NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The effect of zinc additions on the environmental stability of Alloy 8090 (Al-Li-Cu-Mg-Zr)Stress corrosion cracking (SCC) remains a problem in both Al-Li and conventional Al heat treatable alloys. It has recently been found that relatively small additions (less than or approximately 1 wt-percent) of Zn can dramatically improve the SCC performance of alloy 8090 (Al-Li-Cu-Mg-Zr). Constant load time to failure experiments using cylindrical tensile samples loaded between 30 and 85 percent of TYS indicate improvements of orders of magnitude over the baseline 8090 for the Zn-containing alloys under certain aging conditions. However, the toughnesses of the alloys were noticeably degraded due to the formation of second phase particles which primarily reside on grain and subgrain boundaries. EDS revealed that these intermetallic particles were Cu and Zn rich. The particles were present in the T3 condition and were not found to be the result of quench rate, though their size and distribution were. At 5 hours at 160 C, the alloys displayed the greatest susceptibility to SCC but by 20 hours at 160 C the alloys demonstrated markedly improved TTF lifetimes. Aging past this time did not provide separable TTF results, however, the alloy toughnesses continued to worsen. Initial examination of the alloys microstructures at 5 and 20 hours indicated some changes most notably the S' and delta' distributions. A possible model by which this may occur will be explored. Polarization experiments indicated a change in the trend of E(sub BR) and passive current density at peak aging as compared to the baseline 8090. Initial pitting experiments indicated that the primary pitting mechanism in chloride environments is one occurring at constituent (Al-Fe-Cu) particles and that the Cu and Zn rich boundary precipitates posses a breakaway potential similar to that of the matrix acting neither anodic or cathodic in the first set of aerated 3.5 w/o NaCl experiments. Future work will focus on the identification of the second phase particles, evaluation of K(sub 1SCC) and plateau da/dt via both DCB and slow strain rate techniques. A lower Zn content variant will be examined in the near future in hopes of optimizing toughness, density and SCC performance.
Document ID
19910017977
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Kilmer, Raymond J.
(Virginia Univ. Charlottesville, VA, United States)
Stoner, G. E.
(Virginia Univ. Charlottesville, VA, United States)
Date Acquired
September 6, 2013
Publication Date
June 30, 1991
Publication Information
Publication: NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)
Subject Category
Metallic Materials
Accession Number
91N27291
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available