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Abstract

The present paper presents a consistent model of a three dimensional de-

laminated composite column with a proper consideration of the extensional and

bending stiffness coupling and transverse shear effect to determine the axial

buckling load. The exact analytical solution of the buckling force is obtained

using the linearized stability theory. Three dimensional model allows us to

consider a rather general set of delaminations including those that are not nec-

essarilly perpendicular to the symmetry axis of the cross-section or/and have

non-symmetrical surfaces. The parametric studies are presented showing the

effects of shear, the delamination position, the angle of rotation of the delami-

nation and the ratio of elastic to shear moduli.

Keywords: B. Buckling, B. Delamination, C. Analytical modelling,

Three-dimensional beam

1. Introduction

A proper design of composite structures demands a good understanding of

their behaviour when subject to mechanical loads, and the mechanism of their

collapse. One of the grounds for the collapse of laminated composite structures

is their delamination, which may be caused by an air entrapment, a local lack
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of resin or other defects originating from a technological procedure, an impact

or a high stress concentration.

Buckling is often a reason of collapse of the delaminated structural ele-

ments subject to compressive forces. That is why the behaviour of delaminated

structures in compression has been investigated extensively during the last 30

years, using means fields of mathematical modelling including analytical solu-

tions ([13],[17],[21]), finite element analyses (FEA) ([10],[19]), experimentations

and fracture mechanics-based researches ([6],[18],[22]).

First reports on the behaviour of the delaminated structural elements ap-

pear in the seventies [1]. The initial insight into the buckling behaviour and

the delamination growth was given by Chai et al. [3]. A similar, one dimen-

sional model was proposed by Simitses et al. [19] to study the effect of the

delamination length and position. Kordomateas and Schmueser [? ] devel-

oped a formulation which incorporated the effect of the transverse shear on the

critical buckling force. A similar model was employed by Chen [4] to consider

beams with two delaminations. Later on Moradi and Taheri [13] solved the same

problem with an alternative numerical method called the quadratic differential

method. Any of these procedures considers the effect of shear, only inconsis-

tently by introducing correction factors and neglecting coupling of axial and

transverse deformations. Kryžanovski et al. [11] presented buckling of asym-

metrically single–delaminated, shear–deformable elastic columns based on the

planar Reissner beam theory. Rodman et al. [17] extended the approach in [11]

to columns with multiple delaminations. To the best knowledge of the authors,

the analytical solutions for buckling of delaminated beams found in open litera-

ture have been limited only to planar problems. By contrast, the present paper

will consider the delaminated beams in three dimensions. Such an approach

will also allow us to consider asymmetrical cross-sections and a rather general

set of delaminations including those that are not necessarilly perpendicular to

any plane of the beam. The incorporation of the transverse shear effect and

the coupling of the extensional and bending stiffnesses follows directly from the

three–dimensional Reissner beam theory [15].
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The linearized stability theory is employed to obtain the exact analytical

solution of the buckling force without any simplifications assumed in the govern-

ing equations. The post-buckling analysis is, however, beyond the scope of the

present paper. For the sake of simplicity the homogeneous linear elastic material

is presumed in all layers, but the generalization of the formulation to composites

made of several different materials is straightforward. The present approach is

capable of considering a complex three-dimensional behaviour, where, e.g. the

layer of the beam buckles locally in a direction different than the global de-

formation of the beam. It is pointed out that the shapes of cross-sections and

delaminations are arbitrary.

2. Problem definition

We consider a straight three-dimensional beam with a constant cross-section,

subject to a compressive axial force F acting along the neutral axis of the beam

(Figure 1), termed the column in the sequel. The column is delaminated by a

single delamination plane A-B-C-D at an arbitrary position. The delamination

divides the column into four elements: elements a and d with lengths L1 and L4,

respectively, represent the perfect non-delaminated portions of the beam, while

elements b and c (with equal length L23) represent the two layers separated by

the plane A-B-C-D. They represent the delaminated part of the column.
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Figure 1: Geometry, loading and elements of a column.
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Figure 2: Definitions of μ and φ.

The quantities, describing the column, will be expressed with respect to

the arc-length parameter “x” of the undeformed neutral axis. An arbitrary

configuration of the column is described by the position vector r of the centroidal

axis and the orthonormal base vectors {G1, G2, G3} that span the planes of

the cross-sections. Unit vectors G2 and G3 point along the principal axes of

inertia of the cross-section, and G1 is the cross-sectional unit normal, G1 =

G2 × G3. Due to shear deformations, G1 is not necessarilly tangential to the

centroidal axis. The base vectors Gi define the local basis. It is also suitable to

introduce the reference point O in the physical space, fixed global coordinate

system (X, Y, Z). The position of the delamination plane is uniquely defined

by the parameters μ and φ as shown in Figure 2. An asymmetrical position

of the delamination with respect to the local axis along vector G2 is defined

by parameter μ ∈ (−1, 1) see Figure 2 where, h denotes the height of a cross

section. For a vertically symmetrical delamination, parameter μ = 0. Increasing

(decreasing) a value of μ reduces the thickness of one layer and increases the

thickness of the other. It is also allowed for the delamination to rotate in a plane

of the cross-section around the point y = μ, z = 0. The rotation is described by

angle φ.

2.1. Governing equations of the three-dimensional beam

Our starting point is the set of the equations of the three-dimensional Reiss-

ner model of initially curved and twisted beam. The simplification to the ini-

tially straight, axially loaded beam studied here is made only after the consis-
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tent linearization of the governing equations has been performed. The govern-

ing equations consist of consititutive (1)–(2), equilibrium (3)–(4) and kinematic

(5)–(6) equations, as presented below:

f1 = Ng (x) − R (x)CN (γG (x) , κG (x)) = 0 (1)

f2 = Mg (x) − R (x)CM (γG (x) , κG (x)) = 0 (2)

f3 = N ′
g (x) + ng (x) = 0 (3)

f4 = M ′
g (x) + mg (x) − Ng (x) × r ′

g (x) = 0 (4)

f5 = r ′
g (x) − R (x) (γG (x) − cG (x)) = 0 (5)

f6 = ϑ′
g (x) − T−T (x) (κG (x) − dG (x)) = 0. (6)

The related boundary conditions at ends x = 0 and x = L of the beam are:

b1 = F 0 + Ng (0) = 0 (7)

b2 = P 0 + Mg (0) = 0 (8)

b3 = F L − N g (L) = 0 (9)

b4 = P L − Mg (L) = 0. (10)

In the above equations the following notations have been used:

g fixed (or global) orthonormal basis {g1, g2, g3} defining the global coordi-

nate system (Figure 1);

G local orthonormal basis {G1, G2, G3} with {G2, G3} spanning the rotated

section;

Ng, Mg resultant force and moment vectors of the cross-section;

CN , CM operators describing material properties of a column;

γG translational strain vector (γG1 is the extensional strain, γG2, γG3 are

shear strains);

κG rotational strain vector (κG1 is the torsional strain, κG2, κG3 are bending

strains);
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rg position vector of the line of centroids;

ϑg rotational vector describing the rotation between {g1, g2, g3} and {G1, G2, G3};

ϑ angle of rotation, ϑ = ‖ϑg‖;

R rotation matrix representing the same rotation as ϑg

(Ru = u + sin ϑ
ϑ ϑg × u + 1−cos ϑ

ϑ2 ϑg × (ϑg × u), u is an arbitrary vector);

T T transformation matrix between κG and ϑ′
g

(TTu = u − 1−cos ϑ
ϑ2 ϑg × u + ϑ−sin ϑ

ϑ3 ϑg × (ϑg × u));

cG, dG variational constants, determined from the known strains and kinematic

fields of the undeformed column;

ng, mg external distributed force and moment vectors per unit of the undeformed

length of the axis;

F 0, F L external boundary point loads at x = 0, x = L;

P 0, P L external boundary point moments at x = 0, x = L.

Any vector in the above presented list can be expressed with respect to

either of the two bases; the index (g or G) denotes the basis used. The rotation

matrix also represents the coordinate transformation between the descriptions,

i.e. ug =RuG.

2.2. Linearization of equations

Eqs. (1)–(6) represent 18 scalar functions of 6 vector quantities rg (x),

ϑg (x), Ng (x), M g (x), γG (x) and κG (x). If we use the notation y = [y1, y2, . . . , y18]

for the 18-dimensional vector of all unknown functions, the linearization of the

component fi,j function f i around a fixed value y0 can be written as

δfi,j =
24∑

k=1

∂f

∂yk

∣∣∣∣
y0

δyk, (11)
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where i = 1, ..., 6, j = 1, 2, 3. δyk, k = 1, ..., 18 are arbitrary variations.

They are obtained by the solution of the set of linear equations

δfi,j |y0
= −fi,j(y0), (12)

(i = 1, ..., 6, j = 1, 2, 3), which is commonly expressed as

K (y0) δy = −f(y0). (13)

K (y0) is the so-called tangent stiffness matrix evaluated at y0, or, in math-

ematics, the Jacobian matrix. −f(y0) is the right-hand side. The above

given linearization holds true only in linear vector spaces. However, the three-

dimensional rotations are not vectors. Therefore a special treatment is needed

in the linearization of the rotation matrix R. A further discussion regarding

the linearization of R is beyond the scope of this article and only the result is

stated:

δRu = δϑg × Ru, (14)

where δR is the variation of the rotation matrix, δϑg is the variation of the

rotational vector, and u is an arbitrary vector.

For further details the reader is refered to [2] and [7].

Similarly, the linearization of the constitutive equations is represented by:

δCN = CγγδγG + CγκδκG (15)

δCM = CκγδγG + CκκδκG, (16)

where the components of matrices Cγγ , Cγκ, Cκγ , and Cκκ are (see [17])

partial derivatives of CN in CM with respect to the components of vectors γG

in κG.

Matrix C =

⎡
⎣ Cγγ Cγκ

Cκγ Cκκ

⎤
⎦ is called the cross-sectional constitutive tangent
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matrix. Considering (14) gives the linearization of (3)–(6) as:

δf3 = δN ′
g (17)

δf4 = δM ′
g − δNg × r ′

g − Ng × δr ′
g (18)

δf5 = δr ′
g − δϑg × R (γG − cG) − RδγG (19)

δf6 = δϑ′
g − RδκG. (20)

It has been assumed that the vectors of external loadings, ng and mg, are

independent of the unknown functions. Although the variation of equation (6)

is not straightforward, the details are omitted here because they can be found

in [23] or [7].

Note that Eqs. (1)–(6) consist of two algebraic equations (1)–(2) and four

ordinary differential equations (3)–(6). In solving system of mixed algebraic–

differential equations, it is suitable to eliminate the algebraic part. This is

formally done by expressing the strains from the inverse of the constitutive

equations (1)–(2), yet such an approach is not always unique, e. g. when the

inverse does not exist.

Eqs. (1)–(2) will therefore be varied first and then δγG and δκG expressed

by inverting the linearized equations. Considering (14)–(16) yields

δf1 = δϑg × RCN + RCγγδγG + RCγκδκG − δNg (21)

δf2 = δϑg × RCM + RCκγδγG + RCκκδκG − δMg. (22)

From (12) it follows

δf1 = N g − RCN (23)

δf2 = Mg − RCM . (24)

It is further assumed that, in an arbitrary configuration, the constitutive

equations are fulfilled, i.e. Ng = RCN and Mg = RCM . From (21)–(24) we

can then express:

δγG = C−1
γγ RT (δNg − δϑg × Ng) + C−1

κγ RT (δMg − δϑg × Mg) (25)

δκG = C−1
κγ RT (δNg − δϑg × Ng) + C−1

κκRT (δMg − δϑg × Mg) . (26)
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The linearization of the boundary conditions (7)–(10) is straightforward and

reads:

δb1 = −δNg (0) (27)

δb2 = −δMg (0) (28)

δb3 = −δNg (L) (29)

δb4 = −δMg (L) . (30)

2.3. Analytical solution of the linearized equations

The linearized equations are evaluated at the fundamental configuration,

which is in our case an initially straight axially-loaded column with an existing,

yet still closed delamination, as presented in Section 2. It is assumed that the

local and the global coordinate systems coincide initially. At the initial state,

all the quantities describing the beam are known. From the above assumptions

it follows that, in the fundamental configuration,

ϑg,0 (x) = 0, R0 (x) = I, (31)

ng (x) = 0, mg (x) = 0, (32)

P 0 = [0, 0, 0]T , P L = [0, 0, 0]T , (33)

cG = [1, 0, 0]T , dG = [0, 0, 0]T , (34)

r0(x) = [x, 0, 0]T (35)

F 0 = [F, 0, 0]T F L = [−F, 0, 0]T . (36)

In such conditions, the curvatures κ0 (x) and internal moments Mg (x) are

also zero in the fundamental configuration. Consequently, the translational

strains and the boundary forces are constant taking the forms γg = γG =[
γi

1 0 0
]T and Ng =

[
N i

1 0 0
]T, where i = {a, b, c, d}. As the cross-section is

assumed constant, γa
1 = γb

1 = γc
1 = γd

1 and Ab +Ac = Aa = Ad. The axial forces
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of the elements are then given by

Na
1,g = Nd

1,g = −F (37)

N b
1,g = −Ab

Ad
F (38)

N c
1,g = −Ac

Ad
F. (39)

After inserting (25)–(26) and (31)–(39) in (3)–(10), (17)–(20) and (27)–(30), the

linearized system (12) of the present problem reads

δN ′
g = 0 (40)

δM ′
g − δN g × r ′

g − Ng × δr ′
g = M ′

g,0 − N g,0 × r ′
g,0 (41)

δr ′
g − δϑg × r ′

g − R
(
C−1

γγ RT (δNg − δϑg × Ng)

−C−1
κγ RT (δMg − δϑg × Mg)

)
= r ′

g,0 − R
(
γG,0 − cG

)
(42)

δϑ ′
g − R

(
C−1

κγ RT (δNg − δϑg × Ng)

−C−1
κκRT (δMg − δϑg × Mg)

)
= ϑ′

g,0 − T−T (κG,0 − dG) (43)

δNg (0) = [−F, 0, 0]T − Ng (0) (44)

δMg (0) = 0 (45)

−δNg (L) = − [−F, 0, 0]T + N g (L) (46)

δMg (L) = 0. (47)

The fundamental configuration should be in keeping with the kinematic

equations (5)–(6). Therefore the right-hand sides in Eqs. (42)–(43) automat-

ically vanish. The load in the fundamental configuration points in the axial

direction, thus vectors N g,0 and rg,0 remain parallel and their vector product

equals zero.

The system of equations (40)–(43) is thus a homogeneous system of linear

differential equations of the first order with constant coefficients. It can be

expressed in the matrix form

δy′(x) = Bδy(x), (48)

10



where B represents the system matrix of constant coefficients and δy is the

vector of unknowns. The related static boundary conditions (44)–(47) and kine-

matic boundary conditions are discussed in the next subsection.

The analytical solution of the non-homogeneous system of differential equa-

tions (48) for a constant matrix B can be found in, e. g. [9]:

δy(x) = eBxβ, (49)

where β is a 12-dimensional vector of the integration constants that must be

determined from the given boundary conditions of the column.

The solution given in Eq. (49) holds for each element. It can be interpreted

as having exact shape functions for 12 unknown scalar constants of β. Our

mathematical model of the delaminated beam thus consists of four elements

with known analytical solutions requiring 12 unknown scalar constants each.

They are derived from the boundary conditions as discribed next.

2.4. Boundary conditions

Various discrete support types at the boundaries of the column will be con-

sidered. We also need to prescribe the conditions between the delaminated part

of the column and the non-delaminated ends. These internal conditions are

often called the continuity conditions; in fact, they require the continuity of dis-

placements and rotations, and that the equilibrium of internal forces is satisfied.

At the two points of the neutral axis of the column (points T1 and T2 in Figure

1) where the external layers bond to the undelaminated ends we have

δra
g(L1) = δrb

g(0) = δrc
g(0) (50)

δrb
g(L23) = δrc

g(L23) = δrd
g(0) (51)

δϑa
g(L1) = δϑb

g(0) = δϑc
g(0) (52)

δϑb
g(L23) = δϑc

g(L23) = δϑd
g(0) (53)
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and

δNa
g(L1) = δN b

g(0) + δN c
g(0) (54)

δN b
g(L23) + δN c

g(L23) = δNd
g(0) (55)

δMa
g(L1) = δM b

g(0) + δM c
g(0) (56)

δM b
g(L23) + δM c

g(L23) = δMd
g(0). (57)

Eqs. (50)–(57) represent 36 scalar conditions. The remaining 12, yet unspecified

conditions follow from the conditions provided by the supports.

Simply-supported beam. In the three-dimensional model, only the rotation

about the lateral axis is allowed. The displacement is allowed only in the axial

direction at one support. Static boundary conditions follow directly from (44)–

(47). The complete set of independent boundary conditions for this case is:

δϑa
1(0) = δϑa

2(0) = 0 (58)

δMa
3 (0) = 0 (59)

δϑd
1(L4) = δϑd

2(L4) = 0 (60)

δMd
3 (L4) = 0 (61)

δr1
a(0) = δr2

a(0) = δr3
a(0) = 0 (62)

δr2
d(L4) = δr3

d(L4) = 0 (63)

δN1
d (L4) = 0. (64)

Cantilever beam. Here the column is clamped at one end and loaded with the

axial force at the other. The boundary conditions are:

δr1
a(0) = δr2

a(0) = δr3
a(0) = 0 (65)

δϑa
1(0) = δϑa

2(0) = δϑa
3(0) = 0 (66)

δN1
d (L4) = δN2

d (L4) = δN3
d (L4) = 0 (67)

δMd
1 (L4) = δMd

2 (L4) = δMd
3 (L4) = 0. (68)

The total set of scalar conditions can be written as a homogeneous system of
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algebraic equations

Kβ = 0, (69)

where K stands for the matrix of coefficients, and β is the vector of constants.

We are interested in non-trivial solutions for δy, thus β must be non-zero. In

order to obtain the non-trivial solutions, matrix K must be singular.

As the only parameter left is the magnitude of the axial force F , the lowest

value for F is sought such that the matrix K becomes singular. For further

details on the calculation of the critical points and their classification see Planinc

and Saje [14].

3. Results and discussion

In order to make comparisons with the results from literature possible, we

will limit the present numerical studies to the linear elastic material. Then the

operators CN and CM take the forms:

CN (γG, κG) =

⎡
⎢⎢⎢⎣

EA 0 0 0 ES2 −ES3

0 GA2 0 0 0 0

0 0 GA3 0 0 0

⎤
⎥⎥⎥⎦γG (70)

CM (γG, κG) =

⎡
⎢⎢⎢⎣

0 0 0 GIt 0 0

ES2 GA2 0 0 EI2 EI23

−ES3 0 GA3 0 EI23 EI3

⎤
⎥⎥⎥⎦κG. (71)

E and G denote elastic and shear moduli of material; A is the cross-sectional

area; S2 and S3 are the two moments of area with respect to local axes; It is the

torsional inertial moment of the cross-section; A2 and A3 are the effective shear

areas in the directions of G2 and G3; I2 and I3 are the inertial moments, and

I23 is the deviatoric inertial moment of the cross-section with respect to local

coordinates on the reference axis.

Results are presented for different values of ratio between elastic and shear

moduli greater or equal to 2, which corresponds to materials like concrete, steel

or timber, and anisotropic polymer materials.
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We analyze the effects of the delamination length, delamination position,

shear modulus and slenderness ratio on the buckling load.

The critical force (Fcr) is normalized with respect to the classical Euler’s

buckling force (FE) of each considered case. Most of the results are presented

using the slenderness of the column defined as:

λ = L

√
A

I
. (72)

Here I denotes the smallest value of the cross-sectional inertial moments.

Fcr/FE G E= , �=0

Fcr/FE G E= , �=4/10

Fcr/FE G E= , �=8/10

�=0

G E= /2, �=4/10

G E= /2,

G E= /2, �=8/10

G E= /10, �=4/10

G E= /10, �=8/10

G E= /10, �=0

slenderness

slenderness

slenderness

L23/L=0.1
L23/L=0.2
L23/L=0.3
L23/L=0.4
L23/L=0.5
L23/L=0.6
L23/L=0.7
L23/L=0.8

Figure 3: Simply supported column: relative critical force vs. slenderness for various delami-

nation lengths (L23/L), shear moduli (G) and delamination positions (μ).
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We consider a straight simply-supported delaminated column with a con-

stant cross-section, having height h = 20 cm and width b = 40 cm. Our first

analysis assumes the variation of the length of delamination L23 with respect to

the total length L of the column and considers three different material moduli

ratios G/E = 1, 1/2, 1/10. For each chosen combination, the results are shown

as a function of the slenderness of the column, varying it from thick to slender.

Figure 3 presents the relative critical force vs. slenderness for various relative

delamination lengths (L23/L), elastic to shear moduli ratios (E/G) and position

of the delamination with respect to the cross-section (μ).

The delaminations in Fig. 3 are taken to be parallel with edges of the

cross-section (φ = 0). The large effect of elastic-to-shear-moduli ratios E/G on

the magnitude of the critical force is evident from Figure 3. Small values of

G/E result in substantially smaller critical forces for low values of slenderness.

As expected, the buckling force is also highly dependent on the delamination

length. Longer delaminations significantly lower the buckling force. Note also

a major influence of an asymmetrical position of the delamination with respect

to the height of the cross-section. The magnitude of the buckling force reduces

significantly when the delamination is close to the edge of the column.

Fig. 4 presents relative critical force (for several discrete values of slenderness

λ) vs. the relative delamination length (L23/L) and the longitudinal position

� �=

�1,rel �1,rel �1,rel
� �/23 � �/23 � �/23

� �/cr E
� �/cr E

� �/cr E

� �= /2

0.2 0.2 0.2

0.2 0.2 0.2

0.4 0.4 0.4

0.4 0.4 0.4
0.6 0.6 0.6

0.6 0.6 0.6

0.8 0.8 0.8

0.8 0.8
0.8

0.8
0.8 0.8

�=8.7

0.9 0.9 0.9

1 1 1
� �= /10

�=121.2

�=26.0

�=17.3

Figure 4: Simply supported column: relative critical force vs. relative delamination length

(L23/L) and relative longitudinal position of delamination
(
L1,rel

)
.

15



of the delamination, defined as the relative length of the first non-delaminated

element L1,rel = L1/(L − L23).

Values of L1,rel around 0.5 (describing the central delamination) increase the

magnitudes of the critical force. The increase of the length of the delamination

makes the critical forces smaller.

Fig. 5 depicts the relative critical force for several discrete values of the slen-

dernesses of the column vs. the relative delamination length and asymmetrical

position μ of delamination according to the height of cross-section. It can be

observed that the increased lateral asymmetry significantly reduces the critical

force. This is particularly pronounced in the case of large delamination lengths.

The reduction of the critical force as a result of a low ratio G/E can also be

observed.

� �=
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0.8 0.8
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Figure 5: Relative critical force vs. relative delamination length and relative lateral asym-

metrical position μ of delamination.

Our last example presents a cantilever beam with a constant cross-section,

having height h = 40 cm and width b = 20 cm. The length of the column is

L = 400 cm. The objective of this analysis is to show how the magnitude of the

critical force (Fcr) depends on the rotation of delamination φ for various asym-

metrical positions of delamination μ and for different lengths of delamination

L23, as it is most significant for this boundary conditions. Results are presented

in Figure 6 in the form of polar graphs showing the relative critical force vs. the
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angle of delamination.
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Figure 6: Normalized relative critical force (Fcr/FE) vs. rotation of delamination φ (for differ-

ent values of asymmetrical position of delamination μ and for different lengths of delamination

L23).

By increasing the angle of delamination φ, we can observe some reduction of

the relative critical forces. This effect becomes considerable only for large angles

(more than 30◦) and longer delaminations. For relatively short delaminations

(L23/L = 0.25), the effects of the lateral asymmetry and the angle of delam-

ination can safely be neglected. While in the present analysis the slenderness
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of the column was taken to be 34.6, the increase of the slenderness changes the

results only slightly.

Last two figures present buckling modes for typical angles φ of a cantilever

beam with the position of delamination μ = 0 (Fig.7) and μ = 0.75 (Fig.8).

0.25

0.75

0.50

0 �/3 �/2

�

L  /L23L  /L23

Figure 7: Buckling modes for typical angles φ of a cantilever beam with the position of

delamination μ = 0 and varying length of delamination L23/L.

We compare the results of the present forumulation with already known

results from literature. In the first example we compare results for the rela-

tive vertical position rd = 0.4 and various lengths of the delamination (ld =

0.2, 0.4, 0.6, 0.8) with results obtained by the Abaqus finite element code [12],

Simitses et al. [19] and the energy method presented by Lim and Parsons [12].

Each result is normalized with Euler’s [5] buckling load for the undelaminated

beam. Table 1 presents results of the normalized buckling load for the simply

supported beam with slenderness ratio λ = 45. The beam was delaminated with

a longitudinally symmetric delamination. Young’s modulus E = 3000kN/cm2
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Figure 8: Buckling modes for typical angles φ of a cantilever beam with the position of

delamination μ = 0.75 and varying length of delamination L23/L.

was assumed.

In the second example we compare results for the clamped-clamped beam

with a delamination at two different relative vertical positions rd = 0.2, 0.3 and

various lengths, ld. We used the same material and geometric characteristics as

in the previous case. Additionally we considered υ = 0.3 and G = E
2(1−υ) . Table

2 presents results of the normalized buckling load where each result is normalized

with buckling load according to Chen [4]. We compare the present results

with the results of Chen [4] (‘CLT’–classical lamination theory and ‘SDT’–shear

deformation theory) and Kardomateas and Schmueser [8].

4. Conclusions

An analytical solution for buckling of asymmetrically delaminated spatial

columns considering shear effects is presented. The essential features of the

present approach are:
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Table 1: Normalized buckling loads for simply supported beam with a single delamination

relative vertical positions rd = 0.4 and various lengths, ld.

Method/ld 0 0.2 0.4 0.6 0.8

Euler [5] 1.0000 - - - -

Timoshenko [20] 0.9715 - - - -

Reissner [16] 0.9715 - - - -

En. method [12] - 0.9997 0.9902 0.9198 0.7264

Abaqus [12] - 0.9997 0.9902 0.9197 0.7264

Simitses et al. [19] - 0.9997 0.9902 0.9198 0.7264

Present (G = E/6) 0.9715 0.9712 0.9622 0.8956 0.7111

Present (G = ∞) 1.0049 1.0046 0.9950 0.9240 0.7290

Table 2: Normalized buckling loads of clamped-clamed beam with a single delamination at

two different relative vertical positions rd = 0.2, 0.3 and various lengths, ld.

ld rd SDT[4] CLT[4] Kar. and Schmu.[8] Present (εinit. = 0) Present

0.2 0.2 0.7816 0.9264 0.8003 0.8003 0.8130

0.3 0.8280 0.9924 0.8543 0.8543 0.8688

0.4 0.2 0.2354 0.2471 0.2215 0.2215 0.2226

0.3 0.4803 0.5314 0.4689 0.4689 0.4734

0.6 0.2 0.1080 0.1103 0.0997 0.0997 0.1000

0.3 0.2322 0.2435 0.2184 0.2184 0.2194

0.8 0.2 0.0615 0.0623 0.0565 0.0565 0.0565

0.3 0.1353 0.1390 0.1254 0.1254 0.1258

• We are able to obtain analytically the buckling forces of a delaminated

column with three-dimensional behaviour and with the transverse-shear

effect being consistently taken into account.

• The present approach allows us to study arbitrary cross-sections and pla-

nar delaminations inclined with respect to the cross-sections.
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• The three-dimensional behaviour makes us possible to consider properly

the cases when the global buckling of the column is not in the same direc-

tion as the local buckling of the layers.

• The transverse-shear effect is taken in line with the Reissner beam the-

ory which considers properly the coupling of the extensional and bending

stiffnesses.

• The present exact results can well serve as benchmarks for numerical mod-

els.

Some further parametric studies have also been presented which reveal that

• The dependence of the buckling load on the delamination length and the

position of the delamination is non-linear.

• The effect of transverse shear can influence significally the buckling force.

• Not only the length but also the position of the delamination has a con-

siderable effect. We have shown that the angle of the delamination plane

is less important, yet not to be neglected.
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