NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Out-of-plane propertiesThis paper summarizes three areas of research which were performed to characterize out-of-plane properties of composite materials. In the first investigation, a series of tests was run to characterize the through-the-thickness tensile strength for a variety of composites that included 2D braids, 2D and 3D weaves, and prepreg tapes. A new test method based on a curved beam was evaluated. Failures were significantly different between the 2D materials and the 3D weaves. The 2D materials delaminated between layers due to out-of-plane tensile stresses while the 3D weaves failed due to the formation of radial cracks between the surface plies caused by high circumferential stresses along the inner radius. The strength of the 2D textile composites did not increase relative to the tapes. Final failure in the 3D weaves was caused by a circumferential crack similar to the 2D materials and occurred at a lower bending moment than in other materials. The early failures in the 3D weaves were caused by radial crack formation rather than a low through-the-thickness strength. The second investigation focused on the development of a standard impact test method to measure impact damage resistance. The only impact tests that currently exist are compression after impact (CAI) tests which incorporate elements of both damage resistance and damage tolerance. A new impact test method is under development which uses a quasi-static indentation (QSI) test to directly measure damage resistance. Damage resistance is quantified in terms of the contact force to produce a unit of damage where a metric for damage may be area in C-scan, depth of residual dent , penetration, damage growth, etc. A final draft of an impact standard that uses a QSI test method will be presented to the ASTM Impact Task Group on impact. In the third investigation, the impact damage resistance behavior of a variety of textile materials was studied using the QSI test method. In this study, the force where large damage initiates was measured and the delamination size as a function of force was determined. The force to initiate large damage was significantly lower in braids and weaves. The delamination diameter - impact forace relationship was quanitfied using a damage resistance parameter, Q(*), which related delamination diameter to imapct force over a range of delamination sizes. Using this Q(*) parameter to rate the materials, the stitched uniweaves, toughened epoxy tapes, and through-the-thickness orthogonal interlock weave were the most damage resistant.
Document ID
19960010541
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Jackson, Wade C.
(Army Research Lab. Hampton, VA, United States)
Portanova, Marc A.
(Army Research Lab. Hampton, VA, United States)
Date Acquired
September 6, 2013
Publication Date
October 1, 1995
Publication Information
Publication: NASA, Langley Research Center Mechanics of Textile Composites Conference
Subject Category
Composite Materials
Accession Number
96N17707
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available