NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Infrared coronal emission lines and the possibility of their maser emission in Seyfert nucleiEnergetic emitting regions have traditionally been studied via x-ray, UV and optical emission lines of highly ionized intermediate mass elements. Such lines are often referred to as 'coronal lines' since the ions, when produced by collisional ionization, reach maximum abundance at electron temperatures of approx. 10(exp 5) - 10(exp 6) K typical of the sun's upper atmosphere. However, optical and UV coronal lines are also observed in a wide variety of Galactic and extragalactic sources including the Galactic interstellar medium, nova shells, supernova remnants, galaxies and QSOs. Infrared coronal lines are providing a new window for observation of energetic emitting regions in heavily dust obscured sources such as infrared bright merging galaxies and Seyfert nuclei and new opportunities for model constraints on physical conditions in these sources. Unlike their UV and optical counterparts, infrared coronal lines can be primary coolants of collisionally ionized plasmas with 10(exp 4) less than T(sub e)(K) less than 10(exp 6) which produce little or no optical or shorter wavelength coronal line emission. In addition, they provide a means to probe heavily dust obscured emitting regions which are often inaccessible to optical or UV line studies. In this poster, we provide results from new model calculations to support upcoming Infrared Space Observatory (ISO) and current ground-based observing programs involving infrared coronal emission lines in AGN. We present a complete list of infrared (lambda greater than 1 micron) lines due to transitions within the ground configurations 2s(2)2p(k) and 3s(2)3p(k) (k = 1 to 5) or the first excited configurations 2s2p and 3s3p of highly ionized (x greater than or equal to 100 eV) astrophysically abundant (n(X)/n(H) greater than or equal to 10(exp -6)) elements. Included are approximately 74 lines in ions of O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Fe, and Ni spanning a wavelength range of approximately 1 - 280 microns. We present new results from detailed balance calculations, new critical densities for collisional de-excitation, intrinsic photon rates, branching ratios, and excitation temperatures for the majority of the compiled transitions. The temperature and density parameter space for dominant cooling via infrared coronal lines is presented, and the relationship of infrared to optical coronal lines is discussed.
Document ID
19930017664
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Greenhouse, Matthew A.
(National Air and Space Museum Washington, DC., United States)
Feldman, Uri
(Naval Research Lab. Washington, DC., United States)
Smith, Howard A.
(National Air and Space Museum Washington, DC., United States)
Klapisch, Marcel
(Artep, Inc. Washington, DC., United States)
Bhatia, Anand K.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Bar-Shalom, Abi
(Israel Atomic Energy Commission Beersheba., United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: NASA. Ames Research Center, The Evolution of Galaxies and Their Environment
Subject Category
Astrophysics
Accession Number
93N26853
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available