NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Real-time closed-loop simulation and upset evaluation of control systems in harsh electromagnetic environmentsDigital control systems for applications such as aircraft avionics and multibody systems must maintain adequate control integrity in adverse as well as nominal operating conditions. For example, control systems for advanced aircraft, and especially those with relaxed static stability, will be critical to flight and will, therefore, have very high reliability specifications which must be met regardless of operating conditions. In addition, multibody systems such as robotic manipulators performing critical functions must have control systems capable of robust performance in any operating environment in order to complete the assigned task reliably. Severe operating conditions for electronic control systems can result from electromagnetic disturbances caused by lightning, high energy radio frequency (HERF) transmitters, and nuclear electromagnetic pulses (NEMP). For this reason, techniques must be developed to evaluate the integrity of the control system in adverse operating environments. The most difficult and illusive perturbations to computer-based control systems that can be caused by an electromagnetic environment (EME) are functional error modes that involve no component damage. These error modes are collectively known as upset, can occur simultaneously in all of the channels of a redundant control system, and are software dependent. Upset studies performed to date have not addressed the assessment of fault tolerant systems and do not involve the evaluation of a control system operating in a closed-loop with the plant. A methodology for performing a real-time simulation of the closed-loop dynamics of a fault tolerant control system with a simulated plant operating in an electromagnetically harsh environment is presented. In particular, considerations for performing upset tests on the controller are discussed. Some of these considerations are the generation and coupling of analog signals representative of electromagnetic disturbances to a control system under test, analog data acquisition, and digital data acquisition from fault tolerant systems. In addition, a case study of an upset test methodology for a fault tolerant electromagnetic aircraft engine control system is presented.
Document ID
19900013753
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Belcastro, Celeste M.
(NASA Langley Research Center Hampton, VA, United States)
Date Acquired
September 6, 2013
Publication Date
December 15, 1989
Publication Information
Publication: Jet Propulsion Lab., California Inst. of Tech., Proceedings of the 3rd Annual Conference on Aerospace Computational Control, Volume 2
Subject Category
Computer Programming And Software
Accession Number
90N23069
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available