NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Calculated coupling efficiency between an elliptical-core optical fiber and an optical waveguide over temperatureTo determine the feasibility of coupling the output of a single-mode optical fiber into a single-mode rib waveguide in a temperature varying environment, a theoretical calculation of the coupling efficiency between the two was investigated. Due to the complex geometry of the rib guide, there is no analytical solution to the wave equation for the guided modes, thus, approximation and/or numerical techniques must be utilized to determine the field patterns of the guide. In this study, three solution methods were used for both the fiber and guide fields; the effective-index method (EIM), Marcatili's approximation, and a Fourier method. These methods were utilized independently to calculate the electric field profile of each component at two temperatures, 20 C and 300 C, representing a nominal and high temperature. Using the electric field profile calculated from each method, the theoretical coupling efficiency between an elliptical-core optical fiber and a rib waveguide was calculated using the overlap integral and the results were compared. It was determined that a high coupling efficiency can be achieved when the two components are aligned. The coupling efficiency was more sensitive to alignment offsets in the y direction than the x, due to the elliptical modal field profile of both components. Changes in the coupling efficiency over temperature were found to be minimal.
Document ID
19950024428
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Tuma, Margaret L.
(NASA Lewis Research Center Cleveland, OH, United States)
Weisshaar, Andreas
(NASA Lewis Research Center Cleveland, OH, United States)
Li, Jian
(NASA Lewis Research Center Cleveland, OH, United States)
Beheim, Glenn
(NASA Lewis Research Center Cleveland, OH, United States)
Date Acquired
September 6, 2013
Publication Date
July 1, 1995
Subject Category
Optics
Report/Patent Number
E-9787
NASA-TM-107005
NAS 1.15:107005
Accession Number
95N30849
Funding Number(s)
PROJECT: RTOP 505-62-50
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available