The probabil-
ity that an edge exists from some newly added node to at least one of the 𝑖 existing
nodes is 1 − (1 − 𝑝)𝑖. The expected number of enumerated subgraphs is therefore
𝑂(∑𝑘−􏷠

𝑡=􏷠 𝑛𝑡∏
𝑡−􏷠
𝑖=􏷠(1 − (1 − 𝑝)𝑖)) = 𝑂(∑𝑘−􏷠

𝑡=􏷠 𝑛𝑡𝑝𝑡−􏷠). Assuming 𝑛𝑝 > 1, the expected
time complexity is 𝑂(𝑛𝑘−􏷠𝑝𝑘−􏷡).

The total expected time complexity for setting-up the system of equations in Erdős-
Rényi graphs with 𝑛 nodes and edge probability 𝑝 is thus𝑂(𝑛𝑘−􏷠𝑝𝑘−􏷡). In practice, we
observe graphlets with  and  nodes. The expected time complexities for these cases
are 𝑂(𝑛􏷢𝑝􏷡) and 𝑂(𝑛􏷣𝑝􏷢), respectively.

Empirical evaluation of time complexity

We evaluated the performance of our algorithm for counting - and -node graphlets
on random Erdős-Rényi graphs.

We measured the time needed for counting node- and edge-orbits with the Orca
algorithm and compared it to a bruteforce enumeration. For the latter we used an
implementation from GraphCrunch. Orca outperforms exhaustive enumeration by
an order of magnitude (Tables . and .). The running times for counting node-
orbits and edge-orbits are practically the same in the case of counting - or -node
graphlets in random graphs with   nodes and of increasing density. The size of
the graphs (𝑛 = 1 000) was chosen arbitrarily to put the run times in the range of a
couple of seconds. In the remainder of this section we focus on counting node-orbits.

Second, we compare the running times of counting orbits of -node and -node
graphlets on random graphs with   nodes and up to   edges. These graphs

  Combinatorial algorithm for counting small induced graphs and orbits T. Hočevar

Table .
Comparison of run times for counting node- and edge-orbits of -node graphlets.

four-node graphlets
edges [thousands]    
bruteforce [s] . . . .
node-orbits [s] . . . .
edge-orbits [s] . . . .

Table .
Comparison of run times for counting node- and edge-orbits of -node graphlets.

five-node graphlets
edges [thousands]     
bruteforce [s] . . . . .
node-orbits [s] . . . . .
edge-orbits [s] . . . . .

are sparse as the number of edges represents only about . of all possible edges; as
such they represent a realistic case of large network analysis. A logarithmic plot of
execution times in Fig . shows polynomial dependencies on the size of graphlets.
Dotted lines correspond to a bruteforce enumeration method and solid lines to our
Orca algorithm. The line corresponding to bruteforce counting of -node graphlets
aligns nicely with counting -node graphlets using Orca. This reflects the enumeration
of -node graphlets used to compute -node graphlet counts. The only difference is
by a constant factor.

The slope of the Orca’s lines should be  and , respectively, according to the ex-
pected time complexities (𝑂(𝑛􏷢𝑝􏷡), 𝑂(𝑛􏷣𝑝􏷢)). However, this is clearly not the case in
Fig .. Further experiments show that this is the result of CPU cache misses when
accessing the precomputed lookup tables. We performed a similar experiment with
disabled CPU cache. Because of the slowdown, we decreased the number of nodes to
  and maintained average degree of nodes. The measurements with disabled CPU
cache in Fig . line up with the expected slopes of  and .

Finally, we probed for the region in which the enumeration of cliques begins domi-
nating the time complexity. We performed the experiment for counting -node graph-
lets in graphs with   nodes and increasing edge probabilities 𝑝. In Fig . the plot



Figure .
Comparison of counting
times for orbits of - and
-node graphlets on sparse
graphs with  nodes
and varying densities.

Figure .
Running times with
disabled CPU cache.

follows a straight line up to around 𝑝 = 0.07 and another steeper line from 𝑝 = 0.3
onwards. This is consistent with the contribution of the step of enumerating cliques.
Random sparse graphs contain fewer cliques whose enumeration is efficient and does
not significantly affect the running time. However, as the graphs become denser, this
becomes the bottleneck of the algorithm.

  Combinatorial algorithm for counting small induced graphs and orbits T. Hočevar

Figure .
Enumerating cliques. The
effect of enumerating
cliques on running times
in random graphs of
increasing density.

. Final remarks

The source code of the algorithm in C++, which computes the node and edge orbits
for 𝑘 = 4 and 𝑘 = 5, along with the randomly generated data used in experiments is
available at https://github.com/thocevar/orca. The corresponding R package
orca is also available on CRAN. Parts of this algorithm that have been presented
previously are also already included in the GraphCrunch package [].

https://github.com/thocevar/orca
https://cran.r-project.org/web/packages/orca/

Graphlet counting in dynamic
graphs



  Graphlet counting in dynamic graphs T. Hočevar

This chapter presents our work on adaptation of Orca for graphlet counting in dy-
namic graphs. We developed two dynamic versions of Orca, which also illustrates the
versatility of our graphlet counting approach. The first one supports individual oper-
ations of adding or removing an edge and querying individual nodes to obtain their
orbit counts. The second version continually maintains the orbits counts of all nodes
subject to additions or removals of individual edges.

Generating large random networks with approximately the given graphlet counts
is an application of such dynamic algorithms, which was also the motivation for this
research. If the researcher has a real-world network, he or she can use Orca or a sim-
ilar algorithm for extraction of possibly approximate graphlet counts, and then use
the presented approach to generate an arbitrary number of topologically similar, but
random networks.

However, such approaches should be used with caution to avoid limiting the analysis
to too similar networks. An extreme example would be one where a researcher is
observing the number of triangles and generating random networks that match in the
number of -node graphlets. As a result, the number of triangles will be the same in all
the generated random networks, which makes such random network model unsuitable
in this case.

. Generating random graphs

Networks arising in different contexts have different characteristics. The simplest ran-
dom model of graphs is the Erdős-Rényi (ER) model []. The are two versions of the
ER model. In the first version all edges are independent and exist with the same prob-
ability 𝑝. In the second version with a fixed number of edges all labeled graphs with
the given number of nodes and edges are equally likely. Such model does not reflect
the properties observed in networks that commonly arise in real-world situations. For
instance, the degree distribution in ER graphs is binomial, while in many real-world
networks it follows a power law. Networks exhibiting the latter property are called
scale-free networks [].

To empirically verify the suitability of some new algorithm in a particular area, like
analysis of protein-protein interaction (PPI) networks, we identify or assume the cor-
responding type of the network and then use some procedure for generating random
networks of such kind. Assuming that PPI networks are similar to scale-free network
(degree distribution follows a power law), preferential attachment procedure [] can



be used to generate an arbitrary number of random instances of PPI-like networks.
The problem with this approach is that it may be difficult to identify the correct

kind of network. For instance, authors in [] argue that geometric graphs are a better
match for PPI networks. In general, the network may not sufficiently match any of
the common network types, or it may belong to a class of networks but exhibit some
peculiar patterns, like an unexpectedly high or low number of triangles (social networks
or adversarial networks) or a large number of nodes of degree two (places on road
networks).

Network motifs [] are another concept where a need for generating random graphs
with certain properties arises. A subgraph or a pattern is referred to as a network
motif if its presence in a network is significantly higher than expected. The expected
occurrence of a pattern is usually derived from randomized or random networks of its
type.

How do we generate random networks with prescribed properties without relying
on common graph models such as ER? One possible description of a graph type could
be its degree distribution. Havel-Hakimi [] algorithm produces a graph with a de-
sired degree distribution by repeatedly connecting the node with the largest degree
𝑑𝑛 to the next 𝑑𝑛 largest nodes. However, it is not clear how to adapt the approach
to generate uniformly distributed samples. Blitzstein and Diaconis [] proposed a
randomized version; since the generated simple graphs are not distributed uniformly,
the obtained samples are re-weighted with sequential importance sampling. Milo et
al. [] provide a general review of approaches for generation of graphs with given de-
gree sequences, and identify two common approaches: switching and matching. The
former is a Markov chain Monte Carlo approach that starts with a given graph and
randomizes it through a sequence of edge switches. The latter (also known as the pair-
ing or configuration model) starts with an empty graph containing edge “stubs” and
repeatedly connects them into pairs. When the resulting graph contains loops or mul-
tiple edges, the process is restarted. McKay and Wormald [] tackled this problem
by attempting to remove loops and double edges, while still maintaining the uniform
distribution of graphs. Bayati et al. [] introduced bias when making new pairings
to increase the probability of generating a simple graph. Britton et al. [] proposed
several methods for generating graphs with approximate degree distributions subject
to some restrictions on valid distributions.

Pržulj [] introduced graphlets as an alternative topological property for compari-

  Graphlet counting in dynamic graphs T. Hočevar

son of networks. We will generate random graphs with desired properties by iteratively
improving current solution with local/small changes. First, we need to choose a dis-
tance measure, which will reflect how close to the desired solution is the current state.
We based our measure on the Relative graphlet frequency distance [] but removed
the ”relative” part. Distance between graphs 𝐺 and 𝐻 is defined as

𝐷(𝐺,𝐻) =
􏷧
􏾜
𝑖=􏷟
|𝐹𝑖(𝐺) − 𝐹𝑖(𝐻)| (.)

𝐹𝑖(𝐺) = log(𝑁𝑖(𝐺) + 1),

where 𝑁𝑖(𝐺) denotes the count of graphlet of type 𝑖 in graph 𝐺. The distance mea-
sure is based on graphlets with at most  nodes to simplify the dynamic version of
the graphlet counting algorithm used in the process. However, the same approach
could be employed to design an efficient -node graphlet counting methods for dy-
namic networks, which could be used in combination with a distance measure based
on frequencies of -node graphlets.

We will use a simple hill-climbing optimization technique, where at each step we
perform a random modification of the network. We continue with the modified net-
work in case it improves our distance measure and revert the change otherwise. Such
setting requires an efficient method for graphlet counting in changing networks, which
is the subject of the next section. Note that our approach described in the following
sections is general enough to be used with other local search optimization techniques
besides hill-climbing, e.g. simulated annealing [], and with other distance measures.

. Dynamic Orca

Our method for generating random networks works by iteratively improving the cur-
rent solution by adding or removing individual edges. To support this, the graphlet
counting algorithm must perform the updates after these operations in a reasonable
time, which can be achieved by exploiting the locality of changes. This motivated the
adaptation of Orca for dynamic networks.

An often observed subgraph in the area of social network analysis is a triangle. An
efficient triangle enumeration approach is to find a subset of heavy-hitters: nodes with
degree at least √𝑚, where 𝑚 represents the number of edges in the network. Now we



can design two separate methods: one for finding triangles consisting only of heavy-
hitter nodes and one for all the others []. Eppstein et al. [] approached the prob-
lem of maintaining -node subgraph statistics in dynamic networks using a similar
partition of nodes into high- and low-degree nodes based on ℎ-index of the graph
(maximum number such that the graph contains ℎ nodes of degree at least ℎ). They
extended their work to directed -node subgraphs and -node subgraphs []. Lin
et al. [] proposed a similar data structure, which partitions node’s neighbours into
those with higher and lower degrees than itself, and can be used for counting -node
subgraphs. The complexity of operations is related to the ℎ-index and arboricity of the
graph.

The developed methods described in the following sections can be used to design
dynamic graphlet counting algorithm for larger graphlets and are not limited to -node
graphlets.

.. Overview of Orca

Orca is an algorithm that counts the -node graphlets by enumerating only triangles
and -node paths in the network. It achieves this by exploiting relations between orbit
counts. We will only briefly summarize the main point of the algorithm here and refer
the reader to papers presented in previous chapters, where the algorithm is discussed
in detail.

The algorithm for counting -node graphlets is based on obtaining a system of equa-
tions relating orbit counts for a given node 𝑥. One example of such equation is

2𝑜􏷠􏷢 + 6𝑜􏷠􏷣 = 􏾜
𝑦,𝑧∶ 𝑦<𝑧,𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷫

(𝑐(𝑥, 𝑦) − 1) + (𝑐(𝑥, 𝑧) − 1).

All equations have linear combinations of orbit counts on the left side, which are
fixed (prescribed by the algorithm). The right sides of equations depend on the graph
but can be computed efficiently. Note that all summations are over -node graphlets
and consist of expressions 𝑐(𝑎, 𝑏)—the number of common neighbours of two nodes
in the graph. Adaptation of the algorithm for a dynamic setting therefore reduces to
the problem of maintaining values 𝑐(𝑎, 𝑏) under addition and removal of edges in the
graph.

  Graphlet counting in dynamic graphs T. Hočevar

.. Dynamic operations

The dynamic setting of the graphlet counting problem consists of the following oper-
ations:

add edge (𝑥, 𝑦)

remove edge (𝑥, 𝑦)

compute orbit counts of node 𝑥

The last operation is the most straight-forward. Orca computes orbit counts by
building and solving a system of equations for each node. This process is independent
and can be parallelized. So if we are interested in orbit counts of only one particular
node 𝑥, we simply build and solve the corresponding system of equations. To do
this, we need accurate values for the number of common neighbours between pairs of
nodes.

Maintaining values 𝑐(𝑥, 𝑦) where (𝑥, 𝑦) ∈ 𝐸 is the subject of the first two opera-
tions. We will describe the case of adding an edge; removal of an edge is similar. Let
us assume we add an edge (𝑥, 𝑦). First, we have to compute 𝑐(𝑥, 𝑦) as an intersec-
tion of neighbours of nodes 𝑥 and 𝑦. Second, the addition of this edge increases the
values 𝑐(𝑥, 𝑧), 𝑧 ∈ 𝑁(𝑥, 𝑦) and analogously 𝑐(𝑦, 𝑧). We can update all these values
by enumerating the triangles containing the newly added edge, which can be done in
𝑂(𝑑).

Let us compare this dynamic approach with the static setting, where we are given a
graph and have to compute orbit counts of all nodes. By repeatedly adding edges and
at the end querying all nodes for their orbit counts, we in fact achieve the same time
complexity as the original Orca in a static setting.

.. Maintaining graphlet counts

The proposed optimization approach for generating random graphs requires that we
evaluate the distance measure after every modification, which in turn requires counting
the graphlets. We could employ the previously described dynamic version of ORCA
for this purpose, but it is still rather slow. To see why, consider the addition of an edge
(𝑥, 𝑦). This has an effect on orbit counts of all nodes that are within distance of  from
either 𝑥 or 𝑦, and should be recomputed. Furthermore, the query for orbit counts



of some node 𝑧 essentially enumerates all -node graphlets containing 𝑧, which again
consist of nodes at most  edges away from 𝑧. Together this means that we consider
a neighbourhood within distance  from 𝑥 and 𝑦, which could very well be almost
entire graph.

To overcome this, we modify the dynamic algorithm even further so that it main-
tains orbit counts of individual nodes and consequently their graphlet counts after ev-
ery addition or removal of an edge. Looking at equations, we can see that they consist
of sums over -node graphlets. We can avoid recomputing entire sums by subtracting
and adding terms in these sums that actually changed due to the current change of
edge (𝑥, 𝑦). If a -node graphlet contains neither 𝑥 nor 𝑦, the term in the sum that
corresponds to this -node graphlet will not change. Therefore, we can enumerate all
-node graphlets that contain at least one of the nodes 𝑥 or 𝑦, and update the corre-
sponding sums. Effectively, we now consider only a neighbourhood within distance 
from 𝑥 and 𝑦.

. Experiments

We performed several experiments to measure the speed and accuracy of our random
network generation method. Graphlets are mostly employed in the field of bioinfor-
matics, typically when analyzing protein-protein interaction (PPI) networks. There-
fore, we chose as a target graphlet distribution the one obtained from a PPI network of
bacteria E. coli. All the experiments were performed on an average desktop computer
(Intel Core , .GHz).

The generated network is obviously influenced by our choice of the initial network.
We can start with a completely empty network or choose a starting point that already
possesses some characteristics of the target network. For example, random geomet-
ric graphs (GEO) were demonstrated to be a better model of PPI networks than the
previous top choice of scale-free models []. However, a starting point with a better
distance score does not necessarily lead to a better final score as visualized in Figure ..
The initial ER and GEO networks had a similar number of nodes and edges as the tar-
get network, while the other PPI network had approximately twice as many nodes and
twice as many edges. We do not show the starting scores because they are as high as
. in case of an empty starting network which compresses the lines in the figure and
makes it uninformative. The PPI network of another organism (yeast, S. cerevisiae)
turns out to be the best choice. Table . shows the target graphlet counts and the

  Graphlet counting in dynamic graphs T. Hočevar

Figure .
Distance convergence for
different initial networks.

􏷟 􏷡 􏷣 􏷥 􏷧 􏷠􏷟 􏷠􏷡 􏷠􏷣 􏷠􏷥

􏷟

􏷠

􏷡

×  iterations

di
sta

nc
e

Initial random network
empty
ER
GEO
PPI

final graphlet counts obtained from various starting networks after  iterations.
Next, we analyzed what is happening through iterations with individual graphlet

counts when starting with a random geometric network, which is supposed to be a
good approximation for PPI networks. Figure . shows graphlet counts on a loga-
rithmic scale, which corresponds to their contribution in the chosen distance measure.

Table .
Final graphlet counts for different initial networks.

source score 𝐺􏷩 𝐺􏷪 𝐺􏷫 𝐺􏷬 𝐺􏷭
target 􏷟.􏷟     
empty 􏷟.􏷟􏷧􏷟􏷠     
ER 􏷟.􏷠􏷟􏷣􏷧     
GEO 􏷟.􏷟􏷧􏷠􏷨     
PPI 􏷟.􏷟􏷢􏷤􏷡     

source score 𝐺􏷮 𝐺􏷯 𝐺􏷰 𝐺􏷱
target 􏷟.􏷟    
empty 􏷟.􏷟􏷧􏷟􏷠    
ER 􏷟.􏷠􏷟􏷣􏷧    
GEO 􏷟.􏷟􏷧􏷠􏷨    
PPI 􏷟.􏷟􏷢􏷤􏷡    



􏷟 􏷤 􏷠􏷟 􏷠􏷤
􏷠􏷟􏷬

􏷠􏷟􏷭

􏷠􏷟􏷮

􏷠􏷟􏷯

􏷠􏷟􏷰

×  iterations

gr
ap

hl
et

co
un

ts










Figure .
Change in individual
graphlet counts over
iterations starting from
a random geometric
network.

The initial sharp increase in the number of edges accommodates the difference in the
number of most graphlets (Table .). These values then slowly decrease until they
settle at around . million iterations. An exception to this is graphlet 𝐺􏷧 (clique
on  nodes, 𝐾􏷣). Random geometric graphs already contain a substantial number of
cliques, whose number even decreases before it starts to rise to the desired value.

Table .
Graphlet counts obtained by starting with a random geometric network.

GEO score 𝐺􏷩 𝐺􏷪 𝐺􏷫 𝐺􏷬 𝐺􏷭
start 􏷡.􏷦􏷥􏷠     
finish 􏷟.􏷟􏷧􏷠􏷨     
target 􏷟.􏷟     

GEO score 𝐺􏷮 𝐺􏷯 𝐺􏷰 𝐺􏷱
start 􏷡.􏷦􏷥􏷠    
finish 􏷟.􏷟􏷧􏷠􏷨    
target 􏷟.􏷟    

It might seem strange that the initial network contains much fewer graphlets for
every graphlet type (except 𝐺􏷟) despite having an almost the same number of edges.
However, consider as an example a pair of graphs: 𝑆􏷥 (a star graph with one central
and five leaf nodes) and 𝑃􏷥 (a path graph on  nodes). If we limit our observation to

  Graphlet counting in dynamic graphs T. Hočevar

-node graphlets, we see that 𝑆􏷥 contains at least as many graphlets of every type as 𝑃􏷥
despite the same number of nodes and edges.

To compare the speed of different dynamic graphlet counting methods described in
previous sections, we implemented three solutions and ran each of them for  it-
erations. All solutions started with an empty network. They differ only in the graphlet
counting method and give the exact same results. The first method (batch) was a
straight-forward use of the original ORCA algorithm, which recomputes the graphlet
counts from scratch on every iteration. The second method (dynamic) is the adap-
tation of ORCA for the dynamic problem setting. The final, third method (main-
taining), maintains graphlet counts on every change of the network. The last method

Figure .
Speed comparison.

􏷟 􏷟.􏷡 􏷟.􏷣 􏷟.􏷥 􏷟.􏷧 􏷠

⋅􏷠􏷟􏷮

􏷟

􏷟.􏷤

􏷠

􏷠.􏷤

⋅􏷠􏷟􏷭

iterations

tim
e

[s
]

batch
dynamic
maintaining

Figure .
Behavior of the fastest
method.

􏷟 􏷟.􏷡 􏷟.􏷣 􏷟.􏷥 􏷟.􏷧 􏷠

⋅􏷠􏷟􏷮

􏷟

􏷤􏷟

􏷠􏷟􏷟

iterations

tim
e

[s
]

maintaining



is by far the fastest among them (Figures . and .). As the number of iterations
grows, the number of edges in the network increases and so do the times required for
computing graphlet counts, which is why the plots are not linear.

Finally, we also analyzed the properties of a random network obtained by our opti-
mization procedure (starting from a random geometric network). Does a network ob-
tain this way match the target network in other features besides the optimized graphlet
counts? Similar graphlet counts are supposed to indicate similar local topological
structure which should in turn reflect in other local or node-centric statistics. We
observed distributions of three such statistics - node degree, clustering coefficient []
and PageRank []. To obtain a distribution we divided the range of computed values
for each statistic into  buckets and counted how many nodes belong to each of them.
Triplets of bars (gray, black, red) correspond to the starting, final and target distribu-
tion, respectively. The final distribution of node’s clustering coefficients (Figure .)
is much closer to the target one than the one we started with. The difference is even
more pronounced with node degrees (Figure .) and PageRank (Figure .), where
most of the nodes in the initial network have very low values in contrast to the target
and final networks.

Another interesting observation is that the similarity of -node graphlet counts,
which we are trying to optimize, also leads to similar -node graphlet counts (Fig-
ure .). To determine whether this is always the case and to what degree, would
require further research. Intuitively, the number of -node graphlets (the number of
edges) does not tell us much about the number of -node graphlets. On the other
hand, -node graphlets seem to restrict the space of -node graphlets much more. We
would conjecture that this influence grows with the size of graphlets.

  Graphlet counting in dynamic graphs T. Hočevar

Figure .
Distribution of node
degrees normalized by a
maximum possible value
𝑛 − 􏷪.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
normalized node degree

100

101

102

103

104

n
u
m

b
e
r

o
f

n
o
d
e
s

Figure .
Distribution of clustering
coefficients.

0.0 0.2 0.4 0.6 0.8 1.0
clustering coefficient

100

101

102

103

104

n
u
m

b
e
r

o
f

n
o
d
e
s

Figure .
Distribution of PageRank.

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007
PageRank

100

101

102

103

104

n
u
m

b
e
r

o
f

n
o
d
e
s



0 5 10 15 20 25 30
graphlet id

104

105

106

107

108

109

n
u
m

b
e
r

o
f

g
ra

p
h
le

ts

start

final

target

Figure .
-node graphlet counts
obtained by optimizing
-node graphlet counts.

Conclusion



  Conclusion T. Hočevar

Research in this dissertation presents an improvement over pure enumeration tech-
niques for graphlet counting. In practical terms, the algorithm Orca counts graphlets
in large PPI networks – times faster than other state-of-the-art algorithms. On
the largest examined human PPI network we observed a speed-up by a factor of .
As such, it is a significant stepping stone towards analyzing larger and denser networks.

. Influence

Orca was incorporated into version . of the GraphCrunch package [] for graphlet
analysis and has been already employed in several research projects. Researchers used
our tool to build an Integrated Interactions Database—a database providing tissue-
specific protein–protein interactions for model organisms and human [], design a
topology-based distance measure for alignment of networks [], develop an entity
resolution method based on inferred relationships [], etc.

On the other hand, it also presents a basis for further development of efficient pat-
tern counting methods in graphs. Authors of [] attempted to generalize the equa-
tions used by Orca, which we resolved in []. Our -node counting approach has
been already surpassed by Ortmann et al. []. The authors exploited the arboricity
of graphs to reduce the run time. As one of the fastest methods, Orca is also used as a
benchmark for parallel and approximation algorithms [, ].

. Future work

Graphlet analysis is currently used mostly in bioinformatics. By evaluating our meth-
ods on a larger and more diverse set of networks from other areas we could demonstrate
that there exist efficient tools for obtaining these graphlet-based statistics and expose
the graphlet analysis approaches to other fields of research that deal with analysis of
networks.

One large unexplored research venue is that of counting weighted graphlets. The
edges or relations in networks are often labeled with a number. These numbers can
reflect a reliability of an edge or in a more formal mathematical setting the probability
of an edge in a graph. Can we use similar techniques as those presented in this dis-
sertation to compute an expected number of graphlets in such probabilistic graphs or
does it require a new approach? What about some other interpretation of weights?

http://www0.cs.ucl.ac.uk/staff/natasa/graphcrunch/

http://www0.cs.ucl.ac.uk/staff/natasa/graphcrunch/



The problem might be easier to solve if we limit the weights to a small discrete set,
which would result in a different and larger set of orbits. A similar problem is that of
counting orbits of directed graphlets [, ]. We should be able to successfully apply
our graphlet counting approach to both mentioned problems.

By adding the equation 𝑜􏷦􏷡 = 𝐶, where 𝐶 is obtained through enumeration of
cliques, we get a square system of equations that can be represented in matrix form
Ao = b. A is a matrix of integer coefficients, o a vector of orbit counts that we want
to determine and b a vector of computed right sides of equations. We know that the
solution o of the system should consist of nonnegative integral values. Can we use this
fact together with some other properties of A to further speed-up the approach?

Research is never complete and there is still plenty of work to be done in connection
with pattern counting in graphs.

A

Razširjeni povzetek



 A Razširjeni povzetek T. Hočevar

A. Uvod

Omrežja se pojavijo na številnih področjih, kjer jih običajno modeliramo z grafi. Majh-
ni vzorci v teh grafih nam lahko pomagajo odkriti osnovne gradnike omrežij, kar vodi
do boljšega razumevanja strukture in lastnosti omrežja. Kljub temu pa odkrivanje in
štetje vzorcev ostaja računsko zahteven problem. Pogostosti vzorcev lahko ocenimo s
pomočjo vzorčenja, vendar nas v tem delu zanima njihovo natančno število. To pa je
motivacija za raziskovanje učinkovitih metod štetja vzorcev v redkih omrežjih.

Majhnim povezanim vzorcem običajno rečemo grafki [] in jih v omrežju opazu-
jemo kot inducirane podgrafe. Vozlišča grafkov pa delimo naprej glede na njihove
orbite [] oz. ekvivalenčne razrede glede na delovanje grupe avtomorfizmov na vo-
zliščih. Slika . prikazuje vse grafke s  in  vozlišči ter njihove orbite. Kolikokrat
posamezno vozlišče v omrežju nastopa v vsaki izmed orbit grafkov, predstavlja neke vr-
ste opis strukture lokalne okolice tega vozlišča. Na porazdelitev grafkov in orbit lahko
gledamo tudi kot na posplošitev stopnje vozlišča, ki ustreza prvemu netrivialnemu gra-
fku z dvema med seboj povezanima točkama. Podobno orbite povezav [] prestavljajo
neke vrste posplošitev števila skupnih sosedov krajišč povezave oz. števila trikotnikov,
ki vključujejo to povezavo, kar je pomembna statistika v analizi omrežij.

Definicija problema. V enostavnem grafu 𝐺 želimo za vsako vozlišče izračunati,
kolikokrat nastopa v vlogi vsake od orbit grafkov velikosti 𝑘, ki se v 𝐺 pojavijo kot
inducirani podgrafi. Slika . ilustrira problem na enostavnem omrežju.

Analiza omrežij z grafki se je do sedaj uporabljala večinoma v bioinformatiki, vendar
ni omejena na to področje []. Glavni primer uporabe grafkov so omrežja proteinskih
interakcij (angl. protein-protein interaction ali PPI). S pomočjo grafkov so poiskali
boljše naključne modele PPI omrežij [], odkrivali skupine proteinov in napovedovali
njihove lastnosti []. Poleg tega so napovedovali tudi, kateri geni so povezani z raka-
vimi boleznimi [] in kateri s procesom staranja []. Grafki so nam lahko v pomoč
tudi pri reševanju drugih problemov, na primer pri poravnavi omrežij. S tem lah-
ko napovemo biološke funkcije poravnanih proteinov ali rekonstruiramo filogenetsko
drevo. Primeri algoritmov za poravnavo omrežij na osnovi grafkov so GRAAL [],
H-GRAAL [] in MI-GRAAL [].

V bioinformatiki se je razvilo več orodij za štetje grafkov: FANMOD [], Graphlet-
Counter [], GraphCrunch [, ], RAGE []. Vsa omenjena orodja temeljijo na



naštevanju grafkov. Kljub omejitvi analize na vzorce z največ petimi točkami to že
predstavlja problem na večjih PPI omrežjih. Na primer, ocenjen čas štetja grafkov
s petimi točkami v omrežju proteinskih interakcij v človeku iz podatkovne baze Bi-
oGRID [] je več mesecev. Glede na hitro rast razpoložljive količine podatkov in
velikosti omrežij torej potrebujemo nove algoritmične pristope.

Ti pristopi bodo morali temeljiti na štetju namesto na naštevanju. Klasičen rezultat
štetja vzorcev v grafih se nanaša na štetje trikotnikov []. Kub matrike sosednosti 𝐴
vsebuje število sprehodov dolžine  med pari točk. Skupno število trikotnikov v grafu
je torej 􏷠􏷥 ∑𝑥∈𝐺𝐴􏷢𝑥,𝑥. Vsak trikotnik namreč štejemo dvakrat pri vsaki izmed njegovih
treh točk. Časovna zahtevnost tega postopka je enaka časovni zahtevnosti množenja
matrik sosednosti, ki je 𝑜(𝑛􏷢) [, ]. Podobno lahko v grafih odkrijemo kliko ve-
likosti 𝑘 v času 𝑜(𝑛𝑘) s prevedbo problema na odkrivanje trikotnikov []. Drugačen
pristop k štetju vzorcev je predstavil Kloks [] s sistemom enačb, ki nam omogoča-
jo izračun števila pojavitev vseh šestih grafkov s štirimi točkami, če poznamo število
vsaj enega izmed njih. Časovna zahtevnost izgradnje sistema enačb je enaka množenju
kvadratnih matrik velikosti 𝑛. Zanimiv rezultat povezuje štetje vseh induciranih in
vseh neinduciranih vzorcev. Problema sta namreč ekvivalentna, saj lahko število in-
duciranih vzorcev izračunamo, če poznamo pogostosti vseh neinduciranih, in obratno
[].

Obstoječe metode temeljijo na izčrpnem naštevanju ali pa na hitrem množenju ma-
trik. Pristopi z naštevanjem postajajo prepočasni na večjih omrežjih, pristopi z mno-
ženjem matrik pa niso primerni na redkih omrežjih, ki se pojavijo v praksi. Naše
raziskovalno delo je bilo usmerjeno k razvoju algoritma, ki izboljša oz. preseže metode
naštevanja in je zasnovan za štetje grafkov v redkih omrežjih.

Razviti algoritem temelji na izkoriščanju relacij med orbitami za učinkovito štetje.
Sistemi enačb, ki sta jih predstavila Kloks [] in Kowaluk [] temeljijo na hitrem
množenju matrik in zato niso primerni za redka omrežja. Ključ našega algoritma je v
vzpostavitvi sistema enačb, ki ga je v redkih grafih mogoče zgraditi učinkovito.

A. Prispevki k znanosti

To poglavje povzema glavne prispevke k znanosti. Pri vsakem prispevku so omenjeni
tudi pripadajoči znanstveni članki in poglavja disertacije, ki ga obravnavajo. Sem edini
prvi avtor omenjenih člankov, ki so bili objavljeni v uglednih mednarodnih znanstve-
nih revijah. Vsi članki so bili objavljeni v revijah, ki so citirane v bazi Science Citation

 A Razširjeni povzetek T. Hočevar

Index (SCI) in so po faktorju vpliva (IF) razvrščene v zgornjo polovico lestvice na vsaj
enem strokovnem področju.

Algoritem za štetje orbit točk iz grafkov na štirih in petih točkah

Razvil sem algoritem Orca za štetje grafkov in orbit. Algoritem je sposoben
učinkovitega štetja orbit vozlišč in povezav v grafkih s štirimi ali petimi vozlišči.
Prednost razvitega algoritma pred obstoječimi metodami štetja grafkov izhaja iz
kombinatoričnega pristopa k štetju namesto enostavnega naštevanja vseh graf-
kov, ki se pojavijo v omrežju.

Prispevek je predstavljen v poglavjih  in , ki vsebujeta preoblikovana članka
[] in [].

Splošen algoritem za štetje orbit točk in povezav

Posplošil sem pristop k generiranju sistema enačb, ki predstavlja jedro algoritma
Orca, in dokazal, da je mogoče tak sistem enačb sestaviti za poljubno velike
grafke in ne le za grafke s štirimi ali petimi vozlišči.

Prispevek je predstavljen v poglavju , ki vsebuje preoblikovan članek [].

Algoritem za sprotno štetje orbit v dinamičnih omrežjih

Algoritem Orca sem prilagodil še za problem sprotnega štetja grafkov v omrežjih,
kjer se dodajanja in odstranjevanja povezav prepletajo s poizvedbami o številu
grafkov, v katerih nastopa določeno vozlišče. Algoritem je neposredno uporaben
za generiranje naključnih omrežij z želenimi pogostostmi grafkov.

V poglavju  so predstavljeni še neobjavljeni rezultati na temo dinamičnega šte-
tja grafkov.

A. Orca

Razviti algoritem Orca je sposoben štetja orbit grafkov velikosti  in  in temelji na
izkoriščanju relacij med posameznimi orbitami. Naš sistem enačb povezuje število or-
bit za razliko od drugih rešitev, ki povezujejo zgolj število grafkov ali celo nepovezanih
vzorcev. Za štetje grafkov velikosti  algoritem našteje zgolj grafke velikosti . Enako
velja za grafke velikosti , kjer algoritem Orca zahteva naštevanje grafkov s samo 
vozlišči (trikotnik in pot dolžine ).



Primer enačbe za štetje orbit grafkov velikosti 𝑘 = 4 v vozlišču 𝑥 je

2𝑜􏷠􏷢 + 6𝑜􏷠􏷣 = 􏾜
𝑦,𝑧∶ 𝑦<𝑧,𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷫

(𝑐(𝑥, 𝑦) − 1) + (𝑐(𝑥, 𝑧) − 1).

Z 𝑜𝑖 označujemo število pojavitev vozlišča v 𝑖-ti orbiti,𝑂𝑖. Podobno 𝐺𝑖 predstavlja 𝑖-ti
grafek. Številčenje grafkov in orbit sledi številčenju ob njihovi vpeljavi []. Funkcija
𝑐(𝑥, 𝑦) predstavlja število skupnih sosedov vozlišč 𝑥 in 𝑦. V nadaljevanju se 𝑛 nanaša
na število vozlišč v omrežju, 𝑒 na število povezav in 𝑑 na največjo stopnjo vozlišča.
Velikost opazovanih grafkov bomo označevali s 𝑘.

Predlagani sistem enačb algoritma Orca dobimo z opazovanjem razširitev manjših
vzorcev z dodatno točko. Vse enačbe imajo na levi strani linearno kombinacijo orbit,
ki so fiksne (določa jih algoritem), medtem ko so desne strani odvisne od omrežja, v
katerem štejemo orbite. Vsota v zgornji enačbi vključuje naštevanje trikotnikov, ki
vključujejo vozlišče 𝑥. Členi vsote pa vsebujejo števila skupnih sosedov parov točk, ki
so predmet predprocesiranja. Enačbe so zasnovane tako, da vključujejo člene, ki jih
je mogoče učinkovito izračunati in shraniti za kasnejšo uporabo. Da lahko te enačbe
uporabimo, moramo izbrati in učinkovito prešteti eno izmed orbit, medtem ko bo-
mo ostale lahko izračunali s pomočjo prej izpeljanih enačb. Izberemo klike, ki jih je
v redkih grafih malo in jih lahko učinkovito naštejemo s katerim od znanih algorit-
mov [, ].

Časovna zahtevnost algoritma Orca za štetje orbit grafkov velikosti 𝑘 v omrežju z
𝑛 vozlišči in največjo stopnjo vozlišča 𝑑 je 𝑂(𝑛𝑑𝑘−􏷡 + 𝑇𝑘), kjer je 𝑇𝑘 čas naštevanja
klik velikosti 𝑘, ki je v praksi zanemarljiv, saj lahko izkoristimo redkost omrežij. Pro-
storska zahtevnost algoritma je𝑂(𝑛𝑑𝑘−􏷢). Za primerjavo je časovna zahtevnost drugih
pristopov z naštevanje 𝑂(𝑛𝑑𝑘−􏷠). Časovni zahtevnosti se razlikujeta za faktor 𝑑, kar
se odraža tudi v opravljenih eksperimentih. Razviti algoritem smo primerjali z ob-
stoječimi metodami na omrežjih interakcij proteinov []. V večjih PPI omrežjih je
algoritem Orca  do -krat hitrejši od ostalih. Na največjem testiranem omrežju
proteinskih interakcij v človeku pa je bila pohitritev kar -kratna (𝑑=).

Pristop smo uspešno prilagodili še za štetje orbit povezav. Relacije med orbitami
povezav lahko izpeljemo na podoben način kot med orbitami točk. Pričakovana hitrost
štetja orbit povezav pa je enaka hitrosti štetja orbit točk. Problem štetja orbit povezav
bi sicer lahko prevedli na štetje orbit točk v povezavnem grafu, vendar bi bili tako
dobljeni povezavni grafi in iskani vzorci precej večji. Primer enačbe, ki povezuje orbite

 A Razširjeni povzetek T. Hočevar

povezav v algoritmu Orca, je

𝑒􏷣􏷢 + 2𝑒􏷤􏷥 + 𝑒􏷥􏷢 = 􏾜
𝑢,𝑣∶ 𝐺[{𝑥,𝑦,𝑢,𝑣}]≅𝐺􏷮

(𝑥,𝑦)∈𝐸 ∧ 𝑢∈𝑁(𝑥) ∧ 𝑣∈𝑁(𝑦)

𝑐(𝑢, 𝑣).

Celoten seznam uporabljenih enačb je na voljo v dodatku B.
Izvorna koda algoritma v programskem jeziku C++ je prosto dostopna na strani

https://github.com/thocevar/orca. Poleg tega je na voljo tudi v obliki pake-
ta za programski jezik R na repozitoriju CRAN.

A. Večji grafki

Posplošitev algoritma na štetje orbit grafkov poljubnih velikosti je zanimiva predvsem
s teoretičnega vidika. Število obstoječih grafkov namreč hitro narašča, izračunane po-
razdelitve pa so redke in manj uporabne v praksi.

Enačbe uporabljene v Orci so bile prvotno pridobljene z obravnavo vseh možnih
razširitev grafkov velikost 𝑘−1 z novo točko. Vsaka razširitev vodi do ene enačbe. Med
njimi smo nato izbrali veliko množico med seboj neodvisnih enačb, ki jim je mogoče
učinkovito izračunati desne strani, ki so odvisne od omrežja. Za posplošitev algoritma
smo morali ubrati bolj sistematičen pristop. V vsakem grafku smo za vsako vozlišče
𝑥 poiskali neko drugo vozlišče 𝑦, katerega odstranitev vodi do manjšega grafka, ki ga
je nato mogoče učinkovito razširiti z vozliščem 𝑦 nazaj v začetni grafek. Tako dobimo
trikoten sistem enačb, ki so zagotovo neodvisne.

Analiza algoritma pokaže, da mora za učinkovit izračun števila skupnih sosedov v
vsakem grafku za vsako vozlišče 𝑥 obstajati neko drugo vozlišče 𝑦, za katerega velja:

. 𝑑(𝑦) ≤ 𝑘 − 2,

. 𝐺 ⧵ {𝑦} je povezan graf,

. če je 𝑑(𝑦) = 𝑘 − 2, sosedi vozlišča 𝑦 inducirajo povezan podgraf.

Z obravnavo šestih primerov (Slika .) lahko dokažemo, da skoraj vedno obstaja
vozlišče 𝑦, ki zadošča zgornjim pogojem. Prva izjema je poln grafek, ki ni relevanten
za izgradnjo enačb, saj polne grafke preštejemo neposredno. Druga izjema pa je cikel

https://CRAN.R-project.org/package=orca

https://github.com/thocevar/orca
https://CRAN.R-project.org/package=orca



na štirih vozliščih 𝐺􏷤 = 𝐶􏷣, ki ga Orca obravnava ločeno brez negativnega vpliva na
časovno zahtevnost. Dokaz vodi tudi do enostavnega pravila za izbiro vozlišča 𝑦. Med
vozlišči, ki so najbolj oddaljena od vozlišča 𝑥, izberemo tisto z najmanjšo stopnjo. Če
to vozlišče ne zadošča pogojem, jim bo zagotovo ustrezalo vozlišče z najmanjšo stopnjo
med vozlišči, katerih razdalja do 𝑥 je za  manjša.

Pričakovana časovna zahtevnost algoritma v naključnih Erdős-Rényi (ER) grafih je
odvisna od pričakovanega števila povezanih podgrafov velikosti 𝑘 − 1. V ER grafu z
𝑛 vozlišči in verjetnostjo povezave 𝑝 je ta časovna zahtevnost enaka 𝑂(𝑛𝑘−􏷠𝑝𝑘−􏷡) za
konstanten 𝑘. Odvisnost naše ocene časovne zahtevnosti od verjetnosti povezav 𝑝 smo
potrdili tudi eksperimentalno (Slika .).

A. Sprotno štetje in naključna omrežja

Omrežja, ki izhajajo z različnih področij, imajo različne lastnosti. Če želimo testirati
nek postopek na omrežjih z nekega področja, običajno identificiramo njihove tipič-
ne lastnosti, nato pa bi želeli generirati več takih naključnih omrežij. Najenostavnejši
model naključnih grafov je Erdős-Rényi (ER) model []. Žal pa tak model ne za-
jame lastnosti, ki jih opazimo v številnih omrežjih v praksi. Za številna omrežja je
npr. značilna potenčna porazdelitev stopenj točk, ki jih lahko generiramo z Barabási-
Albert (BA) modelom [] po principu prednostne povezanosti (angl. preferential
attachment).

Očitna osnovna lastnost omrežja je porazdelitev stopenj vozlišč. Algoritem Havel-
Hakimi [] z enostavnim požrešnim pristopom učinkovito sestavi ustrezen graf ali
ugotovi, da to ni mogoče. Generiranje enakomerno porazdeljenih enostavnih grafov
se izkaže za precej trši oreh. Naključne grafe lahko generiramo z neenakomerno poraz-
delitvijo in jih naknadno temu primerno utežimo []. Druga družina pristopov []
začne s poljubnim ustreznim grafom, ki ga nato naključno spreminja, pri čemer osta-
jajo stopnje vozlišč ves čas nespremenjene. Tretji pristop vključuje občasno resetiranje
procesa generiranja naključnega grafa [, ].

Pojavitve grafkov s štirimi vozilišči so še natančnejši opis strukture omrežja kot sto-
pnje točk. Generiranja naključnih grafov, ki se čim bolj približajo želeni porazdelitvi,
smo se lotili z enostavnim iterativnim optimizacijskim postopkom. Na vsakem koraku
naredimo manjšo lokalno spremembo (dodamo ali odstranimo naključno povezavo)
in preverimo, ali smo se s tem kaj približali rešitvi. Uporabljena mera podobnosti med

 A Razširjeni povzetek T. Hočevar

porazdelitvijo grafkov v trenutnem grafu 𝐺 in ciljnem grafu 𝐻 temelji na članku []:

𝐷(𝐺,𝐻) =
􏷧
􏾜
𝑖=􏷟
|𝐹𝑖(𝐺) − 𝐹𝑖(𝐻)|

𝐹𝑖(𝐺) = log(𝑁𝑖(𝐺) + 1),

kjer 𝑁𝑖(𝐺) predstavlja število pojavitev grafka 𝑖 v grafu 𝐺.
Pogosto štetje grafkov v optimizacijskem postopku je bila motivacija za prilagoditev

algoritma Orca za dinamičen problem. Dinamično štetje grafkov sestoji iz operacij:

dodajanja povezave (𝑥, 𝑦)

odstranjevanja povezave (𝑥, 𝑦)

štetja pojavitev vozlišča 𝑥 v orbitah grafkov

Ključna naloga je vzdrževanje pravilne statistike števila skupnih sosedov 𝑐(𝑥, 𝑦), na ka-
tero vplivata prvi dve operaciji. Izkaže se, da lahko vrednosti v okolici spremenjene
povezave učinkovito popravimo. Dinamičen algoritem Orca, ki začne s praznim gra-
fom, mu doda vse povezave, na koncu pa prešteje orbite, ima enako časovno zahtevnost
kot osnovni algoritem, ki deluje na celotnem grafu.

Tudi uporaba dinamičnega algoritma je časovno prepotratna za generiranje večjih
omrežij. Sprememba povezave (𝑥, 𝑦) namreč vpliva na rezultate štetja orbit v vozli-
ščih, ki so od 𝑥 ali 𝑦 oddaljena največ . Vsaka poizvedba o številu orbit, v katerih
nastopa posamezno vozlišče, prav tako obišče vsa vozlišča na razdalji . Za izračun
novega števila grafkov torej ob vsaki spremembi obiščemo okolico na razdalji , kar
pogosto predstavlja večino grafa in s tem ne pridobimo veliko v primerjavi z vnovič-
nim izvajanjem (statičnega) algoritma od začetka. Zato smo postopek optimizirali še za
sprotno vzdrževanje števila grafkov ob vsaki spremembi povezave. Algoritem namesto
vrednosti 𝑐(𝑥, 𝑦) neposredno popravlja vrednosti uporabljene v sistemu enačb. Tako
zreducira obiskano področje grafa na vozlišča na razdalji  od 𝑥 ali 𝑦, kar se odraža v
izraziti pohitritvi (Slika .).

Ker se grafki uporabljajo večinoma pri analizi omrežij, ki izhajajo iz bioinformati-
ke, smo v eksperimentih za tarčno distribucijo izbrali število grafkov v PPI omrežju
bakterije E. coli. Poleg meritev hitrosti razvitih algoritmov smo primerjali tudi vpliv
izhodiščnega omrežja na končni približek (Tabela .). Bolj kot je začetno omrežje



strukturno podobno ciljnemu, boljši približek bi pričakovali. Najboljši rezultat dose-
žemo z uporabo PPI omrežja drugega organizma (kvasovka S. cerevisiae). Presenetljivo
nato sledi prazno omrežje z malenkostno prednostjo pred naključnim geometrijskim
omrežjem, ki sicer velja za dober model PPI omrežij. Najslabša izhodiščna izbira je bil
naključen ER graf. Poleg števila grafkov smo primerjali tudi, kakšne so porazdelitve
drugih strukturnih lastnosti v generiranih naključnih omrežjih. Glede na izhodiščno
naključno geometrijsko omrežje imajo končna omrežja bolj podobne porazdelitve sto-
penj točk, koeficientov gručenja (angl. clustering coefficient) in mere PageRank (Slike
., ., .). Kot je razvidno s slike ., je presenetljivo podobno tudi število grafkov
s petimi točkami kljub optimizaciji števila pojavitev grafkov s štirimi.

A. Zaključek

Raziskovalno delo predstavljeno v tej disertaciji izkazuje očiten napredek štetje gra-
fkov v primerjavi z metodami naštevanja. Algoritem Orca je v praksi  do -krat
hitrejši pri štetju grafkov v večjih PPI omrežjih. Na največjem testiranem omrežju pro-
teinskih interakcij v človeku pa je bila pohitritev kar -kratna. Razviti algoritem
tako omogoča analizo večjih in gostejših omrežij.

Orca je bila vgrajena v programski paket GraphCrunch [], ki je namenjen analizi
omrežij na osnovi grafkov. Poleg tega je bil algoritem že vključen v več raziskavah.
Uporabili so ga pri izgradnji podatkovne baze proteinskih interakcij v različnih tkivih
vzorčnih organizmov in človeka (Integrated Interactions Database []), za razvoj me-
tode poravnave omrežij na osnovi njihove lokalne strukture [], za določanje entitet
na podlagi njihovih relacij z drugimi entitetami [], itd.

Po bolj teoretični plati je naš algoritem osnova za nadaljnji razvoj učinkovitih metod
štetja vzorcev v grafih. Avtorji članka [] so poskušali posplošiti enačbe, ki jih upora-
blja Orca. Ortmann [] je s svojim algoritmom, ki izkorišča nizko drevesnost (angl.
arboricity) omrežij, že izboljšal našo rešitev štetja grafkov s štirimi vozlišči. Kot ena
najhitrejših metod predstavlja Orca tudi osnovo za primerjavo pri razvoju vzporednih
in aproksimacijskih algoritmov [, ].

Raziskovalno delo ni nikoli zaključeno in na področju štetja vzorcev v grafih ga je
še precej.

B

Graphlet equations



 B Graphlet equations T. Hočevar

B. Equations for node-orbit counts in -graphlets

Let 𝑝(𝑢, 𝑣) denote the number of paths on three nodes that start at node 𝑢, continue
with 𝑣 and end with some node 𝑡, which is not connected to 𝑢. We can compute
𝑝(𝑢, 𝑣) as 𝑝(𝑢, 𝑣) = 𝑑𝑒𝑔(𝑣) − 1 − 𝑐(𝑢, 𝑣).

𝑜􏷠􏷡 + 3𝑜􏷠􏷣 = 􏾜
𝑦,𝑧∶ 𝑦<𝑧,𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷫

𝑐(𝑦, 𝑧) − 1

2𝑜􏷠􏷢 + 6𝑜􏷠􏷣 = 􏾜
𝑦,𝑧∶ 𝑦<𝑧,𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷫

(𝑐(𝑥, 𝑦) − 1) + (𝑐(𝑥, 𝑧) − 1)

𝑜􏷠􏷟 + 2𝑜􏷠􏷢 = 􏾜
𝑦,𝑧∶ 𝑦<𝑧,𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷫

𝑝(𝑦, 𝑧) + 𝑝(𝑧, 𝑦)

2𝑜􏷠􏷠 + 2𝑜􏷠􏷢 = 􏾜
𝑦,𝑧∶ 𝑦<𝑧,𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷫

𝑝(𝑦, 𝑥) + 𝑝(𝑧, 𝑥)

6𝑜􏷦 + 2𝑜􏷠􏷠 = 􏾜
𝑦,𝑧∶ 𝑦<𝑧,𝑦,𝑧∈𝑁(𝑥),𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷪

(𝑝(𝑦, 𝑥) − 1) + (𝑝(𝑧, 𝑥) − 1)

𝑜􏷤 + 2𝑜􏷧 = 􏾜
𝑦,𝑧∶ 𝑦<𝑧,𝑦,𝑧∈𝑁(𝑥),𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷪

𝑝(𝑥, 𝑦) + 𝑝(𝑥, 𝑧)

2𝑜􏷥 + 2𝑜􏷨 = 􏾜
𝑦,𝑧∶ 𝑥,𝑧∈𝑁(𝑦),𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷪

𝑝(𝑥, 𝑦) − 1

2𝑜􏷨 + 2𝑜􏷠􏷡 = 􏾜
𝑦,𝑧∶ 𝑥,𝑧∈𝑁(𝑦),𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷪

𝑐(𝑦, 𝑧)

𝑜􏷣 + 2𝑜􏷧 = 􏾜
𝑦,𝑧∶ 𝑥,𝑧∈𝑁(𝑦),𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷪

𝑝(𝑦, 𝑧)

2𝑜􏷧 + 2𝑜􏷠􏷡 = 􏾜
𝑦,𝑧∶ 𝑥,𝑧∈𝑁(𝑦),𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷪

𝑐(𝑥, 𝑧) − 1

B. Equations for edge-orbit counts in -graphlets

2𝑒􏷠􏷟 + 2𝑒􏷠􏷠 = 􏾜
𝑧∶ 𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷫

(𝑐(𝑥, 𝑦) − 1)

𝑒􏷨 + 4𝑒􏷠􏷠 = 􏾜
𝑧∶ 𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷫

(𝑐(𝑥, 𝑧) + 𝑐(𝑦, 𝑧) − 2)



𝑒􏷧 + 𝑒􏷨 + 4𝑒􏷠􏷟 + 4𝑒􏷠􏷠 = 􏾜
𝑧∶ 𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷫

(𝑐(𝑥) + 𝑐(𝑦) − 4)

𝑒􏷦 + 𝑒􏷨 + 2𝑒􏷠􏷠 = 􏾜
𝑧∶ 𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷫

(𝑐(𝑧) − 2)

2𝑒􏷥 + 𝑒􏷨 = 􏾜
𝑧∶ 𝑧∈𝑁(𝑦)∧𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷪

𝑐(𝑦, 𝑧) + 􏾜
𝑧∶ 𝑧∈𝑁(𝑥)∧𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷪

𝑐(𝑥, 𝑧)

2𝑒􏷤 + 𝑒􏷨 = 􏾜
𝑧∶ 𝑧∈𝑁(𝑦)∧𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷪

(𝑐(𝑥, 𝑧) − 1)+

􏾜
𝑧∶ 𝑧∈𝑁(𝑥)∧𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷪

(𝑐(𝑦, 𝑧) − 1)

2𝑒􏷣 + 2𝑒􏷥 + 𝑒􏷧 + 𝑒􏷨 = 􏾜
𝑧∶ 𝑧∈𝑁(𝑦)∧𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷪

(𝑐(𝑦) − 2)+

􏾜
𝑧∶ 𝑧∈𝑁(𝑥)∧𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷪

(𝑐(𝑥) − 2)

2𝑒􏷢 + 2𝑒􏷤 + 𝑒􏷧 + 𝑒􏷨 = 􏾜
𝑧∶ 𝑧∈𝑁(𝑦)∧𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷪

(𝑐(𝑥) − 1)+

􏾜
𝑧∶ 𝑧∈𝑁(𝑥)∧𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷪

(𝑐(𝑦) − 1)

𝑒􏷡 + 2𝑒􏷤 + 2𝑒􏷥 + 𝑒􏷨 = 􏾜
𝑧∶ 𝑧∈𝑁(𝑦)∪𝑁(𝑥)∧𝐺[{𝑥,𝑦,𝑧}]≅𝐺􏷪

(𝑐(𝑧) − 1)

B. Equations for node-orbit counts in -graphlets

Conditions, 𝑃𝑖, define the order of nodes and put 𝑥 in orbit 𝑂𝑖; e.g., in 𝑃􏷠􏷢 node 𝑥 is
in orbit 𝑂􏷠􏷢.

𝑃􏷠􏷣(𝑥, 𝑢, 𝑣, 𝑡) = 𝑢 < 𝑣 < 𝑡 ∧ 𝐺[{𝑥, 𝑢, 𝑣, 𝑡}] ≅ 𝐺􏷧
𝑃􏷠􏷢(𝑥, 𝑢, 𝑣, 𝑡) = 𝑣 < 𝑡 ∧ (𝑣, 𝑡) ∉ 𝐸 ∧ 𝐺[{𝑥, 𝑢, 𝑣, 𝑡}] ≅ 𝐺􏷦
𝑃􏷠􏷡(𝑥, 𝑢, 𝑣, 𝑡) = 𝑢 < 𝑣 ∧ (𝑥, 𝑡) ∉ 𝐸 ∧ 𝐺[{𝑥, 𝑢, 𝑣, 𝑡}] ≅ 𝐺􏷦
𝑃􏷠􏷠(𝑥, 𝑢, 𝑣, 𝑡) = 𝑢 < 𝑣 ∧ 𝑢, 𝑣 ∉ 𝑁(𝑡) ∧ 𝐺[{𝑥, 𝑢, 𝑣, 𝑡}] ≅ 𝐺􏷥
𝑃􏷠􏷟(𝑥, 𝑢, 𝑣, 𝑡) = 𝑥, 𝑢 ∉ 𝑁(𝑡) ∧ 𝐺[{𝑥, 𝑢, 𝑣, 𝑡}] ≅ 𝐺􏷥

 B Graphlet equations T. Hočevar

𝑃􏷨(𝑥, 𝑢, 𝑣, 𝑡) = 𝑣 < 𝑡 ∧ 𝑣, 𝑡 ∉ 𝑁(𝑥) ∧ 𝐺[{𝑥, 𝑢, 𝑣, 𝑡}] ≅ 𝐺􏷥
𝑃􏷧(𝑥, 𝑢, 𝑣, 𝑡) = 𝑢 < 𝑣 ∧ 𝑢, 𝑣 ∈ 𝑁(𝑥) ∧ 𝐺[{𝑥, 𝑢, 𝑣, 𝑡}] ≅ 𝐺􏷤
𝑃􏷦(𝑥, 𝑢, 𝑣, 𝑡) = 𝑢 < 𝑣 < 𝑡 ∧ 𝑢, 𝑣, 𝑡 ∈ 𝑁(𝑥) ∧ 𝐺[{𝑥, 𝑢, 𝑣, 𝑡}] ≅ 𝐺􏷣
𝑃􏷥(𝑥, 𝑢, 𝑣, 𝑡) = 𝑣 < 𝑡 ∧ 𝑥, 𝑣, 𝑡 ∈ 𝑁(𝑢) ∧ 𝐺[{𝑥, 𝑢, 𝑣, 𝑡}] ≅ 𝐺􏷣
𝑃􏷤(𝑥, 𝑢, 𝑣, 𝑡) = 𝑢, 𝑣 ∈ 𝑁(𝑥) ∧ 𝑡 ∈ 𝑁(𝑣) ∧ 𝐺[{𝑥, 𝑢, 𝑣, 𝑡}] ≅ 𝐺􏷢
𝑃􏷣(𝑥, 𝑢, 𝑣, 𝑡) = 𝑥, 𝑣 ∈ 𝑁(𝑢) ∧ 𝑡 ∈ 𝑁(𝑣) ∧ 𝐺[{𝑥, 𝑢, 𝑣, 𝑡}] ≅ 𝐺􏷢

Equations:

2𝑜􏷦􏷠 + 12𝑜􏷦􏷡 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷪􏷭(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑥, 𝑢, 𝑣) + 𝑐(𝑥, 𝑢, 𝑡) + 𝑐(𝑥, 𝑣, 𝑡) − 3

𝑜􏷦􏷟 + 4𝑜􏷦􏷡 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷪􏷭(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑢, 𝑣, 𝑡) − 1

4𝑜􏷥􏷨 + 2𝑜􏷦􏷠 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷪􏷬(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑥, 𝑣, 𝑡) − 1

𝑜􏷥􏷧 + 2𝑜􏷦􏷠 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷪􏷬(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑢, 𝑣, 𝑡) − 1

𝑜􏷥􏷦 + 12𝑜􏷦􏷡 + 4𝑜􏷦􏷠 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷪􏷭(𝑥,𝑢,𝑣,𝑡)

(𝑐(𝑥, 𝑢) − 2) + (𝑐(𝑥, 𝑣) − 2) + (𝑐(𝑥, 𝑡) − 2)

𝑜􏷥􏷥 + 12𝑜􏷦􏷡 + 2𝑜􏷦􏷠 + 3𝑜􏷦􏷟 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷪􏷭(𝑥,𝑢,𝑣,𝑡)

(𝑐(𝑢, 𝑣) − 2) + (𝑐(𝑢, 𝑡) − 2) + (𝑐(𝑣, 𝑡) − 2)

2𝑜􏷥􏷤 + 3𝑜􏷦􏷟 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷪􏷫(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑢, 𝑣, 𝑡)

𝑜􏷥􏷣 + 2𝑜􏷦􏷠 + 4𝑜􏷥􏷨 + 𝑜􏷥􏷧 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷪􏷬(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑣, 𝑡) − 2

𝑜􏷥􏷢 + 3𝑜􏷦􏷟 + 2𝑜􏷥􏷧 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷪􏷫(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑥, 𝑡) − 2

2𝑜􏷥􏷡 + 𝑜􏷥􏷧 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷱(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑢, 𝑣, 𝑡)

2𝑜􏷥􏷠 + 4𝑜􏷦􏷠 + 8𝑜􏷥􏷨 + 2𝑜􏷥􏷦 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷪􏷬(𝑥,𝑢,𝑣,𝑡)

(𝑐(𝑥, 𝑣) − 1) + (𝑐(𝑥, 𝑡) − 1)



𝑜􏷥􏷟 + 4𝑜􏷦􏷠 + 2𝑜􏷥􏷧 + 2𝑜􏷥􏷦 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷪􏷬(𝑥,𝑢,𝑣,𝑡)

(𝑐(𝑢, 𝑣) − 1) + (𝑐(𝑢, 𝑡) − 1)

𝑜􏷤􏷨 + 6𝑜􏷦􏷟 + 2𝑜􏷥􏷧 + 4𝑜􏷥􏷤 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷪􏷫(𝑥,𝑢,𝑣,𝑡)

(𝑐(𝑢, 𝑡) − 1) + (𝑐(𝑣, 𝑡) − 1)

𝑜􏷤􏷧 + 4𝑜􏷦􏷡 + 2𝑜􏷦􏷠 + 𝑜􏷥􏷦 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷪􏷭(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑥) − 3

𝑜􏷤􏷦 + 12𝑜􏷦􏷡 + 4𝑜􏷦􏷠+
3𝑜􏷦􏷟 + 𝑜􏷥􏷦 + 2𝑜􏷥􏷥 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷪􏷭(𝑥,𝑢,𝑣,𝑡)
(𝑐(𝑢) − 3) + (𝑐(𝑣) − 3) + (𝑐(𝑡) − 3)

3𝑜􏷤􏷥 + 2𝑜􏷥􏷤 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷲(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑢, 𝑣, 𝑡)

3𝑜􏷤􏷤 + 2𝑜􏷦􏷠 + 2𝑜􏷥􏷦 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷪􏷬(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑥, 𝑢) − 2

2𝑜􏷤􏷣 + 3𝑜􏷦􏷟 + 𝑜􏷥􏷥 + 2𝑜􏷥􏷤 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷪􏷫(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑢, 𝑣) − 2

𝑜􏷤􏷢 + 2𝑜􏷥􏷧 + 2𝑜􏷥􏷣 + 2𝑜􏷥􏷢 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷱(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑥, 𝑢) + 𝑐(𝑥, 𝑣)

2𝑜􏷤􏷡 + 2𝑜􏷥􏷥 + 2𝑜􏷥􏷣 + 𝑜􏷤􏷨 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷪􏷩(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑢, 𝑡) − 1

𝑜􏷤􏷠 + 2𝑜􏷥􏷧 + 2𝑜􏷥􏷢 + 4𝑜􏷥􏷡 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷱(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑢, 𝑡) + 𝑐(𝑡, 𝑣)

3𝑜􏷤􏷟 + 𝑜􏷥􏷧 + 2𝑜􏷥􏷢 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷱(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑥, 𝑡) − 2

2𝑜􏷣􏷨 + 𝑜􏷥􏷧 + 𝑜􏷥􏷣 + 2𝑜􏷥􏷡 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷱(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑢, 𝑣) − 2

𝑜􏷣􏷧 + 4𝑜􏷦􏷠 + 8𝑜􏷥􏷨 + 2𝑜􏷥􏷧+
2𝑜􏷥􏷦 + 2𝑜􏷥􏷣 + 2𝑜􏷥􏷠 + 𝑜􏷥􏷟 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷪􏷬(𝑥,𝑢,𝑣,𝑡)
(𝑐(𝑣) − 2) + (𝑐(𝑡) − 2)

𝑜􏷣􏷦 + 3𝑜􏷦􏷟 + 2𝑜􏷥􏷧 + 𝑜􏷥􏷥+
𝑜􏷥􏷢 + 𝑜􏷥􏷟 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷪􏷫(𝑥,𝑢,𝑣,𝑡)
𝑐(𝑥) − 2

 B Graphlet equations T. Hočevar

𝑜􏷣􏷥 + 3𝑜􏷦􏷟 + 2𝑜􏷥􏷧 + 2𝑜􏷥􏷤+
𝑜􏷥􏷢 + 𝑜􏷤􏷨 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷪􏷫(𝑥,𝑢,𝑣,𝑡)
𝑐(𝑡) − 2

𝑜􏷣􏷤 + 2𝑜􏷥􏷤 + 2𝑜􏷥􏷡 + 3𝑜􏷤􏷥 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷲(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑣, 𝑡) − 1

4𝑜􏷣􏷣 + 𝑜􏷥􏷦 + 2𝑜􏷥􏷠 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷪􏷪(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑥, 𝑡)

2𝑜􏷣􏷢 + 2𝑜􏷥􏷥 + 𝑜􏷥􏷟 + 𝑜􏷤􏷨 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷪􏷩(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑣, 𝑡)

𝑜􏷣􏷡 + 2𝑜􏷦􏷠 + 4𝑜􏷥􏷨 + 2𝑜􏷥􏷦+
2𝑜􏷥􏷠 + 3𝑜􏷤􏷤 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷪􏷬(𝑥,𝑢,𝑣,𝑡)
𝑐(𝑥) − 3

𝑜􏷣􏷠 + 2𝑜􏷦􏷠 + 𝑜􏷥􏷧 + 2𝑜􏷥􏷦+
𝑜􏷥􏷟 + 3𝑜􏷤􏷤 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷪􏷬(𝑥,𝑢,𝑣,𝑡)
𝑐(𝑢) − 3

𝑜􏷣􏷟 + 6𝑜􏷦􏷟 + 2𝑜􏷥􏷧 + 2𝑜􏷥􏷥+
4𝑜􏷥􏷤 + 𝑜􏷥􏷟 + 𝑜􏷤􏷨 + 4𝑜􏷤􏷣 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷪􏷫(𝑥,𝑢,𝑣,𝑡)
(𝑐(𝑢) − 3) + (𝑐(𝑣) − 3)

2𝑜􏷢􏷨 + 4𝑜􏷥􏷤 + 𝑜􏷤􏷨 + 6𝑜􏷤􏷥 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷲(𝑥,𝑢,𝑣,𝑡)

(𝑐(𝑢, 𝑣) − 1) + (𝑐(𝑢, 𝑡) − 1)

𝑜􏷢􏷧 + 𝑜􏷥􏷧 + 𝑜􏷥􏷣 + 2𝑜􏷥􏷢+
𝑜􏷤􏷢 + 3𝑜􏷤􏷟 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷱(𝑥,𝑢,𝑣,𝑡)
𝑐(𝑥) − 2

𝑜􏷢􏷦 + 2𝑜􏷥􏷧 + 2𝑜􏷥􏷣 + 2𝑜􏷥􏷢+
4𝑜􏷥􏷡 + 𝑜􏷤􏷢 + 𝑜􏷤􏷠 + 4𝑜􏷣􏷨 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷱(𝑥,𝑢,𝑣,𝑡)
(𝑐(𝑢) − 2) + (𝑐(𝑣) − 2)

𝑜􏷢􏷥 + 𝑜􏷥􏷧 + 2𝑜􏷥􏷢 + 2𝑜􏷥􏷡+
𝑜􏷤􏷠 + 3𝑜􏷤􏷟 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷱(𝑥,𝑢,𝑣,𝑡)
𝑐(𝑡) − 2

2𝑜􏷢􏷤 + 𝑜􏷤􏷨 + 2𝑜􏷤􏷡 + 2𝑜􏷣􏷤 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷭(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑢, 𝑡) − 1



2𝑜􏷢􏷣 + 𝑜􏷤􏷨 + 2𝑜􏷤􏷡 + 𝑜􏷤􏷠 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷭(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑥, 𝑡)

2𝑜􏷢􏷢 + 𝑜􏷥􏷦 + 2𝑜􏷥􏷠 + 3𝑜􏷤􏷧+
4𝑜􏷣􏷣 + 2𝑜􏷣􏷡 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷪􏷪(𝑥,𝑢,𝑣,𝑡)
𝑐(𝑥) − 3

2𝑜􏷢􏷡 + 2𝑜􏷥􏷥 + 𝑜􏷥􏷟 + 𝑜􏷤􏷨+
2𝑜􏷤􏷦 + 2𝑜􏷣􏷢 + 2𝑜􏷣􏷠 + 𝑜􏷣􏷟 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷪􏷩(𝑥,𝑢,𝑣,𝑡)
𝑐(𝑣) − 3

𝑜􏷢􏷠 + 2𝑜􏷥􏷤 + 𝑜􏷤􏷨 + 3𝑜􏷤􏷥+
𝑜􏷣􏷢 + 2𝑜􏷢􏷨 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷲(𝑥,𝑢,𝑣,𝑡)
𝑐(𝑢) − 3

𝑜􏷢􏷟 + 𝑜􏷥􏷦 + 𝑜􏷥􏷢 + 2𝑜􏷥􏷠+
𝑜􏷤􏷢 + 4𝑜􏷣􏷣 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷪􏷪(𝑥,𝑢,𝑣,𝑡)
𝑐(𝑡) − 1

𝑜􏷡􏷨 + 2𝑜􏷥􏷥 + 2𝑜􏷥􏷣 + 𝑜􏷥􏷟+
𝑜􏷤􏷨 + 𝑜􏷤􏷢 + 2𝑜􏷤􏷡 + 2𝑜􏷣􏷢 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷪􏷩(𝑥,𝑢,𝑣,𝑡)
𝑐(𝑡) − 1

𝑜􏷡􏷧 + 2𝑜􏷥􏷤 + 2𝑜􏷥􏷡 + 𝑜􏷤􏷨+
𝑜􏷤􏷠 + 𝑜􏷣􏷢 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷲(𝑥,𝑢,𝑣,𝑡)
𝑐(𝑥) − 1

2𝑜􏷡􏷦 + 𝑜􏷤􏷨 + 𝑜􏷤􏷠 + 2𝑜􏷣􏷤 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷭(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑣, 𝑡)

𝑜􏷡􏷥 + 2𝑜􏷥􏷦 + 2𝑜􏷥􏷢 + 2𝑜􏷥􏷠+
6𝑜􏷤􏷧 + 𝑜􏷤􏷢 + 2𝑜􏷣􏷦 + 2𝑜􏷣􏷡 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷪􏷪(𝑥,𝑢,𝑣,𝑡)
(𝑐(𝑢) − 2) + (𝑐(𝑣) − 2)

2𝑜􏷡􏷤 + 2𝑜􏷥􏷥 + 2𝑜􏷥􏷣 + 𝑜􏷤􏷨+
2𝑜􏷤􏷦 + 2𝑜􏷤􏷡 + 𝑜􏷣􏷧 + 𝑜􏷣􏷟 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷪􏷩(𝑥,𝑢,𝑣,𝑡)
(𝑐(𝑢) − 2)

𝑜􏷡􏷣 + 4𝑜􏷥􏷤 + 4𝑜􏷥􏷡 + 𝑜􏷤􏷨+
6𝑜􏷤􏷥 + 𝑜􏷤􏷠 + 2𝑜􏷣􏷤 + 2𝑜􏷢􏷨 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷲(𝑥,𝑢,𝑣,𝑡)
(𝑐(𝑣) − 2) + (𝑐(𝑡) − 2)

 B Graphlet equations T. Hočevar

4𝑜􏷡􏷢 + 𝑜􏷤􏷤 + 𝑜􏷣􏷡 + 2𝑜􏷢􏷢 = 􏾜
𝑢,𝑣,𝑡∶ 𝑃􏷰(𝑥,𝑢,𝑣,𝑡)

𝑐(𝑥) − 3

3𝑜􏷡􏷡 + 2𝑜􏷤􏷣 + 𝑜􏷣􏷟 + 𝑜􏷢􏷨+
𝑜􏷢􏷡 + 2𝑜􏷢􏷠 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷯(𝑥,𝑢,𝑣,𝑡)
𝑐(𝑢) − 3

𝑜􏷡􏷠 + 3𝑜􏷤􏷤 + 3𝑜􏷤􏷟+
2𝑜􏷣􏷡 + 2𝑜􏷢􏷧 + 2𝑜􏷢􏷢 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷰(𝑥,𝑢,𝑣,𝑡)
(𝑐(𝑢) − 1) + (𝑐(𝑣) − 1) + (𝑐(𝑡) − 1)

𝑜􏷡􏷟 + 2𝑜􏷤􏷣 + 2𝑜􏷣􏷨 + 𝑜􏷣􏷟+
𝑜􏷢􏷦 + 𝑜􏷢􏷡 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷯(𝑥,𝑢,𝑣,𝑡)
𝑐(𝑥) − 1

𝑜􏷠􏷨 + 4𝑜􏷤􏷣 + 4𝑜􏷣􏷨 + 𝑜􏷣􏷟+
2𝑜􏷢􏷨 + 𝑜􏷢􏷦 + 2𝑜􏷢􏷤 + 2𝑜􏷢􏷠 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷯(𝑥,𝑢,𝑣,𝑡)
(𝑐(𝑣) − 1) + (𝑐(𝑡) − 1)

2𝑜􏷠􏷧 + 𝑜􏷤􏷨 + 𝑜􏷤􏷠 + 2𝑜􏷣􏷥+
2𝑜􏷣􏷤 + 2𝑜􏷢􏷥 + 2𝑜􏷡􏷦 + 𝑜􏷡􏷣 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷭(𝑥,𝑢,𝑣,𝑡)
𝑐(𝑣) − 2

2𝑜􏷠􏷦 + 𝑜􏷥􏷟 + 𝑜􏷤􏷢 + 𝑜􏷤􏷠+
𝑜􏷣􏷧 + 𝑜􏷢􏷦 + 2𝑜􏷢􏷣 + 2𝑜􏷢􏷟 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷮(𝑥,𝑢,𝑣,𝑡)
𝑐(𝑢) − 1

𝑜􏷠􏷥 + 𝑜􏷤􏷨 + 2𝑜􏷤􏷡 + 𝑜􏷤􏷠+
2𝑜􏷣􏷥 + 2𝑜􏷢􏷥 + 2𝑜􏷢􏷣 + 𝑜􏷡􏷨 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷭(𝑥,𝑢,𝑣,𝑡)
𝑐(𝑥) − 1

𝑜􏷠􏷤 + 𝑜􏷤􏷨 + 2𝑜􏷤􏷡 + 𝑜􏷤􏷠+
2𝑜􏷣􏷤 + 2𝑜􏷢􏷤 + 2𝑜􏷢􏷣 + 2𝑜􏷡􏷦 = 􏾜

𝑢,𝑣,𝑡∶ 𝑃􏷭(𝑥,𝑢,𝑣,𝑡)
𝑐(𝑡) − 1

B. Equations for edge-orbit counts in -graphlets

Conditions, 𝑃𝑖, define the order of nodes and put edge (𝑥, 𝑦) in orbit 𝐸𝑖; e.g., in 𝑃􏷠􏷢
edge (𝑥, 𝑦) is in orbit 𝐸􏷠􏷢.



𝑃􏷠􏷠(𝑥, 𝑦, 𝑎, 𝑏) = 𝑎 < 𝑏 ∧ 𝐺[{𝑥, 𝑦, 𝑎, 𝑏}] ≅ 𝐺􏷧
𝑃􏷠􏷟(𝑥, 𝑦, 𝑎, 𝑏) = 𝑎 < 𝑏 ∧ (𝑎, 𝑏) ∉ 𝐸 ∧ 𝐺[{𝑥, 𝑦, 𝑎, 𝑏}] ≅ 𝐺􏷦
𝑃􏷨𝑎(𝑥, 𝑦, 𝑎, 𝑏) = 𝑎 ∈ 𝑁(𝑥) ∧ 𝑏 ∈ 𝑁(𝑦) ∧ (𝑎, 𝑏) ∈ 𝐸 ∧ (𝑥, 𝑏) ∈ 𝐸 ∧ 𝐺[{𝑥, 𝑦, 𝑎, 𝑏}] ≅ 𝐺􏷦
𝑃􏷨𝑏(𝑥, 𝑦, 𝑎, 𝑏) = 𝑎 ∈ 𝑁(𝑥) ∧ 𝑏 ∈ 𝑁(𝑦) ∧ (𝑎, 𝑏) ∈ 𝐸 ∧ (𝑦, 𝑎) ∈ 𝐸 ∧ 𝐺[{𝑥, 𝑦, 𝑎, 𝑏}] ≅ 𝐺􏷦
𝑃􏷦(𝑥, 𝑦, 𝑎, 𝑏) = 𝑎 ∈ 𝑁(𝑥) ∩ 𝑁(𝑦) ∧ 𝑏 ∈ 𝑁(𝑎) ∧ 𝐺[{𝑥, 𝑦, 𝑎, 𝑏}] ≅ 𝐺􏷥
𝑃􏷥𝑎(𝑥, 𝑦, 𝑎, 𝑏) = 𝑎 < 𝑏 ∧ (𝑎, 𝑏) ∈ 𝐸 ∧ 𝑎, 𝑏 ∈ 𝑁(𝑦) ∧ 𝑎, 𝑏 ∉ 𝑁(𝑥) ∧ 𝐺[{𝑥, 𝑦, 𝑎, 𝑏}] ≅ 𝐺􏷥
𝑃􏷥𝑏(𝑥, 𝑦, 𝑎, 𝑏) = 𝑎 < 𝑏 ∧ (𝑎, 𝑏) ∈ 𝐸 ∧ 𝑎, 𝑏 ∈ 𝑁(𝑥) ∧ 𝑎, 𝑏 ∉ 𝑁(𝑦) ∧ 𝐺[{𝑥, 𝑦, 𝑎, 𝑏}] ≅ 𝐺􏷥
𝑃􏷤(𝑥, 𝑦, 𝑎, 𝑏) = 𝑎 ∈ 𝑁(𝑥) ∧ 𝑏 ∈ 𝑁(𝑦) ∧ 𝐺[{𝑥, 𝑦, 𝑎, 𝑏}] ≅ 𝐺􏷤
𝑃􏷣𝑎(𝑥, 𝑦, 𝑎, 𝑏) = 𝑎 < 𝑏 ∧ 𝑎, 𝑏 ∈ 𝑁(𝑦) ∧ 𝐺[{𝑥, 𝑦, 𝑎, 𝑏}] ≅ 𝐺􏷣
𝑃􏷣𝑏(𝑥, 𝑦, 𝑎, 𝑏) = 𝑎 < 𝑏 ∧ 𝑎, 𝑏 ∈ 𝑁(𝑥) ∧ 𝐺[{𝑥, 𝑦, 𝑎, 𝑏}] ≅ 𝐺􏷣
𝑃􏷢(𝑥, 𝑦, 𝑎, 𝑏) = 𝑎 ∈ 𝑁(𝑥) ∧ 𝑏 ∈ 𝑁(𝑦) ∧ 𝐺[{𝑥, 𝑦, 𝑎, 𝑏}] ≅ 𝐺􏷢
𝑃􏷡𝑎(𝑥, 𝑦, 𝑎, 𝑏) = (𝑎, 𝑏) ∈ 𝐸 ∧ 𝑎 ∈ 𝑁(𝑦) ∧ 𝐺[{𝑥, 𝑦, 𝑎, 𝑏}] ≅ 𝐺􏷢
𝑃􏷡𝑏(𝑥, 𝑦, 𝑎, 𝑏) = (𝑎, 𝑏) ∈ 𝐸 ∧ 𝑎 ∈ 𝑁(𝑥) ∧ 𝐺[{𝑥, 𝑦, 𝑎, 𝑏}] ≅ 𝐺􏷢

Equations:

2𝑒􏷥􏷥 + 6𝑒􏷥􏷦 = 􏾜
𝑎,𝑏∶ 𝑃􏷪􏷪(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑥, 𝑦, 𝑎) + 𝑐(𝑥, 𝑦, 𝑏) − 2)

𝑒􏷥􏷤 + 6𝑒􏷥􏷦 = 􏾜
𝑎,𝑏∶ 𝑃􏷪􏷪(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑥, 𝑎, 𝑏) + 𝑐(𝑦, 𝑎, 𝑏) − 2)

𝑒􏷥􏷣 + 2𝑒􏷥􏷥 = 􏾜
𝑎,𝑏∶ 𝑃􏷪􏷩(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑥, 𝑎, 𝑏) + 𝑐(𝑦, 𝑎, 𝑏) − 2)

2𝑒􏷥􏷢 + 2𝑒􏷥􏷤 = 􏾜
𝑎,𝑏∶ 𝑃􏷲𝑎(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑦, 𝑎, 𝑏) − 1) + 􏾜
𝑎,𝑏∶ 𝑃􏷲𝑏(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑥, 𝑎, 𝑏) − 1)

𝑒􏷥􏷡 + 2𝑒􏷥􏷥 + 3𝑒􏷥􏷦 = 􏾜
𝑎,𝑏∶ 𝑃􏷪􏷪(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑥, 𝑦) − 2)

𝑒􏷥􏷠 + 2𝑒􏷥􏷤 + 4𝑒􏷥􏷥 + 12𝑒􏷥􏷦 = 􏾜
𝑎,𝑏∶ 𝑃􏷪􏷪(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑥, 𝑎) + 𝑐(𝑥, 𝑏) + 𝑐(𝑦, 𝑎) + 𝑐(𝑦, 𝑏) − 8)

 B Graphlet equations T. Hočevar

𝑒􏷥􏷟 + 𝑒􏷥􏷤 + 3𝑒􏷥􏷦 = 􏾜
𝑎,𝑏∶ 𝑃􏷪􏷪(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑎, 𝑏) − 2)

2𝑒􏷤􏷨 + 2𝑒􏷥􏷤 = 􏾜
𝑎,𝑏∶ 𝑃􏷲𝑎(𝑥,𝑦,𝑎,𝑏)

𝑐(𝑥, 𝑎, 𝑏) + 􏾜
𝑎,𝑏∶ 𝑃􏷲𝑏(𝑥,𝑦,𝑎,𝑏)

𝑐(𝑦, 𝑎, 𝑏)

𝑒􏷤􏷧 + 𝑒􏷥􏷣 + 𝑒􏷥􏷥 = 􏾜
𝑎,𝑏∶ 𝑃􏷪􏷩(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑎, 𝑏) − 2)

𝑒􏷤􏷦 + 2𝑒􏷥􏷢 + 2𝑒􏷥􏷣 + 2𝑒􏷥􏷤 = 􏾜
𝑎,𝑏∶ 𝑃􏷲𝑎(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑦, 𝑎) − 2) + 􏾜
𝑎,𝑏∶ 𝑃􏷲𝑏(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑥, 𝑏) − 2)

2𝑒􏷤􏷥 + 2𝑒􏷥􏷢 = 􏾜
𝑎,𝑏∶ 𝑃􏷮(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑥, 𝑎, 𝑏) + 𝑐(𝑦, 𝑎, 𝑏))

𝑒􏷤􏷤 + 4𝑒􏷥􏷡 + 2𝑒􏷥􏷣 + 4𝑒􏷥􏷥 = 􏾜
𝑎,𝑏∶ 𝑃􏷪􏷩(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑥, 𝑎) + 𝑐(𝑥, 𝑏) + 𝑐(𝑦, 𝑎) + 𝑐(𝑦, 𝑏) − 4)

2𝑒􏷤􏷣 + 𝑒􏷥􏷠 + 2𝑒􏷥􏷢 + 2𝑒􏷥􏷤 = 􏾜
𝑎,𝑏∶ 𝑃􏷲𝑎(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑦, 𝑏) − 1) + 􏾜
𝑎,𝑏∶ 𝑃􏷲𝑏(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑥, 𝑎) − 1)

𝑒􏷤􏷢 + 2𝑒􏷤􏷨 + 2𝑒􏷥􏷣 + 2𝑒􏷥􏷤 = 􏾜
𝑎,𝑏∶ 𝑃􏷲𝑎(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑥, 𝑎) − 1) + 􏾜
𝑎,𝑏∶ 𝑃􏷲𝑏(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑦, 𝑏) − 1)

𝑒􏷤􏷡 + 2𝑒􏷤􏷨 + 2𝑒􏷥􏷢 + 2𝑒􏷥􏷤 = 􏾜
𝑎,𝑏∶ 𝑃􏷲𝑎(𝑥,𝑦,𝑎,𝑏)∨𝑃􏷲𝑏(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑎, 𝑏) − 1)

𝑒􏷤􏷠 + 𝑒􏷥􏷠 + 2𝑒􏷥􏷡 + 𝑒􏷥􏷤+
4𝑒􏷥􏷥 + 6𝑒􏷥􏷦 = 􏾜

𝑎,𝑏∶ 𝑃􏷪􏷪(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑥) + 𝑐(𝑦) − 6)

𝑒􏷤􏷟 + 2𝑒􏷥􏷟 + 𝑒􏷥􏷠 + 2𝑒􏷥􏷤+
2𝑒􏷥􏷥 + 6𝑒􏷥􏷦 = 􏾜

𝑎,𝑏∶ 𝑃􏷪􏷪(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑎) + 𝑐(𝑏) − 6)

3𝑒􏷣􏷨 + 𝑒􏷤􏷨 = 􏾜
𝑎,𝑏∶ 𝑃􏷯𝑎(𝑥,𝑦,𝑎,𝑏)

𝑐(𝑦, 𝑎, 𝑏) + 􏾜
𝑎,𝑏∶ 𝑃􏷯𝑏(𝑥,𝑦,𝑎,𝑏)

𝑐(𝑥, 𝑎, 𝑏)

3𝑒􏷣􏷧 + 2𝑒􏷥􏷡 + 𝑒􏷥􏷥 = 􏾜
𝑎,𝑏∶ 𝑃􏷪􏷩(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑥, 𝑦) − 2)

2𝑒􏷣􏷦 + 2𝑒􏷤􏷨 + 𝑒􏷥􏷠 + 2𝑒􏷥􏷤 = 􏾜
𝑎,𝑏∶ 𝑃􏷲𝑎(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑥, 𝑏) − 2) + 􏾜
𝑎,𝑏∶ 𝑃􏷲𝑏(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑦, 𝑎) − 2)

𝑒􏷣􏷥 + 𝑒􏷤􏷦 + 𝑒􏷥􏷢 = 􏾜
𝑎,𝑏∶ 𝑃􏷮(𝑥,𝑦,𝑎,𝑏)

𝑐(𝑥, 𝑦)



𝑒􏷣􏷤 + 𝑒􏷤􏷡 + 4𝑒􏷤􏷧 + 4𝑒􏷥􏷟 = 􏾜
𝑎,𝑏∶ 𝑃􏷰(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑥, 𝑏) + 𝑐(𝑦, 𝑏) − 2)

𝑒􏷣􏷣 + 2𝑒􏷤􏷥 + 𝑒􏷤􏷦 + 2𝑒􏷥􏷢 = 􏾜
𝑎,𝑏∶ 𝑃􏷮(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑥, 𝑎) + 𝑐(𝑦, 𝑏))

𝑒􏷣􏷢 + 2𝑒􏷤􏷥 + 𝑒􏷥􏷢 = 􏾜
𝑎,𝑏∶ 𝑃􏷮(𝑥,𝑦,𝑎,𝑏)

𝑐(𝑎, 𝑏)

2𝑒􏷣􏷡 + 2𝑒􏷤􏷥 + 𝑒􏷤􏷦 + 2𝑒􏷥􏷢 = 􏾜
𝑎,𝑏∶ 𝑃􏷮(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑥, 𝑏) + 𝑐(𝑦, 𝑎) − 4)

𝑒􏷣􏷠 + 𝑒􏷤􏷤 + 2𝑒􏷤􏷧 + 2𝑒􏷥􏷡+
2𝑒􏷥􏷣 + 2𝑒􏷥􏷥 = 􏾜

𝑎,𝑏∶ 𝑃􏷪􏷩(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑎) + 𝑐(𝑏) − 4)

𝑒􏷣􏷟 + 2𝑒􏷤􏷣 + 𝑒􏷤􏷤 + 𝑒􏷤􏷦+
𝑒􏷥􏷠 + 2𝑒􏷥􏷢 + 2𝑒􏷥􏷣 + 2𝑒􏷥􏷤 = 􏾜

𝑎,𝑏∶ 𝑃􏷲𝑎(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑦) − 2) + 􏾜

𝑎,𝑏∶ 𝑃􏷲𝑏(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑥) − 2)

𝑒􏷢􏷨 + 𝑒􏷤􏷡 + 𝑒􏷤􏷢 + 𝑒􏷤􏷦+
2𝑒􏷤􏷨 + 2𝑒􏷥􏷢 + 2𝑒􏷥􏷣 + 2𝑒􏷥􏷤 = 􏾜

𝑎,𝑏∶ 𝑃􏷲𝑎(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑎) − 2) + 􏾜

𝑎,𝑏∶ 𝑃􏷲𝑏(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑏) − 2)

𝑒􏷢􏷧 + 3𝑒􏷣􏷨 + 𝑒􏷤􏷥 + 𝑒􏷤􏷨 = 􏾜
𝑎,𝑏∶ 𝑃􏷯𝑎(𝑥,𝑦,𝑎,𝑏)∨𝑃􏷯𝑏(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑎, 𝑏) − 1)

𝑒􏷢􏷦 + 𝑒􏷤􏷢 + 𝑒􏷤􏷨 = 􏾜
𝑎,𝑏∶ 𝑃􏷯𝑎(𝑥,𝑦,𝑎,𝑏)∨𝑃􏷯𝑏(𝑥,𝑦,𝑎,𝑏)

𝑐(𝑥, 𝑦)

2𝑒􏷢􏷥 + 𝑒􏷤􏷡 + 2𝑒􏷥􏷟 = 􏾜
𝑎,𝑏∶ 𝑃􏷰(𝑥,𝑦,𝑎,𝑏)

𝑐(𝑎, 𝑏)

𝑒􏷢􏷤 + 6𝑒􏷣􏷧 + 𝑒􏷤􏷤 + 4𝑒􏷥􏷡+
𝑒􏷥􏷣 + 2𝑒􏷥􏷥 = 􏾜

𝑎,𝑏∶ 𝑃􏷪􏷩(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑥) + 𝑐(𝑦) − 6)

𝑒􏷢􏷣 + 2𝑒􏷣􏷦 + 𝑒􏷤􏷢 + 𝑒􏷤􏷤+
2𝑒􏷤􏷨 + 𝑒􏷥􏷠 + 2𝑒􏷥􏷣 + 2𝑒􏷥􏷤 = 􏾜

𝑎,𝑏∶ 𝑃􏷲𝑎(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑥) − 3) + 􏾜

𝑎,𝑏∶ 𝑃􏷲𝑏(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑦) − 3)

 B Graphlet equations T. Hočevar

𝑒􏷢􏷢 + 2𝑒􏷣􏷦 + 𝑒􏷤􏷡 + 2𝑒􏷤􏷣+
2𝑒􏷤􏷨 + 𝑒􏷥􏷠 + 2𝑒􏷥􏷢 + 2𝑒􏷥􏷤 = 􏾜

𝑎,𝑏∶ 𝑃􏷲𝑎(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑏) − 3) + 􏾜

𝑎,𝑏∶ 𝑃􏷲𝑏(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑎) − 3)

2𝑒􏷢􏷡 + 6𝑒􏷣􏷨 + 𝑒􏷤􏷢 + 2𝑒􏷤􏷨 = 􏾜
𝑎,𝑏∶ 𝑃􏷯𝑎(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑦, 𝑎) + 𝑐(𝑦, 𝑏) − 2)+

􏾜
𝑎,𝑏∶ 𝑃􏷯𝑏(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑥, 𝑎) + 𝑐(𝑥, 𝑏) − 2)

𝑒􏷢􏷠 + 2𝑒􏷣􏷡 + 𝑒􏷣􏷣 + 2𝑒􏷣􏷥+
2𝑒􏷤􏷥 + 2𝑒􏷤􏷦 + 2𝑒􏷥􏷢 = 􏾜

𝑎,𝑏∶ 𝑃􏷮(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑥) + 𝑐(𝑦) − 4)

𝑒􏷢􏷟 + 2𝑒􏷣􏷡 + 2𝑒􏷣􏷢 + 𝑒􏷣􏷣+
4𝑒􏷤􏷥 + 𝑒􏷤􏷦 + 2𝑒􏷥􏷢 = 􏾜

𝑎,𝑏∶ 𝑃􏷮(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑎) + 𝑐(𝑏) − 4)

2𝑒􏷡􏷨 + 2𝑒􏷢􏷧 + 𝑒􏷣􏷤 + 𝑒􏷤􏷡 = 􏾜
𝑎,𝑏∶ 𝑃􏷫𝑎(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑦, 𝑏) − 1) + 􏾜
𝑎,𝑏∶ 𝑃􏷫𝑏(𝑥,𝑦,𝑎,𝑏)

(𝑐(𝑥, 𝑏) − 1)

2𝑒􏷡􏷧 + 2𝑒􏷣􏷢 + 𝑒􏷣􏷤 + 𝑒􏷤􏷡 = 􏾜
𝑎,𝑏∶ 𝑃􏷫𝑎(𝑥,𝑦,𝑎,𝑏)

𝑐(𝑥, 𝑏) + 􏾜
𝑎,𝑏∶ 𝑃􏷫𝑏(𝑥,𝑦,𝑎,𝑏)

𝑐(𝑦, 𝑏)

𝑒􏷡􏷦 + 𝑒􏷢􏷣 + 𝑒􏷣􏷦 = 􏾜
𝑎,𝑏∶ 𝑃􏷭𝑎(𝑥,𝑦,𝑎,𝑏)∨𝑃􏷭𝑏(𝑥,𝑦,𝑎,𝑏)

𝑐(𝑥, 𝑦)

2𝑒􏷡􏷥 + 𝑒􏷢􏷢 + 2𝑒􏷢􏷥 + 𝑒􏷤􏷟+
𝑒􏷤􏷡 + 2𝑒􏷥􏷟 = 􏾜

𝑎,𝑏∶ 𝑃􏷰(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑎) − 3)

𝑒􏷡􏷤 + 2𝑒􏷢􏷡 + 𝑒􏷢􏷦 + 3𝑒􏷣􏷨+
𝑒􏷤􏷢 + 𝑒􏷤􏷨 = 􏾜

𝑎,𝑏∶ 𝑃􏷯𝑎(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑦) − 3) + 􏾜

𝑎,𝑏∶ 𝑃􏷯𝑏(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑥) − 3)

𝑒􏷡􏷣 + 𝑒􏷢􏷨 + 𝑒􏷣􏷤 + 𝑒􏷤􏷡 = 􏾜
𝑎,𝑏∶ 𝑃􏷫𝑎(𝑥,𝑦,𝑎,𝑏)∨𝑃􏷫𝑏(𝑥,𝑦,𝑎,𝑏)

𝑐(𝑥, 𝑦)

𝑒􏷡􏷢 + 2𝑒􏷢􏷥 + 𝑒􏷣􏷤 + 𝑒􏷤􏷡+
2𝑒􏷤􏷧 + 2𝑒􏷥􏷟 = 􏾜

𝑎,𝑏∶ 𝑃􏷰(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑏) − 1)



𝑒􏷡􏷡 + 𝑒􏷢􏷦 + 𝑒􏷣􏷣 + 𝑒􏷤􏷢+
𝑒􏷤􏷥 + 𝑒􏷤􏷨 = 􏾜

𝑎,𝑏∶ 𝑃􏷯𝑎(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑥) − 1) + 􏾜

𝑎,𝑏∶ 𝑃􏷯𝑏(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑦) − 1)

2𝑒􏷡􏷠 + 2𝑒􏷢􏷧 + 2𝑒􏷣􏷢 + 𝑒􏷤􏷡 = 􏾜
𝑎,𝑏∶ 𝑃􏷫𝑎(𝑥,𝑦,𝑎,𝑏)∨𝑃􏷫𝑏(𝑥,𝑦,𝑎,𝑏)

𝑐(𝑎, 𝑏)

𝑒􏷡􏷟 + 𝑒􏷣􏷟 + 𝑒􏷤􏷣 = 􏾜
𝑎,𝑏∶ 𝑃􏷬(𝑥,𝑦,𝑎,𝑏)

𝑐(𝑥, 𝑦)

𝑒􏷠􏷨 + 𝑒􏷢􏷢 + 2𝑒􏷣􏷠 + 𝑒􏷣􏷤+
2𝑒􏷤􏷟 + 𝑒􏷤􏷡 + 4𝑒􏷤􏷧 + 4𝑒􏷥􏷟 = 􏾜

𝑎,𝑏∶ 𝑃􏷰(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑥) + 𝑐(𝑦) − 4)

𝑒􏷠􏷧 + 2𝑒􏷢􏷡 + 2𝑒􏷢􏷧 + 𝑒􏷣􏷣+
6𝑒􏷣􏷨 + 𝑒􏷤􏷢 + 2𝑒􏷤􏷥 + 2𝑒􏷤􏷨 = 􏾜

𝑎,𝑏∶ 𝑃􏷯𝑎(𝑥,𝑦,𝑎,𝑏)∨𝑃􏷯𝑏(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑎) + 𝑐(𝑏) − 4)

3𝑒􏷠􏷦 + 2𝑒􏷡􏷤 + 𝑒􏷡􏷦 + 𝑒􏷢􏷡+
𝑒􏷢􏷣 + 𝑒􏷣􏷦 = 􏾜

𝑎,𝑏∶ 𝑃􏷭𝑎(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑦) − 3) + 􏾜

𝑎,𝑏∶ 𝑃􏷭𝑏(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑥) − 3)

2𝑒􏷠􏷥 + 2𝑒􏷡􏷟 + 2𝑒􏷡􏷡 + 𝑒􏷢􏷠+
2𝑒􏷣􏷟 + 𝑒􏷣􏷣 + 2𝑒􏷤􏷣 = 􏾜

𝑎,𝑏∶ 𝑃􏷬(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑥) + 𝑐(𝑦) − 4)

𝑒􏷠􏷤 + 2𝑒􏷡􏷤 + 2𝑒􏷡􏷨 + 𝑒􏷢􏷠+
2𝑒􏷢􏷡 + 𝑒􏷢􏷣 + 2𝑒􏷣􏷡 + 2𝑒􏷣􏷦 = 􏾜

𝑎,𝑏∶ 𝑃􏷭𝑎(𝑥,𝑦,𝑎,𝑏)∨𝑃􏷭𝑏(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑎) + 𝑐(𝑏) − 2)

2𝑒􏷠􏷣 + 𝑒􏷠􏷧 + 2𝑒􏷡􏷠 + 𝑒􏷢􏷟+
2𝑒􏷢􏷧 + 𝑒􏷢􏷨 + 2𝑒􏷣􏷢 + 𝑒􏷤􏷡 = 􏾜

𝑎,𝑏∶ 𝑃􏷫𝑎(𝑥,𝑦,𝑎,𝑏)∨𝑃􏷫𝑏(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑎) − 2)

𝑒􏷠􏷢 + 2𝑒􏷡􏷡 + 2𝑒􏷡􏷧 + 𝑒􏷢􏷠+
𝑒􏷣􏷟 + 2𝑒􏷣􏷣 + 2𝑒􏷤􏷣 = 􏾜

𝑎,𝑏∶ 𝑃􏷬(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑎) + 𝑐(𝑏) − 2)

𝑒􏷠􏷡 + 2𝑒􏷡􏷠 + 2𝑒􏷡􏷧 + 2𝑒􏷡􏷨+
2𝑒􏷢􏷧 + 2𝑒􏷣􏷢 + 𝑒􏷣􏷤 + 𝑒􏷤􏷡 = 􏾜

𝑎,𝑏∶ 𝑃􏷫𝑎(𝑥,𝑦,𝑎,𝑏)∨𝑃􏷫𝑏(𝑥,𝑦,𝑎,𝑏)
(𝑐(𝑏) − 1)

 B Graphlet equations T. Hočevar

BIBLIOGRAPHY

[] N Przulj, D G Corneil, and I Jurisica. Modeling in-
teractome: scale-free or geometric? Bioinformatics, 
():–, dec . ISSN -.

[] Natasa Przulj. Biological network comparison using
graphlet degree distribution. Bioinformatics, ():
–, jan . ISSN -.

[] R W Solava, R P Michaels, and T Milenkovic.
Graphlet-based edge clustering reveals pathogen-
interacting proteins. Bioinformatics (Oxford, England),
():i–i, sep . ISSN -.

[] R Milo. Network Motifs: Simple Building Blocks of
Complex Networks. Science, ():–, oct
. ISSN .

[] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven
Levitt, Shai Shen-Orr, Inbal Ayzenshtat, Michal
Sheffer, and Uri Alon. Superfamilies of evolved and
designed networks. Science (New York, N.Y.), 
():–, mar . ISSN -.

[] N Kashtan, S Itzkovitz, R Milo, and U Alon. Efficient
sampling algorithm for estimating subgraph concentra-
tions and detecting network motifs. Bioinformatics, 
():–, jul . ISSN -.

[] N Przulj, D G Corneil, and I Jurisica. Efficient esti-
mation of graphlet frequency distributions in protein-
protein interaction networks. Bioinformatics (Oxford,
England), ():–, apr . ISSN -.

[] Sebastian Wernicke. Efficient detection of network
motifs. IEEE/ACM transactions on computational bi-
ology and bioinformatics / IEEE, ACM, ():–,
. ISSN -.

[] Krzysztof Juszczyszyn, Przemysław Kazienko, and
Katarzyna Musiał. Local Topology of Social Network.
In KES ’ Proceedings of the th international confer-
ence on Knowledge-Based Intelligent Information and
Engineering Systems, Part II, pages –, Zagreb,
.

[] Tijana Milenković and Natasa Przulj. Uncovering
biological network function via graphlet degree signa-
tures. Cancer informatics, :–, jan . ISSN
-.

[] Tijana Milenkovic, Vesna Memisevic, Anand K Gane-
san, and Natasa Przulj. Systems-level cancer gene iden-
tification from protein interaction network topology
applied to melanogenesis-related functional genomics
data. Journal of the Royal Society, Interface / the Royal
Society, ():–, mar . ISSN -.

[] Tijana Milenković, Han Zhao, and Fazle E. Faisal.
Global Network Alignment In The Context Of Ag-
ing. In Proceedings of the International Conference on
Bioinformatics, Computational Biology and Biomedical
Informatics - BCB’, pages –, New York, New
York, USA, . ACM Press. ISBN .

[] Oleksii Kuchaiev, Tijana Milenkovic, Vesna Memi-
sevic, Wayne Hayes, and Natasa Przulj. Topological
network alignment uncovers biological function and
phylogeny. Journal of the Royal Society, Interface /
the Royal Society, ():–, sep . ISSN
-.

[] Tijana Milenković, Weng Leong Ng, Wayne Hayes,
and Natasa Przulj. Optimal network alignment with
graphlet degree vectors. Cancer informatics, :–,
jan . ISSN -.

[] H. W. Kuhn. The Hungarian method for the assign-
ment problem. Naval Research Logistics Quarterly, 
(-):–, mar . ISSN .

[] Oleksii Kuchaiev and Natasa Przulj. Integrative net-
work alignment reveals large regions of global network
similarity in yeast and human. Bioinformatics (Ox-
ford, England), ():–, may . ISSN
-.

[] Sebastian Wernicke and Florian Rasche. FANMOD:
a tool for fast network motif detection. Bioinformatics,
():–, may . ISSN -.



 Bibliography T. Hočevar

[] Christopher Whelan and Kemal Sönmez. Computing
graphlet signatures of network nodes and motifs in Cy-
toscape with GraphletCounter. Bioinformatics (Oxford,
England), ():–, jan . ISSN -.

[] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S
Baliga, Jonathan T Wang, Daniel Ramage, Nada
Amin, Benno Schwikowski, and Trey Ideker. Cy-
toscape: a software environment for integrated models
of biomolecular interaction networks. Genome research,
():–, nov . ISSN -.

[] Tijana Milenković, Jason Lai, and Nataša Pržulj.
GraphCrunch: A tool for large network analyses. BMC
Bioinformatics, (), jan . ISSN -.

[] Oleksii Kuchaiev, Aleksandar Stevanović, Wayne
Hayes, and Nataša Pržulj. GraphCrunch : Software
tool for network modeling, alignment and cluster-
ing. BMC bioinformatics, ():, jan . ISSN
-.

[] D. Marcus and Y. Shavitt. RAGE – A rapid graphlet
enumerator for large networks. Computer Networks, 
():–, feb . ISSN .

[] Andrew Chatr-Aryamontri, Bobby-Joe Breitkreutz,
Sven Heinicke, Lorrie Boucher, Andrew Winter, Chris
Stark, Julie Nixon, Lindsay Ramage, Nadine Kolas,
Lara O’Donnell, Teresa Reguly, Ashton Breitkreutz,
Adnane Sellam, Daici Chen, Christie Chang, Jen-
nifer Rust, Michael Livstone, Rose Oughtred, Kara
Dolinski, and Mike Tyers. The BioGRID interac-
tion database:  update. Nucleic acids research, 
(Database issue):D–, jan . ISSN -
.

[] Brahim Betkaoui, David B. Thomas, Wayne Luk, and
Natasa Przulj. A framework for FPGA acceleration of
large graph problems: Graphlet counting case study.
In  International Conference on Field-Programmable
Technology, pages –. IEEE, dec . ISBN --
--.

[] Alon Itai and Michael Rodeh. Finding a Minimum
Circuit in a Graph. SIAM Journal on Computing, ():
–, nov . ISSN -.

[] Jaroslav Nešetřil and Svatopluk Poljak. On the com-
plexity of the subgraph problem. Commentationes
Mathematicae Universitatis Carolinae, ():–,
.

[] Volker Strassen. Gaussian elimination is not optimal.
Numerische Mathematik, ():–, aug .
ISSN -X.

[] François Le Gall. Powers of tensors and fast matrix
multiplication. In Proceedings of the th International
Symposium on Symbolic and Algebraic Computation
- ISSAC ’, pages –, New York, New York,
USA, . ACM Press. ISBN .

[] Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding
and counting small induced subgraphs efficiently.
Information Processing Letters, (-):–, may
. ISSN .

[] Mirosław Kowaluk, Andrzej Lingas, and Eva-Marta
Lundell. Counting and Detecting Small Subgraphs via
Equations. SIAM Journal on Discrete Mathematics, 
():–, may . ISSN -.

[] P. V. O’Neil. Ulam’s Conjecture and Graph Recon-
structions. The American Mathematical Monthly, ():
, jan . ISSN .

[] Brendan D. McKay. Small graphs are reconstructible.
Australasian Journal of Combinatorics, :–,
.

[] Tomaž Hočevar and Janez Demšar. A combinatorial
approach to graphlet counting. Bioinformatics, ():
–, feb . ISSN -.

[] Tomaž Hočevar and Janez Demšar. Computation
of Graphlet Orbits for Nodes and Edges in Sparse
Graphs. Journal of Statistical Software, (), .
ISSN -.

[] Tomaž Hočevar and Janez Demšar. Combinatorial
algorithm for counting small induced graphs and or-
bits. PLOS ONE, ():e, feb . ISSN
-.

[] Stanley Fields. High-throughput two-hybrid analysis.
The promise and the peril. FEBS Journal, ():
–, nov . ISSN -X.

[] T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori,
and Y. Sakaki. A comprehensive two-hybrid analysis
to explore the yeast protein interactome. Proceedings of
the National Academy of Sciences, ():–, apr
. ISSN -.

[] Lukasz Salwinski, Christopher S Miller, Adam J Smith,
Frank K Pettit, James U Bowie, and David Eisenberg.
The Database of Interacting Proteins:  update.
Nucleic acids research, (Database issue):D–, jan
. ISSN -.

[] Coen Bron and Joep Kerbosch. Algorithm :
finding all cliques of an undirected graph. Communi-
cations of the ACM, ():–, sep . ISSN
.

[] Etsuji Tomita, Akira Tanaka, and Haruhisa Taka-
hashi. The worst-case time complexity for generating
all maximal cliques and computational experiments.
Theoretical Computer Science, ():–, oct .
ISSN .



[] Ine Melckenbeeck, Pieter Audenaert, Tom Michoel,
Didier Colle, and Mario Pickavet. An Algorithm
to Automatically Generate the Combinatorial Orbit
Counting Equations. PLOS ONE, ():–, jan
. ISSN -.

[] Tijana Milenković, Vesna Memišević, Anthony Bon-
ato, and Nataša Pržulj. Dominating biological net-
works. PloS one, ():e, jan . ISSN
-.

[] Wayne Hayes, Kai Sun, and Natasa Przulj. Graphlet-
based measures are suitable for biological network
comparison. Bioinformatics (Oxford, England), ():
–, feb . ISSN -.

[] Alina Stoica and Christophe Prieur. Structure of
Neighborhoods in a Large Social Network. In 
International Conference on Computational Science
and Engineering, pages –. IEEE, . ISBN
----.

[] Mirosław Kowaluk, Andrzej Lingas, and Eva-Marta
Lundell. Counting and detecting small subgraphs via
equations and matrix multiplication. In Proceedings of
the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, pages –, .

[] Wayne W. Zachary. An Information Flow Model
for Conflict and Fission in Small Groups. Journal of
Anthropological Research, ():–, dec .
ISSN -.

[] Kilian Thiel and Michael R. Berthold. Node Similar-
ities from Spreading Activation. In Bisociative Knowl-
edge Discovery, Lecture Notes in Computer Science,
pages –. Springer-Verlag Berlin Heidelberg,
.

[] M Kuramochi and G Karypis. Frequent subgraph
discovery. In Proceedings  IEEE International
Conference on Data Mining, pages –. IEEE
Comput. Soc, . ISBN ---.

[] Lars Backstrom and Jure Leskovec. Supervised random
walks. In Proceedings of the fourth ACM international
conference on Web search and data mining - WSDM ’,
pages –, New York, New York, USA, .
ACM Press. ISBN .

[] David Liben-Nowell and Jon Kleinberg. The link-
prediction problem for social networks. Journal of the
American Society for Information Science and Technology,
():–, may . ISSN .

[] Liva Ralaivola, Sanjay J. Swamidass, Hiroto Saigo, and
Pierre Baldi. Graph kernels for chemical informatics.
Neural Networks, ():–, oct . ISSN
.

[] Peter Floderus, Mirosław Kowaluk, Andrzej Lingas,
and Eva-marta Lundell. Induced Subgraph Isomor-
phism: Are Some Patterns Substantially Easier Than
Others? In th Annual International Computing
and Combinatorics Conference, pages –. Springer,
Berlin, Heidelberg, .

[] Virginia Vassilevska and Ryan Williams. Finding,
minimizing, and counting weighted subgraphs. In
Proceedings of the st annual ACM symposium on
Symposium on theory of computing - STOC ’, pages
–, New York, New York, USA, . ACM
Press. ISBN .

[] Noga Alon, Raphael Yuster, and Uri Zwick. Finding
and counting given length cycles. Algorithmica, ():
–, mar . ISSN -.

[] Noga Alon, Raphael Yuster, and Uri Zwick. Color-
coding. Journal of the ACM, ():–, jul .
ISSN .

[] Noga Alon, Phuong Dao, Iman Hajirasouliha, Ferey-
doun Hormozdiari, and S Cenk Sahinalp. Biomolec-
ular network motif counting and discovery by color
coding. Bioinformatics, ():–, jul .
ISSN -.

[] David Eppstein, Maarten Löffler, and Darren Strash.
Listing All Maximal Cliques in Sparse Graphs in
Near-Optimal Time. In Algorithms and Computation,
volume  of Lecture Notes in Computer Science,
pages –. Springer Berlin Heidelberg, Berlin,
Heidelberg, . ISBN ----.

[] Paul Erdős and Alfréd Rényi. On random graphs .
Publ. Math. Debrecen, :–, .

[] A. Barabasi and R. Albert. Emergence of Scaling in
Random Networks. Science, ():–, oct
. ISSN .

[] Seifollah Louis Hakimi. On Realizability of a Set of
Integers as Degrees of the Vertices of a Linear Graph. I.
Journal of the Society for Industrial and Applied Mathe-
matics, ():–, sep . ISSN -.

[] Joseph Blitzstein and Persi Diaconis. A Sequential Im-
portance Sampling Algorithm for Generating Random
Graphs with Prescribed Degrees. Internet Mathematics,
():–, mar . ISSN -.

[] R Milo, N Kashtan, S Itzkovitz, M E J Newman,
and U Alon. On the uniform generation of random
graphs with prescribed degree sequences. arXiv preprint
cond-mat/, pages –, .

[] Brendan D McKay and Nicholas C Wormald. Uni-
form generation of random regular graphs of moderate
degree. Journal of Algorithms, ():–, mar .
ISSN .

 Bibliography T. Hočevar

[] Mohsen Bayati, Jeong Han Kim, and Amin Saberi.
A Sequential Algorithm for Generating Random
Graphs. Algorithmica, ():–, dec . ISSN
-.

[] Tom Britton, Maria Deijfen, and Anders Martin-Löf.
Generating Simple Random Graphs with Prescribed
Degree Distribution. Journal of Statistical Physics, 
():–, oct . ISSN -.

[] William H Press, Brian P Flannery, Saul A Teukol-
sky, and William T Vetterling. Numerical recipes.
Cambridge University Press, . ISBN ---
-.

[] Jure Leskovec, Anand Rajaraman, and Jeffrey David
Ullman. Mining of Massive Datasets. Cam-
bridge University Press, Cambridge, . ISBN
.

[] David Eppstein and Emma S. Spiro. The h-Index of
a Graph and its Application to Dynamic Subgraph
Statistics. Journal of Graph Algorithms and Applications,
():–, apr . ISSN -.

[] David Eppstein, Michael T. Goodrich, Darren Strash,
and Lowell Trott. Extended dynamic subgraph statis-
tics using h-index parameterized data structures.
Theoretical Computer Science, :–, aug .
ISSN .

[] Min Chih Lin, Francisco J. Soulignac, and Jayme L.
Szwarcfiter. Arboricity, h-Index, and Dynamic Algo-
rithms. Theoretical Computer Science, -:–,
may . ISSN .

[] Duncan J Watts and Steven H Strogatz. Collective
Dynamics of ’Small-World’ Networks. Nature, 
():–, . ISSN .

[] Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. Technical report, Stanford
InfoLab, .

[] Max Kotlyar, Chiara Pastrello, Nicholas Sheahan,
and Igor Jurisica. Integrated interactions database:
tissue-specific view of the human and model organ-
ism interactomes. Nucleic Acids Research, (D):
D–D, jan . ISSN -.

[] Waqar Ali, Tiago Rito, Gesine Reinert, Fengzhu Sun,
and Charlotte M. Deane. Alignment-free protein
interaction network comparison. Bioinformatics, 
():i–i, sep . ISSN -.

[] Jonathan Mugan, Ranga Chari, Laura Hitt, Eric
McDermid, Marsha Sowell, Yuan Qu, and Thayne
Coffman. Entity resolution using inferred relationships
and behavior. In  IEEE International Conference on
Big Data (Big Data), pages –. IEEE, oct .
ISBN ----.

[] Mark Ortmann and Ulrik Brandes. Quad Census
Computation: Simple, Efficient, and Orbit-Aware. In
Adam Wierzbicki, Ulrik Brandes, Frank Schweitzer,
and Dino Pedreschi, editors, Advances in Network
Science, volume  of Lecture Notes in Computer
Science, pages –. Springer International Publishing,
Cham, . ISBN ----.

[] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi,
and Nick Duffield. Efficient Graphlet Counting for
Large Networks. In  IEEE International Conference
on Data Mining, pages –. IEEE, nov . ISBN
----.

[] Ethan R. Elenberg, Karthikeyan Shanmugam, Michael
Borokhovich, and Alexandros G. Dimakis. Distributed
Estimation of Graph -Profiles. In Proceedings of the
th International Conference on World Wide Web -
WWW ’, pages –, New York, New York,
USA, . ACM Press. ISBN .

[] Anida Sarajlić, Noël Malod-Dognin, Ömer Nebil
Yaveroğlu, and Nataša Pržulj. Graphlet-based Charac-
terization of Directed Networks. Scientific Reports, 
(), . ISSN -.

[] David Aparicio, Pedro Ribeiro, and Fernando Silva.
Extending the Applicability of Graphlets to Directed
Networks. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, . ISSN -.

	Povzetek
	Abstract
	Acknowledgements
	Introduction
	Problem definition
	Areas of application
	Motivation
	Theoretical background
	Methodology
	Scientific contributions

	Overview
	A combinatorial approach to graphlet counting
	Computation of graphlet orbits for nodes and edges in sparse graphs
	Combinatorial algorithm for counting small induced graphs and orbits

	A combinatorial approach to graphlet counting
	Abstract
	Introduction
	Motivation
	Related work

	Methods
	Orbits in four-node graphlets
	Counting complete graphlets
	Orbits on five-node graphlets

	Results and Discussion
	Conclusion
	Supplementary
	Results on random networks
	Log-scale graphs

	Computation of graphlet orbits for nodes and edges in sparse graphs
	Abstract
	Introduction
	Combinatorial approach to orbit counting
	Node orbits
	Edge orbits
	System of equations
	Algorithm

	The orca package
	Functions
	Usage example on the Schools Wikipedia network

	Conclusion
	Acknowledgments

	Combinatorial algorithm for counting small induced graphs and orbits
	Abstract
	Introduction
	Preliminaries
	Related work
	Outline of the proposed algorithm
	Original contributions

	Relations between orbit counts
	Derivation of general relations between orbit counts
	Additional constraints on selection of y
	Equation for a cycle on 4 nodes
	System of equations
	Extension to edge orbits

	Algorithm
	Time- and space-complexity

	Final remarks

	Graphlet counting in dynamic graphs
	Generating random graphs
	Dynamic Orca
	Overview of Orca
	Dynamic operations
	Maintaining graphlet counts

	Experiments

	Conclusion
	Influence
	Future work

	Razširjeni povzetek
	Uvod
	Prispevki k znanosti
	Orca
	Večji grafki
	Sprotno štetje in naključna omrežja
	Zaključek

	Graphlet equations
	Equations for node-orbit counts in 4-graphlets
	Equations for edge-orbit counts in 4-graphlets
	Equations for node-orbit counts in 5-graphlets
	Equations for edge-orbit counts in 5-graphlets

	Bibliography

