NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Case-Based Capture and Reuse of Aerospace Design RationaleThe goal of this project is to apply artificial intelligence techniques to facilitate capture and reuse of aerospace design rationale. The project applies case-based reasoning (CBR) and concept mapping (CMAP) tools to the task of capturing, organizing, and interactively accessing experiences or "cases" encapsulating the methods and rationale underlying expert aerospace design. As stipulated in the award, Indiana University and Ames personnel are collaborating on performance of research and determining the direction of research, to assure that the project focuses on high-value tasks. In the first five months of the project, we have made two visits to Ames Research Center to consult with our NASA collaborators, to learn about the advanced aerospace design tools being developed there, and to identify specific needs for intelligent design support. These meetings identified a number of task areas for applying CBR and concept mapping technology. We jointly selected a first task area to focus on: Acquiring the convergence criteria that experts use to guide the selection of useful data from a set of numerical simulations of high-lift systems. During the first funding period, we developed two software systems. First, we have adapted a CBR system developed at Indiana University into a prototype case-based reasoning shell to capture and retrieve information about design experiences, with the sample task of capturing and reusing experts' intuitive criteria for determining convergence (work conducted at Indiana University). Second, we have also adapted and refined existing concept mapping tools that will be used to clarify and capture the rationale underlying those experiences, to facilitate understanding of the expert's reasoning and guide future reuse of captured information (work conducted at the University of West Florida). The tools we have developed are designed to be the basis for a general framework for facilitating tasks within systems developed by the Advanced Design Technologies Testbed (ADTT) project at ARC. The tenets of our framework are (1) that the systems developed should leverage a designer's knowledge, rather than attempting to replace it; (2) that learning and user feedback must play a central role, so that the system can adapt to how it is used, and (3) that the learning and feedback processes must be as natural and as unobtrusive as possible. In the second funding period we will extend our current work, applying the tools to capturing higher-level design rationale.
Document ID
19990004098
Acquisition Source
Ames Research Center
Document Type
Contractor or Grantee Report
Authors
Leake, David B.
(Indiana Univ. Bloomington, IN United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1998
Subject Category
Aircraft Design, Testing And Performance
Funding Number(s)
CONTRACT_GRANT: NCC2-1035
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available