NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Investigation of the Influence of Microgravity on Transport Mechanism in a Virtual Spaceflight Chamber: A Flight Definition ProgramA need exists for understanding precisely how particles move and interact in a fluid in the absence of gravity. Such understanding is required, for example, for modeling and predicting crystal growth in space where crystals grow from solution around nucleation sites as well as for any study of particles or bubbles in liquids or in experiments where particles are used as tracers for mapping microconvection. We have produced an exact solution to the general equation of motion of particles at extremely low Reynolds number in microgravity that covers a wide range of interesting conditions. We have also developed diagnostic tools and experimental techniques to test the validity of the general equation . This program, which started in May, 1998, will produce the flight definition for an experiment in a microgravity environment of space to validate the theoretical model. We will design an experiment with the help of the theoretical model that is optimized for testing the model, measuring g, g-jitter, and other microgravity phenomena. This paper describes the goals, rational, and approach for the flight definition program. The first objective of this research is to understand the physics of particle interactions with fluids and other particles in low Reynolds number flows in microgravity. Secondary objectives are to (1) observe and quantify g-jitter effects and microconvection on particles in fluids, (2) validate an exact solution to the general equation of motion of a particle in a fluid, and (3) to characterize the ability of isolation tables to isolate experiments containing particle in liquids. The objectives will be achieved by recording a large number of holograms of particle fields in microgravity under controlled conditions, extracting the precise three-dimensional position of all of the particles as a function of time and examining the effects of all parameters on the motion of the particles. The feasibility for achieving these results has already been established in the ongoing ground-based NRA, which led to the "virtual spaceflight chamber" concept.
Document ID
19990040352
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Trolinger, James D.
(MetroLaser Irvine, CA United States)
Rangel, Roger
(California Univ. Irvine, CA United States)
Witherow, William
(NASA Marshall Space Flight Center Huntsville, AL United States)
Rogers, Jan
(NASA Marshall Space Flight Center Huntsville, AL United States)
Lal, Ravindra B.
(Alabama A & M Univ. Huntsville, AL United States)
Date Acquired
August 19, 2013
Publication Date
February 1, 1999
Publication Information
Publication: NASA Microgravity Materials Science Conference
Subject Category
Materials Processing
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available